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Abstract

Readability assessment can improve the quality of assist-
ing technologies aimed at language learners. Eye-tracking
data has been used for both inducing and evaluating general-
purpose NLP/AI models, and below we show that unsurpris-
ingly, gaze data from language learners can also improve
multi-task readability assessment models. This is unsurpris-
ing, since the gaze data records the reading difficulties of
the learners. Unfortunately, eye-tracking data from language
learners is often much harder to obtain than eye-tracking
data from native speakers. We therefore compare the perfor-
mance of deep learning readability models that use native
speaker eye movement data to models using data from lan-
guage learners. Somewhat surprisingly, we observe no signif-
icant drop in performance when replacing learners with na-
tives, making approaches that rely on native speaker gaze in-
formation, more scalable. In other words, our finding is that
language learner difficulties can be efficiently estimated from
native speakers, which suggests that, more generally, read-
ily available gaze data can be used to improve educational
NLP/AI models targeted towards language learners.

Introduction

Automatic readability assessment is a common task in
NLP/AI and refers to the task of predicting reading diffi-
culties. Some work in automatic readability assessment is
directed at predicting reading difficulties of native speakers
with normal reading abilities, but there is also a growing lit-
erature using readability assessment to select appropriate lit-
erature for language learners.

Vajjala and Meurers (2012), for example, found that de-
velopmental measures from second language acquisition
research, in combination with traditional features such as
word length and sentence length, improve document level
readability assessment. More recently, Xia, Kochmar, and
Briscoe (2016) used self-training to adapt models of text
readability trained on native speaker data to estimate read-
ability for learners.

In parallel, recent studies in text readability have made
use of eye movement data from native speakers of En-
glish in order to evaluate their models (Klerke et al. 2015;
Green 2014). These studies attempt to take into account the
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correlation between eye-tracking measures such as first pass
duration and regression duration, and perceived text diffi-
culty (Rayner et al. 2012).

The work most similar to ours is by Singh et al. (2016),
who presents a two-level system to predicting the readabil-
ity of Wikipedia sentences. Singh et al. (2016) used reading
times from the Dundee eye-tracking corpus to learn to pre-
dict reading times in the first level of the system and then
used these as features for predicting readability in the sec-
ond. They found this to be a successful approach, however,
their results were slightly below the state-of-the-art (Ambati,
Reddy, and Steedman 2016).

In contrast to Singh et al. (2016), our study focuses on
the effects of using eye movement data from native speak-
ers versus learners of English, in a multi-task learning set-up
(Caruana 1997), with text readability assessment as our main
task. In multi-task Learning, the training signals of one task,
the auxiliary task, are used to improve the performance of
the main task, by sharing information throughout the train-
ing process. Specifically in this study, we use the task of
eye-movement prediction to induce models of readability.
Furthermore, we compare using eye-movement prediction
for native speakers as an auxiliary task, to using gaze pre-
diction for language learners. In both cases, we use the aux-
iliary task to induce a multi-task Multi-Layered Perceptron
model for text readability assessment.

We evaluate our models on both Simple Wikipedia vs
Normal Wikipedia (Coster and Kauchak 2011) and On-
eStopEnglish (Vajjala and Meurers 2014) corpus. We use
prefix probabilities, surprisal, ambiguity scores as well as
other low-level features typically used in readability assess-
ment in order to represent each sentence of the corpora. The
gaze data that we use for our auxiliary tasks comes from the
Dundee corpus (Kennedy and Pynte 2003), as well as the
recently introduced Ghent Eye-Tracking Corpus (GECO)
(Cop et al. 2017), which includes both gaze measures from
native speakers and learners of English.

Contributions This is, to the best of our knowledge, the
first application of multi-task learning to readability predic-
tion, comparing data from natives speakers versus learners
of English. We begin with the observation that, unsurpris-
ingly, gaze data of language learners can be used to improve
readability assessment for language learners. This is unsur-
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prising, because gaze data records the reading behavior, in-
cluding the length of fixations and refixations, of language
learners, directly reflecting their processing times, as well as
when they need to revisit passages to understand the texts
they read. Our results show the effects from using gaze data
are robust across training sample sizes and across datasets.
More surprisingly, however, we also show that similar ef-
fects can be obtained using gaze data from native readers.
This is interesting, since it is much easier to collect data
from native readers than from language learners, especially
for low-resource languages.

Experiments
Data Our main task is to improve the performance of our
text readability predictions. For this purpose, we use two
corpora that have been previously used in readability assess-
ment. The first is a sentence aligned corpus of 137,000 sim-
ple versus normal English sentences (Coster and Kauchak
2011), which was made in order to assess the performance of
simplification systems. The dataset contains sentences from
Simple Wikipedia and standard Wikipedia that were paired
using cosine similarity.

The second corpus is the sentence-level OneStopEnglish
Corpus (Vajjala and Meurers 2014), which consists of sen-
tences at three different levels: Elementary, Intermediate and
Advanced. This corpus was annotated by experts who read
a news article and simplified it into two levels: interme-
diate and elementary. We used Elementary-Advanced and
Elementary-Intermediate sentence pairs in our experiments.

For the auxiliary task of predicting eye movements, we
use the Dundee Corpus (Kennedy and Pynte 2003), which
has been used in readability studies and studies of syntactic
complexity (Singh et al. 2016; Demberg and Keller 2008).
The English portion of the Dundee corpus consists of eye-
tracking measures taken from 10 native speakers of English
while reading newspaper articles from The Independent. It
contains a total of 56,212 tokens and 2,368 sentences and a
total of 9,776 types.

In addition, we use the GECO corpus (Cop et al. 2017),
which consists of data from 14 monolingual native English
speakers, and 19 native speakers of Dutch with English as
their second language. All subjects read a literary novel. The
19 participants varied in their level of proficiency in English,
from lower-intermediate to advanced.

For our study, we use the gaze data collected from the En-
glish native speakers, as our L1 data, and the gaze data col-
lected from the Dutch speakers while reading in English, as
our L2 data. For each sentence in the eye movement corpora,
we extract three eye movement measures that are commonly
used when investigating sentence processing (Rayner et al.
2006): first pass duration, regression path duration and total
fixation duration.

First pass duration refers to the time spent reading a word
the first time the gaze enters the corresponding visual region.
Total regression duration describes the total time spent in an
area after the gaze has left a word’s visual region for the
first time. Regressive eye movements have shown to be cor-
related with comprehension difficulty as well as perceived
reading difficulty (Rayner et al. 2012). These two measures

can be seen as early and late processing measures. In addi-
tion, we predict total fixation duration, which refers to the
sum of all fixation durations. Specifically, in our study, we
extract the average first pass, regression path and total fixa-
tion durations for the words in a given sentence.

For all experiments, we use 60% of the data for training,
20% for development and 20% for testing.

Features We use various features known to affect text
complexity, including syntactic, lexical and total surprisal
measures, extracted from a probabilistic top-down parser
(Roark 2001).

1. Prefix probability -word 1
2. Total surprisal - word 1
3. Syntactic surprisal - word 1
4. Lexical surprisal - word 1
5. Ambiguity - word 1
6. Prefix probability -word 2
7. Total surprisal - word 2
8. Syntactic surprisal - word 2
9. Lexical surprisal - word 2
10. Ambiguity - word 2
11. Total surprisal sentence mean
12. Syntactic surprisal sentence mean
13. Lexical surprisal sentence mean
14. Ambiguity sentence mean
15. Total surprisal sentence SD
16. Syntactic surprisal sentence SD
17. Lexical surprisal sentence SD
18. Ambiguity sentence SD
19. Sentence length
20. Average word length
21. Parse tree height
22. # of Subordinate clauses (SBARs)
23. # of Noun phrases
24. # of Verb phrases
25. # of Prepositional phrases
26. # of Adv phrases
27. Ratio nouns
28. Ratio verbs
29. Ratio adjectives
30. Ratio pronouns
31. Ratio adverbs
32. Ratio determiners
33. Mean age of acquisition

Table 1: Feature set for each sentence.

The prefix probability of word wn ((Jelinek and Lafferty
1991)) is the probability that wn occurs as a prefix of some
string generated by a grammar. It is the sum of the proba-
bilities of all trees from the first word to the current word.
Surprisal can be derived from the prefix probability by tak-
ing the difference between the log of the prefix probability
of wn and wn−1.

If D(G,W [1, n]) is the set of all possible leftmost deriva-
tions D with respect to probabilistic context free grammar G
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and whose last step used a production with terminal Wn, we
can describe the prefix probability of W [1, n] with respect to
G as PPG(W [1, n]) =

∑
D∈D(G,W [1,n]) ρ(D), where ρ(D)

is the probability of the derivation of a certain tree.
Syntactic surprisal and lexical surprisal are calculated to

account for high surprisal scores (Roark et al. 2009), due to
a word appearing in an unusual context or because it is un-
common. The incremental parser, isolates the syntactic and
lexical components of Surprisal by calculating the partial
derivations immediately before word Wn is integrated into
the syntactic structure. Syntactic surprisal (SynSG(Wn)) is
defined as:

− log

∑
D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

PPG(W [1, n− 1])

and lexical surprisal (LexSG(Wn)) as:

− log
PPG(W [1, n])∑

D∈D(G,W [1,n]) ρ(D[1, |D| − 1])

Where D[1, |D| − 1] is the set of the partial
derivations before each word is integrated into the
structureD(G,W [1, n]). The sum of syntactic surprisal and
lexical surprisal is the total surprisal. In addition, the parser
extracts an entropy score. Entropy over a set of derivations
D, denoted as H(D), quantifies the uncertainty over the par-
tial derivations. We call this feature as Ambiguity, defined
as:

−
∑

D∈D

ρ(D)∑
D′∈D ρ(D′)

log
ρ(D)∑

D′∈D ρ(D′)

In addition, we include low-level features known to
affect readability such as sentence length, average word
length, parse tree height and number of subordinate clauses
(SBAR). The full set of features is seen in Table 1. We ex-
tracted the same set of features for each sentence in the read-
ability and eye-tracking corpora.

MLP and Multi-Task MLP For the single-task system,
we use a three-layer perceptron with sigmoid activation at
the output layer for readability prediction and linear acti-
vation for eye movement prediction models. We use ReLu
activation in the hidden layers which contains 100 neurons.
All models use Adam optimizer and a drop-out rate of 0.5. In
figure 1a, we can observe the single-task MLP architecture
for both readability prediction and eye movement prediction.
For the task of predicting readability, the model takes as in-
put the features extracted from each sentence in the read-
ability corpora (Wikipedia or OSE) and predicts a binary
label corresponding to easy vs difficult sentence. The eye
movement model takes in the features extracted from the
sentences in the Dundee and GECO corpora and predicts a
value corresponding to the average eye movement duration
for that sentence.

In addition to the single-task system, we use a multi-task
Learning architecture identical to that of (Collobert et al.
2011). This consists of two MLP’s with the same architec-
ture as the single-task system, that in addition share all pa-
rameters in their hidden layers. One MLP minimizes a mean

squared error in order to predict gaze. Figure 1b shows the
architecture of out multi-task MLP model. The model takes
two inputs corresponding to the features extracted from one
readability dataset and one eye movement dataset, and out-
puts two values, a readability label and one of the eye move-
ment measures. The model is fully connected at the hidden
layer, where parameters are shared between the two tasks.

As mentioned earlier, the main task is predicting readabil-
ity and the auxiliary task is eye movement prediction, there-
fore, in this study we focus our evaluations on our readability
results only. However, because multi-task learning implies
that the two tasks are related, we present briefly our single-
task MLP results for our eye movement predictions.

(a) Example of our single-task MLP models for predicting the
two different tasks separately

(b) Example of our multi-task MLP model which predicts the
two different tasks simultaneously

Figure 1

Baselines We include the results from Ambati, Reddy, and
Steedman (2016) as a baseline for our Wikipedia results, as
well as the results from (Vajjala and Meurers 2014) as a
baseline for the OSE sentence pairs. Both of these results
were obtained using single-task Learning architectures. In
addition, we compare our readability prediction results when
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using our multi-task MLP to our single-task MLP as our
baseline for all datasets.

Results

The results for the task of readability prediction for all sys-
tems are shown in Table 2. For all datasets, multi-task sys-
tems using the GECO dataset gave the best results. Improve-
ments over single-task baselines were in the range of .67–
3.35%. Improvements over using the Dundee corpus were
in the range of .17–.73%. Our best results are significantly
better than both previous work and our single-task baselines
(p < 0.01). See the results table for significance of all results
relative to the single-task baseline.

As mentioned earlier, multi-task Learning assumes that
the tasks are related so that learning one task can actually
improve the performance of the main task. In our case, we
wanted to know whether the feature representation used to
predict both tasks was successful in a single-task set up,
therefore, we include the results of our single-task MLP
models for predicting eye movements using the extracted
features. Our results, shown in Table 3, show the correlation
between our single-task MLP predictions versus the true val-
ues. All correlations are statistically significant. We do not
evaluate our multi-task MLP eye movement predictions in
this study.

SYSTEMS WIKIPEDIA OSE (A-E) OSE (I-E)
PREVIOUS

Ambati 78.87 - -
Vajjala - 61.0 51.0

SINGLE-TASK MLP
No Gaze 85.95 67.53 59.30

MULTI-TASK MLP -DUNDEE
1st pass 86.13 68.08* 61.70**
Regression 86.11 67.66 61.91**
Total fix 86.45** 68.51** 61.27**

MULTI-TASK MLP -L1 (GECO)
1st pass 86.51** 68.77** 62.64**
Regression 86.41* 69.18** 62.45**
Total fix 86.58* 68.57* 61.43*

MULTI-TASK MLP -L2 (GECO)
1st pass 86.62** 68.57* 61.84**
Regression 86.58** 68.37* 62.25**
Total fix 86.35 68.97** 61.63**

Table 2: This table shows the accuracy for all multi-task and
single-task systems. In all experiment, 60 % of the data was
used for training, 20 % for development and 20 % for testing.
Significance is indicated with the asterisks: ∗∗ = p < 0.01,
∗ = 0.01 ≥ p < 0.05.

Discussion

Effect of using gaze data We compared the learning
curves of the best performing multi-task and single-task sys-
tems when varying the amount of training data. For the

GAZE MEASURE PEARSON’S ρ
DUNDEE

First pass 0.45***
Regression duration 0.56***
Total fixation duration 0.57***

GECO -L1
First pass 0.49***
Regression duration 0.59***
Total fixation duration 0.51***

GECO -L2
First pass 0.65***
Regression duration 0.65***
Total fixation duration 0.62***

Table 3: Pearson’s ρ correlation coefficient between the pre-
dictions of the MLP models and the true values. All our re-
sults have a p-value lower than 0.001 (***).

Subset Improvements Losses
L1 14551 3757
L2 16189 4230

Table 4: This table shows the number of improvements and
losses when using multi-task learning and single-task learn-
ing with the different samples (L1 and L2 speakers)

single-task models, began training on 100 sentences and in-
crementally increased until we were using 60 percent of the
data for training. For the MTL models, we started with 100
sentences taken from the readability corpora and 100 sen-
tences takes from the eye movement corpora and incremen-
tally increased until 60 percent of the readability data was
used for training. To deal with the difference in corpus size,
we copied the eye movement sentences until the size of the
corpus matched the size of the readability corpus.

Figure 2 shows the learning curves for the best performing
single-task and multi-task systems. We do not include the
multi-task MLP-Dundee system because all other MTL sys-
tems outperform it. Across the three sets of sentence pairs,
we see that all multi-task systems perform better than the
single-task systems. Furthermore, the systems that use L2
gaze data to learn an auxiliary task show to have similar ef-
fects when using smaller sample sizes. For example, when
the training sample size is as small as 100 samples, both
L1 and L2 still generalize much better than the single-task
system. For the Wikipedia dataset, both L1 and L2 systems
are about 10% more accurate than the single-task system.
For the other two data subsets, the difference is not as large,
however, a significant difference can still be observed, when
training multi-task and single-task systems on 100 samples.

Differences between L1 and L2 As mentioned earlier,
training all models on 100 samples from the Wikipedia
dataset, the multi-task models perform about 10% better
than single-task models. In order to further examine this
substantial improvement, we labeled each instance where
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Figure 2: Learning curves using varying amounts of training
data

the multi-task learning output improved over the single-task
output. Conversely, when our single-task models performed
better than the multi-task model, we labeled that with a dif-
ferent label. Instances where there was no difference in per-
formance, were removed. The counts of improvements ver-
sus losses when using multi-task learning over single tasks,
for the Wikipedia dataset, are seen in Table 4.

Splitting our data the same way as in the previous exper-
iments, we then trained a decision tree classifier on single
features to discriminate between instances where results im-
prove from multi-task learning, and instances where multi-
task learning hurts, for the L1 versus the L2 datasets. We list
features that predict multi-task learning gains with an F1-
score higher than 75% in Table 5. This suggests that several
features are highly predictive of gains. Note that sentence
length is also very predictive, and that many of our features

covary with sentence length.
Generally, the results show that when using both datasets,

low-level features remain the most predictive. For L1 gaze
data, we also see parser metrics that are predictive of im-
provements and losses. Specifically, we observe that syntac-
tic, lexical and total surprisal, as well as ambiguity of first
word achieve F1-scores higher than 75 %. In the case of the
L2 eye movement data, however, only syntactic surprisal has
an F1-score higher than 75%.

This pattern possibly reflects the fact that the eye move-
ment data for the L2 readers contains more variability, i.e.,
the readers are at different proficiency levels of English, and
that many beginner or intermediate L2 readers are more sen-
sitive to low-level features such as sentence length.

Inspecting the sentences that improved from incorporat-
ing eye movement prediction as an auxiliary task, we see a
lot of improvements concern sentences that are either very
short or long. When complexity was a result of subtle vo-
cabulary changes, improvements were rarer. In Table 6, we
show examples of the type of sentences that lead to improve-
ments and losses in the best multi-task MLP model.

Eye movement Prediction In multi-task learning it is im-
portant that the tasks that are learned simultaneously are
related to a certain extent (Caruana 1997; Collobert et al.
2011). As eye movement behavior is known to correlate
with text difficulty (Rayner et al. 2012; Clifton, Staub, and
Rayner 2007), we know that both our main and auxiliary
tasks should in fact be related, however, it is important to
establish whether the same feature representation can yield
good results for both tasks independently.

We also evaluate the performance of our eye movement
predictions. We randomly select 50 samples and visualize
the results in Figure 3. The plot shows that for both the L1
and L2 subsets, the single-task MLP model is successfully
predicting eye movements, however, the eye movements of
L2 readers are slightly more predictable. This is observed
both in the plots, as well as the correlation results in Table
3, however, this does not seem to significantly improve the
results in the multi-task MLP models that use L2 eye move-
ment information over the models that incorporate L1 eye
movement information. Since the L2 readers are reported to
have different proficiency levels, it may be surprising that
their gaze patterns are more predictable, but we speculate
this is balanced by higher intra-reader variance leading to a
clearer signal.

Gaze information from natives can be successfully used
when L2 data is not readily available, as the benefits might
be similar for both. Further comparisons between L1 and L2
speakers are needed in order to assess whether this is true or
not.

Conclusion

In this study, we have presented an approach to readability
prediction that uses eye-tracking data collected from L1 and
L2 speakers of English in order to induce text readability.
Our multi-task learning models predict eye movement be-
havior as an auxiliary task in order to improve our main task.
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Features Precision Recall F1 score
L1

All Features 79.53 79.38 79.46
Ratio Verbs 68.50 98.13 80.00
Ratio Nouns 68.00 95.81 79.58
# NPs 67.88 95.27 79.28
Ave. word length 68.24 93.77 79.00
# AdvPs 67.39 97.00 79.53
# SBAR’s 67.57 96.23 79.40
Ratio Adverbs 67.13 97.88 79.64
Parse tree height 67.13 97.88 79.64
# VPs 67.12 97.83 79.62
Ratio Pronouns 66.93 97.96 79.54
# PPs 67.56 96.23 79.39
Sentence length 68.23 94.00 78.99
Ratio Adjectives 67.52 96.11 79.32
Syn. surprisal Word1 69.70 88.28 77.90
Ambiguity word 1 69.24 86.11 76.76
Total surprisal 69.11 85.53 76.44
Lexical surprisal 69.18 85.03 76.29

L2
All Features 79.14 79.61 79.38
Ratio Nouns 67.36 95.73 79.07
Ratio Verbs 66.71 98.42 79.52
# NPs 67.39 95.33 78.96
Ave. word length 67.66 93.94 78.67
# SBAR’s 66.64 96.87 78.66
# AdvPs 66.76 96.27 78.85
Ratio Adverbs 66.68 96.52 78.87
# VPs 66.62 96.24 78.74
Parse tree height 66.17 97.72 78.90
# PPs 65.82 98.60 78.94
Ratio Pronouns 65.83 98.03 78.77
Sentence length 67.26 91.72 77.61
Syntactic Surpisal 68.32 87.22 76.62

Table 5: Results from a single feature experiment using the
Wikipedia dataset in which each feature was used to predict
cases of improvement or loss between multi-task and single-
task systems

First, we demonstrate how our method can be very beneficial
for applications with small data samples as improvements
of multi-task learning over single-task learning can be seen
with as little as 100 training samples. In addition, we show
that eye movement data from native speakers of English can
be just as efficient as using data from L2 speakers. This is
particularly beneficial for improving technologies aimed at
language learners, since it may make data collection easier
and less expensive.
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