
CoChat: Enabling Bot and Human
Collaboration for Task Completion

Xufang Luo,†∗ Zijia Lin,‡ Yunhong Wang,† Zaiqing Nie§
†Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, China

‡Microsoft Research, Beijing, China
§Alibaba AI Labs, Beijing, China

{luoxufang,yhwang}@buaa.edu.cn; zijlin@microsoft.com; zaiqing.nzq@alibaba-inc.com

Abstract

Chatbots have drawn significant attention of late in both in-
dustry and academia. For most task completion bots in the
industry, human intervention is the only means of avoiding
mistakes in complex real-world cases. However, to the best
of our knowledge, there is no existing research work model-
ing the collaboration between task completion bots and hu-
man workers. In this paper, we introduce CoChat, a dialog
management framework to enable effective collaboration be-
tween bots and human workers. In CoChat, human work-
ers can introduce new actions at any time to handle previ-
ously unseen cases. We propose a memory-enhanced hier-
archical RNN (MemHRNN) to handle the one-shot learn-
ing challenges caused by instantly introducing new actions
in CoChat. Extensive experiments on real-world datasets well
demonstrate that CoChat can relieve most of the human work-
ers’ workload, and get better user satisfaction rates comparing
to other state-of-the-art frameworks.

Introduction

Task completion bots are attracting lots of attention from
both industry and academia. They aim to help users com-
plete specific tasks (e.g., booking movie tickets) via more
natural interactions, i.e., conversations. The focus of task
completion bots is to complete tasks successfully, while
achieving high user satisfaction. A good dialog manager is
a crucial component for such task completion bots. It takes
language understanding results as input, and decides which
action (e.g., asking for a movie name) should be taken.
Therefore, the dialog manager directly controls dialog flow,
decides the success/failure of task completion, and also af-
fects user satisfaction (Lee et al. 2010; Young et al. 2013).

Although there are many methods for developing an au-
tomatic dialog manager, such automatic systems are poten-
tially problematic, as they don’t share the same experience
from human workers on how to avoid serious mistakes that
would negatively affect users, e.g., failing the task or annoy-
ing them. Currently, human intervention is the only means
of avoiding such mistakes in complex real-world domains
(Saunders et al. 2017). Besides, human workers are already

∗This work was done when the first author was on an internship
with Microsoft Research.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of the CoChat Framework

heavily involved in many common task completion systems,
e.g., call centers. Hence, modeling the collaboration be-
tween bots and human workers is a reasonable approach. It
can even be the only practical way for learning and using the
dialog manager in many real-world applications.

In this paper, we propose a practical dialog management
framework named CoChat to enable effective collaboration
between bots and human workers. To the best of our knowl-
edge, our work is the first to model the collaboration be-
tween task completion bots and human workers, which is
necessary and reasonable for many real-world applications.
In CoChat, human workers can intervene in the learning pro-
cess at any time, and the dialog manager can be continu-
ously improved via learning from labeled dialog logs, hu-
man workers’ feedback and users’ feedback. As illustrated
in Fig. 1, the dialog manager is firstly initialized via super-
vised learning. After that, the bot can collaborate with hu-
man workers, suggest actions for them to reduce their work-
load, and continuously learn from their feedback via on-
line learning. When human workers are unavailable, e.g., off
work, and users are willing to try the bot, the bot can directly
interact with users, and its dialog manager can be further im-
proved via reinforcement learning. Briefly, the dialog man-
ager is continuously improved to maximize user satisfaction,
and relieve human workers’ workload during collaboration.

Having human workers involved, generally allows the
introduction of new actions to handle complex or unseen
cases, and thus raises challenges of learning new actions for
the dialog manager. In previous works like (Lee et al. 2010;
Su et al. 2017), the dialog manager requires a fixed action
set, and then learns to select one action from it to handle each
case. However, this setting is unrealistic when human work-
ers are involved to handle complex or unseen cases, because

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5301

new actions outside the original action set will probably be
required urgently to facilitate task completion. For example,
a customer support center may receive questions about prob-
lems in their latest product, which may have never been seen
before and therefore cannot be handled by the bot. Then “tell
users how to handle these new problems” becomes a new re-
quired action, and it will be provided by human workers who
intervene to handle such cases. The dialog manager should
also learn this new action for better suggesting actions and
handling similar cases later. Such challenges of learning new
actions have not been well studied before. Though previ-
ous work can adapt to new actions by retraining their corre-
sponding models, they suffer the risk of losing accumulated
learned knowledge, as learning processes like reinforcement
learning often cannot be reproduced exactly.

To implement the proposed CoChat framework and bet-
ter handle the challenges of learning new actions, we further
propose a novel dialog manager model termed MemHRNN.
The proposed MemHRNN consists of a hierarchical recur-
rent neural network (i.e., HRNN) (Li, Luong, and Dan 2015;
Xie et al. 2016; Yang; and Huang 2016; Sordoni et al. 2015)
and an external memory. The HRNN combines dialog his-
tory, language understanding results and external informa-
tion like API call results as input, and then outputs probabil-
ity distributions over all actions for action selection. When
new actions come up, the architecture of the HRNN can
be changed accordingly without losing the knowledge accu-
mulated in previous learning processes. Most importantly,
the external memory in MemHRNN is further introduced to
handle the one-shot learning challenges (Santoro et al. 2016;
Graves, Wayne, and Danihelka 2014) caused by instantly in-
troducing new actions, i.e., their corresponding occurrences
are too few for the HRNN to learn valid strategies regarding
them. Specifically, we record the occurrences of new actions
in the memory, and leverage them to derive the probabilities
of selecting these new actions, which are then merged with
those output by the HRNN to enhance action selection.

We conduct experiments on two realistic tasks: i) book-
ing restaurants; and ii) booking movie tickets. Experimen-
tal results show that: 1) In CoChat, when human workers
are available, high user satisfaction can be achieved. More-
over, by suggesting actions for both tasks, the dialog man-
ager learned by MemHRNN can reduce workers’ workload
by 91.35% and 86.32% respectively; 2) The learned dialog
manager can achieve high user satisfaction rates, 97.04%
and 92.62% respectively, of those achieved by human work-
ers after continuous learning. 3) When new actions come up,
MemHRNN can quickly learn strategies to cope with them
via smooth architecture adaptations and leveraging the ex-
ternal memory.

The contributions of our work are summarized as follows:
• We propose CoChat, a practical dialog manager learn-

ing framework that models the collaboration between bots
and human workers for task completion;

• We propose a memory-enhanced hierarchical RNN model
termed MemHRNN to implement the CoChat framework
and handle the one-shot learning challenges caused by in-
stantly introducing new actions.

Related Work

In task completion bots, a dialog manager decides what the
next action should be, given the current conversation state
(Young 2006; Zhao and Eskenazi 2016). Generally, the con-
versation state is derived from message history, previous ac-
tions, natural language understanding (NLU) results, etc..
Different learning-based approaches, apart from handcrafted
rules, have been proposed to develop such dialog managers.

Inspired by non-task-oriented bots (Vinyals and Le 2015;
Shang, Lu, and Li 2015), multiple methods to train a dia-
log manager via supervised learning were proposed. Wen et
al. (2016) propose a neural-network-based trainable dialog
system along with a new way of collecting dialog data. Bor-
des and Weston (2016) report an end-to-end dialog system
based on Memory Networks that can achieve promising, yet
imperfect, performance. Eric and Manning (2017) describe a
copy-augmented sequence-to-sequence architecture that can
also achieve good performance for dialog management.

Dialog managers can also be learned via reinforcement
learning (Levin, Pieraccini, and Eckert 1998; Williams and
Young 2007; Young et al. 2013). Specifically, the learning
processes will be modeled as POMDPs. The dialog man-
ager will directly interact with users and then, in a process
of “trial and error”, it can learn from delayed rewards. How-
ever, learning a dialog manager from scratch via reinforce-
ment learning may be risky and infeasible for industrial bots.
Such processes may conduct random explorations, and even
sometimes fail to learn an acceptable result, as shown in ex-
periments by Williams and Zweig (2016).

Recently researchers also proposed to learn a dialog man-
ager by combining both supervised learning and reinforce-
ment learning. Zhao and Eskenazi (2016) propose an algo-
rithm that combines the strengths of both to achieve faster
learning speed. Williams and Zweig (2016) report that pre-
training with supervised learning can substantially accel-
erate the learning rate of reinforcement learning. Su et al.
(2016) demonstrate that supervised learning is effective, and
using reinforcement learning after supervised learning can
further achieve performance improvements, especially in
high-noise conditions.

In this paper, we propose a new dialog manager learn-
ing framework termed CoChat. CoChat models the collab-
oration between bots and human workers for task comple-
tion, which, to the best of our knowledge, has not been
considered before. CoChat not only combines supervised
learning and reinforcement learning as previous works, but
also combines online learning to better learn from human
workers during bot-worker collaboration. Moreover, unlike
previous works that assume the dialog manager to have a
fixed action set, CoChat supports new actions which are in-
troduced by human workers. Since new actions generally
have just few occurrences, learning how to select them is
essentially a one-shot learning problem (Santoro et al. 2016;
Graves, Wayne, and Danihelka 2014). To handle that, we
propose a memory-enhanced hierarchical RNN model to im-
plement CoChat, i.e., MemHRNN. Neural networks with an
external memory have been successfully applied to various
NLP problems like machine translation (Tang et al. 2016;
Wang et al. 2016) to handle similar challenges.

5302

Figure 2: Illustration of the proposed MemHRNN model for implementing the CoChat framework and learning a dialog man-
ager, along with a real complete example from a restaurant booking task. Here underlined words are labeled entities, and framed
words are action labels of the corresponding utterances.

CoChat Framework

As illustrated in Fig. 1, our proposed learning framework,
CoChat, enables the collaboration between bot and human
workers to minimize the risk of failures and ensure user sat-
isfaction. Meanwhile, it helps to minimize human workers’
workload during collaboration. In brief, CoChat combines
supervised learning from available labelled logs, online
learning from feedback given by human workers, and rein-
forcement learning from delayed rewards/feedback given by
users, so as to continuously improve the dialog manager.

Specifically, with a small amount of available labeled
user-worker dialogs, the dialog manager is firstly initialized
via supervised learning to achieve a higher starting point.

Then the dialog manager is put online to suggest actions
to human workers, enabling collaboration and helping them
work more efficiently. Generally, human workers can effort-
lessly choose a suggested action, or input a new action if the
suggested ones are inappropriate. These feedback, including
the acceptance/rejection of a suggested action and the newly
input actions, are utilized to further enhance the dialog man-
ager via online learning. Particularly, when human workers
input new actions, CoChat is also expected to learn them for
better suggesting actions and handling future similar cases.
Actually, introducing new actions can raise one-shot learn-
ing challenges. Our proposed model to implement CoChat,
i.e., MemHRNN, leverages an external memory to handle
such challenges, as elaborated below.

When human workers are unavailable (e.g., off work) but
users are willing to try the bot, the dialog manager can di-
rectly interact with users. In those cases, the dialog manager
is further improved via reinforcement learning from the de-
layed rewards/feedback given by users, which are related to
the success/failure of task completion, user satisfaction, etc.

In CoChat, after initialization via supervised learning, on-
line learning and reinforcement learning are conducted by
turns, depending on whether human workers are available
to collaborate with the bot or not. Each step can gain further
improvements based on the previous ones. Hence, the dialog
manager is continuously improved via supervised learning,
online learning and reinforcement learning.

um Feature vector of the user utterance, encoded by LSTM1

vm Feature vector of the entity form
wm 1-hot vector of the taken action
xm Integrated feature vector of the turn, encoded by

turn-level feature encoder
zm Feature vector of the previous (m− 1) turns, encoded by LSTM2

Table 1: Feature vectors related to the mth dialog turn

Proposed MemHRNN to Implement CoChat

To implement the CoChat framework, we propose a
memory-enhanced hierarchical RNN model termed
MemHRNN. MemHRNN consists of a hierarchical RNN
based learning model (i.e., HRNN) and an external memory.
The external memory only works during online learn-
ing, while HRNN works through all learning processes.
Denoting all parameters in HRNN as θ, θ is shared and
continuously optimized among all learning processes. We
will elaborate on HRNN and all learning processes in the
following subsections.

HRNN for All Learning Processes

The HRNN in MemHRNN consists of turn-level feature en-
coder and action selector. For any dialog, it can be split into
several turns, each consisting of a user utterance and the ac-
tion taken by human workers or the bot. And here the turn-
level feature encoder will be applied to each turn in a dialog
to get its corresponding feature vector. Then the action se-
lector takes such turn-level feature vectors as input to decide
which action to choose. Below we will introduce both, with
the important notations summarized in Table 1.

Turn-level Feature Encoder Suppose at the mth turn,
the user utterance um is defined as a word sequence
um = {wm,1, wm,2, . . . , wm,nm}, with nm being the quan-
tity of words. Then an Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997), denoted as LSTM1, is
utilized as follows to encode the embedding vector of each
word one by one.

um,j = LSTM1(ω
m,j ,um,j−1) (1)

where ωm,j is the embedding vector of the word wm,j and
um,j−1 is the encoded feature vector for the previous (j−1)

5303

words. And thus the feature vector um for um will be the last
output of LSTM1, i.e., um = um,nm .

For the mth turn, we also consider the following features.
1) Entity form collects information for completing the task.
As shown in Fig. 2, it generally contains two kinds of infor-
mation, i.e., entities extracted from user utterances and in-
formation returned by API calls. Here we simply encode the
entity form as a binary (i.e., 0 or 1) feature vector vm, indi-
cating whether an entity is extracted or whether an API call
returns true / available data. 2) Taken action at the mth turn
is represented as a na dimensional 1-hot vector wm, with na

being the number of actions. Only the entry corresponding
to the taken action is set as 1, and others are 0.

For the mth turn, um, vm and wm are concatenated as a
feature vector x̂m = [um,vm,wm], and then fed to a fully-
connected layer FN to learn a new feature vector xm:

xm = FN(x̂m). (2)

The reason for using xm instead of x̂m is that using FN
can help to better reserve the accumulated knowledge, espe-
cially when new actions are involved and HRNN needs to
be changed. This will be explained with more details later in
the subsection about online learning.

Action Selector The action selector takes the historical di-
alog turns and the current one as input, and then predicts the
probability of selecting each candidate action.

Suppose the current dialog turn is the mth one. Like hier-
archical LSTM (Li, Luong, and Dan 2015; Xie et al. 2016;
Yang; and Huang 2016; Sordoni et al. 2015), another LSTM,
denoted as LSTM2, is utilized as follows to encode the pre-
vious (m− 1) dialog turns one by one into a vector zm.

zm = LSTM2(x
m−1, zm−1) (3)

where zm−1 is the encoded feature vector of the previous
(m− 2) turns and can be derived in an identical way recur-
sively. For the current turn, since no action has been taken,
we can only derive the feature vector um of the user utter-
ance and the feature vector vm of the entity form, as defined
in Table 1. Then zm, um and vm are concatenated as an in-
tegrated vector sm = [zm,um,vm] and fed to a two-layer
fully-connected neural network FN2. Note that we utilize a
softmax function for the 2nd layer to derive the probability
distribution pm for selecting all candidate actions:

pm = FN2(s
m) (4)

Learning from Logs: Supervised Learning

Given available labelled user-worker dialog logs, the dialog
manager is initialized via supervised learning to imitate hu-
man workers. Specifically, in each dialog turn of the logs, the
chosen action by human workers is taken as the ground-truth
one. And it is denoted by a one-hot vector ym ∈ {0, 1}na ,
where m is the dialog turn index and na is the number of
candidate actions. Using HRNN for supervised learning, we
aim to minimize the cross-entropy between ym and the pre-
dicted probability distribution pm over all actions in formula
(4), as the loss function below shows.

LSL(θ) =
1

nd

nd∑
m=1

E(pm) s.t., E(pm) = −
na∑
i=1

ym
i logpm

i

(5)

where θ denotes all the parameters of HRNN, and nd is the
number of dialog turns in the labelled logs.

Learning from Human Workers: Online Learning

When the bot starts working with human workers, its dia-
log manager can be improved using feedback from human
workers. Specifically, at each conversation turn, the bot sug-
gests k actions to the human worker. These k actions are
decided by the HRNN together with the external memory.
Human workers can either accept one (i.e., select one of the
top n suggested actions and directly applied to interact with
the user) or refuse all to input another action that can bet-
ter handle the dialog state. Then the HRNN and the external
memory are updated accordingly.

Updating HRNN The HRNN is updated differently ac-
cording to whether the human workers input a new action
outside the existing action set or not.

Case 1: When the human workers accept a suggested ac-
tion or input an existing candidate action, such a feedback
can be treated as a new labelled log and directly utilized to
update the dialog manager. The model is continuously up-
dated with such newly collected logs, and it makes the dialog
manager better fit the time-varying action choices. Given a
small batch of newly collected logs, we aim to minimize the
following loss function for online learning.

LOL(θ) =
1

no

no∑
m=1

E(pm) + λ||θ − θ′||2 (6)

where no is the number of dialog turns in the small batch of
newly collected logs, E(pm) is the cross-entropy defined in
the same way as that in formula (5), θ denotes all parameters
of HRNN, and θ′ denotes the values of θ before collecting
the small batch of logs. Considering that the dialog man-
agement policy changes gradually in most cases, we add the
2nd term to avoid sharp changes of θ during online learning
which can also make the learning process more stable. Here
λ is a balancing factor, and we empirically set it as 0.05.

Case 2: If human workers input a new action, it will
be added to the set of candidate actions, and thus the net-
work architecture of HRNN needs to be updated accord-
ingly. Specifically, the input layer of the turn-level feature
encoder and the output layer of HRNN will be changed.

For the input layer of the turn-level feature encoder, the
dimensionality of the feature vector wm in Table 1 will be
extended by one for the new action, while the output dimen-
sionality of FN is unchanged. Then we add full connections
between the newly added dimension and the output units of
FN . Original weights of FN are all reserved, while the
weights on the newly added connections are initialized as
random values close to 0, so that FN can still work nearly
the same as before when a new action is just added. As the
output dimensionality of FN is unchanged, the architecture
of LSTM2, which is the key to encoding historical dialog
turns, need not be changed. Hence the influence of adding
new actions on HRNN is substantially reduced, and thus the
learning model can reserve as much accumulated knowledge
as possible. That is also why FN is introduced.

5304

As for the output layer of HRNN, i.e., the last layer of
FN2, we add a new dimension corresponding to the new ac-
tion, and add full connections between it and the input units
of the layer. Similarly, to make HRNN work nearly the same
as before when a new action is just added, we also initialize
the weights on the newly added connections as random val-
ues close to 0.

After changing the architecture, HRNN will be updated in
the same way as Case 1.

Leveraging External Memory The external memory is
introduced for handling the one-shot learning challenges
caused by instantly introducing new actions. Specifically,
the occurrences of a new action are recorded in an external
memory M , and then used together with the HRNN to sug-
gest actions. The usage of the external memory are detailed
below, with the dialog turn index m omitted for simplicity.

Actions outside the pre-defined action set in the super-
vised learning period are regarded as new actions. And the
occurrence of a new action a is recorded as a key-value pair
〈a, r〉 in the memory, where r denotes the dialog state for
the occurrence. Since the representation derived by HRNN
for a dialog state will always vary as its parameters get up-
dated during optimization, here we utilize a simplified way
to derive r for the memory. Specifically, r consists of two
parts, i.e., r = [v, c] where v is the entity form in Table 1
and c is a context vector derived as the mean pooling of the
embedding vectors of words in the last user utterance.

Moreover, when the occurrence of a new action is above
a predefined threshold, its corresponding records will be
erased from the memory. Actually, for those erased new ac-
tions, their occurrences are supposed to be sufficient for the
HRNN to learn valid strategies regarding them, making the
one-shot learning challenges well relieved, and thus the help
from the external memory is negligible for them. Here we
denote the actions recorded in the external memory as A.

Given a dialog turn, HRNN can directly predict a proba-
bility distribution p as formula (4) for selecting each candi-
date action. Meanwhile, for the memory, suppose the state
of the dialog turn is denoted as r̂ = [v̂, ĉ] and derived in the
same way as those recorded. We can leverage the external
memory together with HRNN as follows.

STEP 1: We calculate the similarity between r̂ and any
recorded occurrence r as follows.

Sim(r̂, r) = exp

(
−α‖v̂ − v‖2 + (1− α)‖ĉ− c‖2

2σ2

)
(7)

where α is a balancing factor empirically set as 0.1 in our
experiments, and σ is a smoothing parameter.

STEP 2: We define a similarity vector h over all candi-
date actions, with hi defined as follows.

hi =

{
0 if ai /∈ A,
maxr∈R(ai) Sim(r̂, r) if ai ∈ A.

(8)

where ai is the ith candidate action, and R(ai) denotes all
the recorded occurrences of ai.

As only few occurrences of a new action are recorded in
the memory, they are supposed to be used in a restrict man-
ner with less generalization. Namely, we may probably se-
lect a new action in A only when the dialog state r̂ is very

similar to one of its corresponding recorded occurrences.
Otherwise, we may prefer other actions. To realize that, we
derive a discounted factor β = sigmoid(max(h)), where
max(h) is the maximum value of h, and sigmoid denotes
a sigmoid function. Then we derive a discounted probability
distribution q as follows for selecting new actions in A.

qi = β
exp(hi)∑
j exp(hj)

(9)

STEP 3: We merge q with the probability distribution p
from HRNN into an integrated one p̂ as follows.

p̂i =

{
pi if ai /∈ A,
qi if ai ∈ A.

(10)

Then MemHRNN suggests those actions with the top k
highest probabilities in p̂ to human workers.

Learning from Users: Reinforcement Learning

When the bot have chances to directly interact with users
and choose actions by itself, its dialog manager can be fur-
ther improved via reinforcement learning with the delayed
rewards / feedback from users, which are generally received
after the whole dialog finishes and are mostly related to the
success / failure of task completion, user satisfaction, etc.

In reinforcement learning, at any dialog state sm with
m denoting the corresponding dialog turn index, the dialog
manager aims to select an action am that maximizes the cu-
mulative future rewards. Hence reinforcement learning de-
fines an optimal action-value function as below.

Q∗(s, a) = max
π

E[r(m) + γr(m+1) + · · · |sm = s, am = a, π]

where γ ∈ [0, 1] is a discounted factor, r(m) and r(m+j)(j =
1, 2, . . .) are respectively the received rewards at the mth di-
alog turn and the subsequent turns, π is the optimal dialog
management policy, and thus Q∗(s, a) is the maximal dis-
counted cumulative rewards of taking the action a as am

when sm is observed to be the dialog state s.
Like deep Q-network (DQN) (Mnih et al. 2015), we uti-

lize the HRNN, which has already been pre-trained via su-
pervised learning and online learning, to approximate the
optimal action-value function, denoted as Q(s, a; θ) with
θ being all parameters of HRNN. Then we minimize the
following loss function to perform Q-learning (Mnih et al.
2015) for updating θ iteratively.

LRL(θ) = Es,a,r,s′ [(r + γmax
a′ Q(s′, a′; θ−)−Q(s, a; θ))2]

where θ− denotes parameters of the target network in the al-
gorithm (Mnih et al. 2015), s′ and r are respectively the new
dialog state and the received reward after taking the action a
at the state s, and a′ is a new action for s′.

Summary

Though supervised learning, online learning and reinforce-
ment learning can have different loss functions (i.e., LSL,
LOL and LRL) and update the model parameters in dif-
ferent ways, they use an identical neural network (i.e., θ)
to share their learned knowledge and make continuous im-
provements for the dialog manager based on each other.

5305

Restaurant Movie
average dialog turns 3.8 3.5
max dialog turns 8 10
actions 49 70
dialogs 1490 1490

Table 2: Basic statistics of collected datasets.

Experiments

Dataset and User Simulator

We hired human workers and users who are familiar with
two realistic tasks, i.e., booking restaurants and booking
movie tickets, and collected their dialogs to build two
datasets for our experiments. A complete example dialog is
shown in Fig. 2, and some basic statistics of both datasets are
reported in Table 2. Such realistic datasets can better eval-
uate the practicability of learning frameworks and models
for dialog manager. Generally, we define an action as one
or more operations on some (possibly empty) slots. Opera-
tions include “Get”, “Select”, “ChitChat”, etc., as illustrated
in Fig. 2. Slot values can be obtained from API calls, and
different values (e.g., different restaurant names) can corre-
spond to one action. The full list of actions is available in the
supplementary material1. When collecting both datasets, we
also find that the dialog management policies usually change
with time and the action sets will grow larger with time. In
our experiments, all dialogs are sequentially fed to the learn-
ing processes based on their collecting timestamps.

As numerous interactions with users are required for ex-
periments, we follow previous works (Schatzmann et al.
2007) and build user simulators with collected dialogs. Then
we use them to generate more dialogs for training dia-
log manager via reinforcement learning, and testing each
learned dialog manager. Note that to better imitate real users,
the user simulators would be rebuilt with time. Similar with
(Lipton et al. 2016), we set the rewards of reinforcement
learning as follows: a fixed punishment (i.e., -0.025) for ev-
ery turn, a large reward (i.e., 1) for successful task comple-
tions and a small one (i.e., 0.5) for failures.

Evaluation for the CoChat Framework

We compare different frameworks by training the proposed
MemHRNN under them, to see if CoChat can better maxi-
mize user satisfaction and minimize workers’ workload.

Settings To clarify each learning process in CoChat, we
conduct experiments as follows. Firstly, to track real-world
situations, the dialog manager is trained via supervised
learning with a small amount of collected dialogs (i.e., the
first 50). Then online learning and reinforcement learning
are conducted alternately on the subsequent dialogs. An on-
line learning process and its subsequent reinforcement learn-
ing process compose a learning period. In each learning pe-
riod, online learning is conducted on the collected dialogs,
while reinforcement learning is conducted using a user sim-
ulator built with the dialogs in online learning.

1Available at: http://irip.buaa.edu.cn/Research/luoxufang/
CoChat supp.pdf

(a) Restaurant.

(b) Movie.

Figure 3: Curves tracking the testing rewards of human
workers and learned dialog managers.

Dataset Human Worker CoChat SL RL SL+RL
Restaurant 0.911 0.884 0.523 0.501 0.791
Movie 0.908 0.841 0.505 0.512 0.511

Table 3: Testing rewards of human workers and learned dia-
log managers at the ending stage.

Dataset Frameworks 1st 2nd 3rd

Restaurant CoChat 89.91% 89.87% 86.87%
SL 82.07% 80.27% 80.10%

Movie CoChat 82.49% 83.82% 78.73%
SL 66.81% 65.60% 51.14%

Table 4: Top 5 hit rates for action suggestion in 3 online
learning processes.

Compared frameworks include reinforcement learning
(RL), supervised learning (SL), and combination of both
(SL+RL). In RL, dialog manager is trained using only re-
inforcement learning from scratch. In SL, dialog manager
is trained with the first 50 collected dialogs via super-
vised learning and won’t be updated. SL+RL uses super-
vised learning for initialization and then applies reinforce-
ment learning. In each learning period, dialog managers of
the RL framework and the SL+RL framework are trained us-
ing the same user simulator as that used in CoChat.

As for the performance metrics, user satisfaction is mea-
sured with reward. Specifically, we define the testing reward
as the average reward per dialog gained by a framework af-
ter it interacts with the user simulator for 100 dialogs. For
measuring workers’ workload, we focus on cases where the
bot collaborates with human workers and suggests actions
for them. We use top 5 hit rate, i.e., the percentage of dialog
turns where the workers accept an action in the top 5 sug-
gested ones, to measure the action suggestion performance.
Higher hit rates mean lighter workload.

Results All the curves tracking testing rewards of differ-
ent frameworks are shown in Fig. 3. We can observe that: 1)
human workers outperform all learned dialog managers in

5306

Figure 4: Curves tracking how the number of actions grows
as more and more dialogs are collected.

dialogs
with new
actions

Ratio

Restaurant 305 21.18%
Movie 278 19.31%

Figure 5: The number of dialogs with new actions and the
corresponding percentages in both datasets.

maximizing user satisfaction, and thus the proposed CoChat
involving human workers in the loop is reasonable and able
to maximize user satisfaction when workers are available;
2) Among all learned dialog managers, when they interact
with users directly, the one learned via CoChat outperforms
those via other frameworks, well demonstrating the superi-
ority of CoChat; 3) Performance of the learned dialog man-
ager via CoChat may drop during online learning (i.e., on-
line learning in CoChat) due to changes of dialog manage-
ment policies or new actions, but it can fast recover from the
drop, rather than keep declined as SL, meaning that CoChat
can better fit to new policies/actions; 4) Putting aside pol-
icy changes or new actions, generally the supervised learn-
ing, online learning and reinforcement learning in CoChat
together make the dialog manager continuously improved.

Average testing rewards of different dialog managers at
the ending stage (i.e., the last 400 dialogs) are reported in
Table 3. On both tasks, after 3 learning periods, the rewards
gained by the dialog manager learned via CoChat are re-
spectively 97.04% and 92.62% of those by human workers.

We report the top 5 hit rates for action suggestion in the
3 online learning processes of CoChat, compared with those
of SL in Table 4. It can be seen that, 80%∼90% of work-
ers’ workload can be relieved by the bot learned via CoChat
when it suggests 5 actions.

Analyses about New Actions

Statistics about New Actions To clarify the necessity of
handling new action challenges, we further analyze some
statistics about new actions in the real-world datasets.

Fig. 4 presents how the number of actions grows as more
and more dialogs are collected for the two datasets. It can be
seen that new actions keep coming up with time.

Besides, Table 5 shows that the percentages of dialogs
with new actions are about 20% in both datasets, meaning
that new actions are also frequently used in the subsequent
dialogs after their coming up. Therefore, well handling new
actions is necessary for learning a good dialog manager.

Models Restaurant Movie
MemHRNN 91.35% 86.32%

HCN (Williams, Asadi, and Zweig 2017) 89.47% 82.15%
HLSTM (Xie et al. 2016) 87.80% 81.36%
Liu and Lane (2017) 87.97% 81.66%

Table 5: Top 5 hit rates of compared models for action sug-
gestion on both datasets.

Models Restaurant Movie
MemHRNN 91.35% 86.32%

HRNN (NO Memory) 90.34% 84.82%

Table 6: Top 5 hit rates of MemHRNN and HRNN (no mem-
ory) for action suggestion during online learning.

MemHRNN for Handling New Actions To validate
whether the proposed MemHRNN can better handle new ac-
tions in online learning processes, we compare it with other
state-of-the-art models in the same learning processes.

Settings Here all models are firstly trained with the first
50 dialogs, and then online learning is conducted with the
subsequent 1440 collected dialogs. New actions will be in-
volved in this learning process. And for compared models
that cannot handle new actions, the dialog turns with new
actions will be ignored for training.

Results The top 5 hit rates of compared models for ac-
tion suggestion are reported in Table 5. It can be seen that,
by allowing introducing new actions and well handling the
corresponding one-shot learning challenges, the proposed
MemHRNN can better suggest actions for human workers
to reduce their workload.

Superiority of Leveraging External Memory

Settings Here the experimental settings are the same as the
experiment above. And the proposed MemHRNN is com-
pared with the HRNN model using no memory, so as to see
whether the external memory can really help to tackle the
one-shot learning challenges caused by new actions.

Results The top 5 hit rates of the proposed MemHRNN
and the HRNN using no memory for action suggestion are
reported in Table 6, which demonstrate that the introduced
external memory really enhances MemHRNN to handle the
one-shot learning challenges of new actions. For detailed
case analyses, one can refer to the supplemental material.

Conclusions

In this paper, we propose a dialog manager learning frame-
work CoChat that models the collaboration between bots
and human workers for task completion. CoChat aims to
maximize user satisfaction and minimize the workers’ work-
load. Moreover, CoChat combines supervised learning, on-
line learning and reinforcement learning to continuously im-
prove the to-be-learned dialog manager. Here we also pro-
pose a memory-enhanced hierarchical RNN model termed
MemHRNN to implement the CoChat framework. Partic-
ularly, MemHRNN can tackle the one-shot learning chal-
lenges caused by instantly introducing new actions, with the

5307

help of an external memory. Extensive experiments on real-
world datasets also well demonstrate the effectiveness of the
proposed CoChat framework and the MemHRNN model.

Acknowledgments

This work is partly supported by the National Natural Sci-
ence Foundation of China (No. 61421003) and the Mi-
crosoft Research Asia Collaborative Program (FY17-RES-
THEME-033).

References

Bordes, A., and Weston, J. 2016. Learning end-to-end goal-
oriented dialog. arXiv preprint arXiv:1605.07683.
Eric, M., and Manning, C. D. 2017. A copy-augmented
sequence-to-sequence architecture gives good performance
on task-oriented dialogue. arXiv preprint arXiv:1701.04024.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural turing
machines. arXiv preprint arXiv:1410.5401.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Lee, C.-J.; Jung, S.-K.; Kim, K.-D.; Lee, D.-H.; and Lee, G.
G.-B. 2010. Recent approaches to dialog management for
spoken dialog systems. Journal of Computing Science and
Engineering 4(1):1–22.
Levin, E.; Pieraccini, R.; and Eckert, W. 1998. Using markov
decision process for learning dialogue strategies. In Acous-
tics, Speech and Signal Processing, 1998. Proceedings of the
1998 IEEE International Conference on, volume 1, 201–204.
IEEE.
Li, J.; Luong, M. T.; and Dan, J. 2015. A hierarchical neural
autoencoder for paragraphs and documents. Computer Sci-
ence.
Lipton, Z. C.; Gao, J.; Li, L.; Li, X.; Ahmed, F.; and Deng,
L. 2016. Efficient exploration for dialogue policy learning
with bbq networks & replay buffer spiking. arXiv preprint
arXiv:1608.05081.
Liu, B., and Lane, I. 2017. An end-to-end trainable neural
network model with belief tracking for task-oriented dialog.
Proc. Interspeech 2017 2506–2510.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; and Ostrovski, G. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–33.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and
Lillicrap, T. 2016. Meta-learning with memory-augmented
neural networks. In International conference on machine
learning, 1842–1850.
Saunders, W.; Sastry, G.; Stuhlmueller, A.; and Evans,
O. 2017. Trial without error: Towards safe reinforce-
ment learning via human intervention. arXiv preprint
arXiv:1707.05173.
Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; and
Young, S. 2007. Agenda-based user simulation for boot-
strapping a pomdp dialogue system. In Human Language
Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics;

Companion Volume, Short Papers, 149–152. Association for
Computational Linguistics.
Shang, L.; Lu, Z.; and Li, H. 2015. Neural respond-
ing machine for short-text conversation. arXiv preprint
arXiv:1503.02364.
Sordoni, A.; Bengio, Y.; Vahabi, H.; Lioma, C.; Grue Simon-
sen, J.; and Nie, J.-Y. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query suggestion. In
Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, 553–562. ACM.
Su, P.-H.; Gasic, M.; Mrksic, N.; Rojas-Barahona, L.; Ultes,
S.; Vandyke, D.; Wen, T.-H.; and Young, S. 2016. Continu-
ously learning neural dialogue management. arXiv preprint
arXiv:1606.02689.
Su, P.-H.; Budzianowski, P.; Ultes, S.; Gasic, M.; and Young,
S. 2017. Sample-efficient actor-critic reinforcement learn-
ing with supervised data for dialogue management. arXiv
preprint arXiv:1707.00130.
Tang, Y.; Meng, F.; Lu, Z.; Li, H.; and Yu, P. L. 2016. Neu-
ral machine translation with external phrase memory. arXiv
preprint arXiv:1606.01792.
Vinyals, O., and Le, Q. 2015. A neural conversational model.
Computer Science.
Wang, M.; Lu, Z.; Li, H.; and Liu, Q. 2016. Memory-
enhanced decoder for neural machine translation. arXiv
preprint arXiv:1606.02003.
Wen, T.-H.; Gasic, M.; Mrksic, N.; Rojas-Barahona, L. M.;
Su, P.-H.; Ultes, S.; Vandyke, D.; and Young, S. 2016.
A network-based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.
Williams, J. D., and Young, S. 2007. Partially observable
markov decision processes for spoken dialog systems. Com-
puter Speech & Language 21(2):393–422.
Williams, J. D., and Zweig, G. 2016. End-to-end lstm-based
dialog control optimized with supervised and reinforcement
learning. arXiv preprint arXiv:1606.01269.
Williams, J. D.; Asadi, K.; and Zweig, G. 2017. Hybrid code
networks: practical and efficient end-to-end dialog control
with supervised and reinforcement learning. arXiv preprint
arXiv:1702.03274.
Xie, R.; Liu, Z.; Yan, R.; and Sun, M. 2016. Neural
emoji recommendation in dialogue systems. arXiv preprint
arXiv:1612.04609.
Yang;, M.-H. S. K.-Y. H. T.-H., and Huang, T.-C. 2016. Dia-
log state tracking for interview coaching using two-level lstm.
Young, S.; Gašić, M.; Thomson, B.; and Williams, J. D. 2013.
Pomdp-based statistical spoken dialog systems: A review.
Proceedings of the IEEE 101(5):1160–1179.
Young, S. J. 2006. Using pomdps for dialog management. In
SLT, 8–13.
Zhao, T., and Eskenazi, M. 2016. Towards end-to-end learn-
ing for dialog state tracking and management using deep re-
inforcement learning. In 17th Annual Meeting of the Special
Interest Group on Discourse and Dialogue, 1.

5308

