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Abstract

Designing an automatic solver for math word problems
has been considered as a crucial step towards general
AI, with the ability of natural language understanding
and logical inference. The state-of-the-art performance
was achieved by enumerating all the possible expres-
sions from the quantities in the text and customizing a
scoring function to identify the one with the maximum
probability. However, it incurs exponential search space
with the number of quantities and beam search has to be
applied to trade accuracy for efficiency.
In this paper, we make the first attempt of applying deep
reinforcement learning to solve arithmetic word prob-
lems. The motivation is that deep Q-network has wit-
nessed success in solving various problems with big
search space and achieves promising performance in
terms of both accuracy and running time. To fit the math
problem scenario, we propose our MathDQN that is
customized from the general deep reinforcement learn-
ing framework. Technically, we design the states, ac-
tions, reward function, together with a feed-forward
neural network as the deep Q-network. Extensive ex-
perimental results validate our superiority over state-of-
the-art methods. Our MathDQN yields remarkable im-
provement on most of datasets and boosts the average
precision among all the benchmark datasets by 15%.

Introduction

Automatically solving math word problems (MWP) has a
long history dating back to 1960s (Bobrow 1964) and still
continues to attract researchers’ attention in recent years. It
requires mapping the human-readable words into machine-
understandable logic forms, followed by an inference pro-
cedure, and cannot be simply solved by pattern matching or
end-to-end classification techniques. Thus, designing an au-
tomatic MWP solver, with semantic understanding and in-
ference capability, has been considered as a crucial step to-
wards general AI.

As an early attempt, ARIS (Hosseini et al. 2014) consid-
ers that verbs play an important role for operator calssifi-
cation. It uses syntatic analysis to identify relevant entities
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Figure 1: Expression tree for multi-step arithmetic problem.

and their values and extracts verb-related features for SVM-
based categorization. An alternative template-based method
was proposed in (Mitra and Baral 2016). It defines three
types of formulas for common scenarios in Add-Sub prob-
lems and maps the identified variables and their attributes
to the formulas. Unfortunately, the generality of these two
methods is rather limited as they only support two types
of operators (i.e., addition and subtraction). The tag-based
approach (Liang et al. 2016) maps rules to convert identi-
fied variables and values into logic forms, which are further
transformed into logic statements for inference. It shows bet-
ter generality but still requires considerable human interven-
tion in tag annotation and rule generation.

The state-of-the-art methods for simple arithmetic prob-
lems are algorithmic and tree-based. In (Roy and Roth
2015), the multi-step arithmetic problem is decomposed into
an expression tree, as illustrated in Figure 1. It builds two
types of classifiers, one to identify relevant quantities as leaf
nodes and the other for iterative operator selection to con-
struct the tree in a bottom-up manner. In this example, rele-
vant quantities (13, 4, 9) are first identified and the operators
in the higher level are determined by an SVM classifier. A
scoring function is presented to identify the best expression
tree as the result. (Koncel-Kedziorski et al. 2015) adopts a
more brutal fashion by enumerating all the possible equa-
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tion trees with integer linear programming. Then, a scoring
function is proposed to rank the candidate trees and cham-
pion the best one as the answer. Recently, UnitDep (Roy
and Roth 2017) augments the scoring function of the ex-
pression tree in (Roy and Roth 2015) by further considering
the consistence of rate unit associated with the quantities. A
new concept named Unit Dependency Graphs (UDGs) was
proposed to better capture and reason about units. However,
the drawback of these tree-based methods is that the search
space grows exponentially with the number of quantities and
normally beam search is utilized to trade accuracy for effi-
ciency.

In this paper, we make the first attempt of applying
deep reinforcement learning (deep RL) to solve arithmetic
word problems. The underlying motivation is that deep Q-
network has witnessed success in solving various prob-
lems with big search space such as playing text-based
games (Narasimhan, Kulkarni, and Barzilay 2015), infor-
mation extraction (Narasimhan, Yala, and Barzilay 2016),
text generation (Guo 2015) and object detection in im-
ages (Caicedo and Lazebnik 2015). We consider the arith-
metic word problem solver a suitable application for deep
RL and propose our MathDQN to leverage the strengths of
deep Q-network (DQN). Technically, we tailor the defini-
tions of states, actions, and reward functions which are key
components in the reinforcement learning framework. By
using a two-layer feed-forward neural network as the deep
Q-network to approximate the Q-value function, our frame-
work learns model parameters from the reward feedback of
the environment.

To sum up, the main contributions in this work are listed
as following:

• To the best of our knowledge, this is the first paper to ap-
ply deep reinforcement learning as a general framework
to solve math word problems.

• Technically, we customize the principle components in
the DQN framework, including states, actions, rewards
and network design.

• We conduct experiments on the popular benchmark
datasets and the results show that our method is both
efficient and accurate. It improves the average precision
among all the math problems by 15%.

• We make our implementation code available in Github1.

Related Work

In this section, we review literature upon automatic algebra
word problem solver and present background information on
deep reinforcement learning as well as its applications.

Algebra Word Problem Solver

The algebra word problems for primary schools fall into two
categories: the basic arithmetic problems with one unknown
variable and four types of operators +, −, × and ÷, and
the complex equation set problems that involve multiple un-
known variables.

1https://github.com/uestc-db/DQN Word Problem Solver

Arithmetic Problem Solver ARIS (Hosseini et al. 2014)
and Formula (Mitra and Baral 2016) are two systems that
only support the operators of addition and subtraction. The
former uses verb categorization and the latter utilizes formu-
las defined in advance. To improve the generality, tag-based
approach (Liang et al. 2016) was proposed with map rules
to convert identified variables and values into logic forms,
which are further transformed into logic statements for infer-
ence. Reasoning techniques are studied in (Shi et al. 2015).

(Roy and Roth 2015) is the first algorithmic approach that
can handle arithmetic problems with multiple steps and op-
erations, without depending on additional annotations (for-
mulas or tags). It builds an expression tree and trains two
classifiers for quantity relevance prediction and operator
classification, respectively. A scoring function is proposed to
rank the candidate trees and champion the best one as the an-
swer. (Koncel-Kedziorski et al. 2015) adopts a more brutal
fashion by enumerating all the possible equation trees with
integer linear programming. UnitDep (Roy and Roth 2017)
is the state-of-the-art solution. It further takes into account
the consistence of rate unit associated with the quantities and
treats it as a scoring factor. However, the search space of the
tree-based methods grows exponentially with the number of
quantities. To resolve the issue, beam search can be adopted
to reduce running time but in sacrifice of accuracy.

In this paper, our research scope includes how to effi-
ciently and effectively solve the arithmetic problems with
deep Q-network. We will explicitly present our MathDQN
solution in the next section.

Equation Set Problem Solver The equation set prob-
lems are more challenging because they involve multiple
unknown variables to resolve. In (Kushman et al. 2014), a
template-based solution was proposed. Given a corpus of
predefined equation sets with unknown slots for variables
and numbers, it finds a matching template and infers the un-
known slots from text information. In (Zhou, Dai, and Chen
2015), an improved method was proposed to reduce the hy-
pothesis space by only enumerating the permutation of num-
ber slots. Without any inference capability, these template-
based methods are rather rigid and not extensible for com-
plex scenarios. Upadhyay et al. proposed a structured-output
learning framework to learn both explicit and implicit sig-
nals jointly (Upadhyay et al. 2016).

Overall, these methods are tuned for small benchmark
datasets to achieve promising results. According to a recent
experimental study (Huang et al. 2016), their accuracies de-
grade sharply in a larger and more diverse dataset, named
Dolphin, harvested from community question-answering
web pages. The findings imply that this line of research still
has great room for improvement and calls for more general
and robust solutions.

Deep Reinforcement Learning

In reinforcement learning (RL), given a set of internal states
S = s1, . . . , sm and actions A = a1, . . . , an, the agent it-
eratively takes action a at state s and moves to a new state
s′ until a termination condition is satisfied. This process is
guided by certain policies or rules π learned by interacting
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with the environment E. Rewards will be given to positive
actions and we measure the true value of an action in state s
as

Qπ(s, a) = E[R1 + γR2 + . . . |S0 = s,A0 = a, π]

where γ ∈ [0, 1] is a discounted factor for future rewards.
The objective is to maximize the expected sum of future re-
wards through a sequence of actions.

Q-Learning is model-free and learns an optimal action-
value function Q(s, a). However, Q-value function needs
to trace all possible state-action pairs, which is prohibitive.
Mnih et al. introduced the Deep Q-Network (DQN) (Mnih
et al. 2015) to approximate the Q-value function with a
non-linear multi-layer convolutional network. Given state s,
DQN outputs a vector of action values Q(s, ·; θ), where θ
are the parameters of the network. For an m-dimensional
state space S and an action space A containing n actions,
the neural network serves as a function from R

m to R
n. An

experience replay memory is maintained to store previous
transitions. In the mini-batch training stage, the observed
transitions are sampled uniformly from the memory bank to
update the network.

Due to its generality and robustness for sparse datasets,
deep reinforcement learning has been successfully applied
to solve a wide range of problems, including playing text-
based games (Narasimhan, Kulkarni, and Barzilay 2015), in-
formation extraction (Narasimhan, Yala, and Barzilay 2016),
text generation (Guo 2015) and object detection in im-
ages (Caicedo and Lazebnik 2015). In this paper, we make
the first attempt to utilize DQN in the problem of algebra
problem solver and achieve superior performance over state-
of-the-art methods.

Proposed Solution

The proposed framework of deep reinforcement learning is
depicted in Figure 2. Given a math word problem, we adopt
quantity schema (Roy and Roth 2015) to identify relevant
quantities which serve as the bottom layer of expression tree.
The irrelevant quantities will be discarded from tree con-
struction. If there are at least three quantities, we propose a
re-order mechanism to sort the quantities according to their
construction order in the expression tree. For example, given
an expression 3 + 4 × 5, we need to first construct the sub-
tree for 4 × 5 = 20. After that, this subtree with interme-
diate result 20 is further merged with the remaining quan-
tity 3 to generate the final output. Inspired by UnitDep (Roy
and Roth 2017), we first determine whether a quantity refers
to rate using their proposed rules. For example, in the text
“5 dollars an hour”, quantity 5 is associated with rate “dol-
lars an hour”. If there are two quantities associated with the
same rate, we assign them the highest priority and they will
be placed at the beginning of the sorted list. If there are two
quantities whose unit is the denominator of a rate associated
with the third quantity, we assign higher priority to the first
two quantities. For example, in the word problem “Sam was
collecting cans for recycling. On Saturday he filled 3 bags up
and on Sunday he filled 4 more bags. each bag had 9 cans in
it, how many cans did he pick up total?”, 3 and 4 are associ-
ated with unit “bag” and they will be handled earlier than the
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Figure 2: Deep reinforcement learning framework for MWP.

third quantity 9 with rate “cans in each bag”. For the remain-
ing cases, we simply sort them by their occurrence positions
in the problem text.

Thereafter, we use the sorted quantities as the bottom level
and our objective is to build an expression tree using DQN
framework. Intuitively, we can represent state in reinforce-
ment learning as the partial tree constructed so far. If the next
state or partial tree gets closer to the final “groundtruth” tree,
the environment returns positive rewards. Otherwise, nega-
tive rewards are returned as punishment. However, it is chal-
lenging to vectorize a partial tree with unknown dimensions
and send it to a deep Q-network for parameter learning. To
resolve the dimension issue, we choose to select a pair of
quantities for tree construction, from which we can derive
fixed-size features to represent state. For instance, instead of
decomposing (13−4)×9 into 13−4 followed by 9×9, we
wish to select 13 and 4 in the first iteration and determine its
operator. In the next step, either pair (13, 9) or (4, 9) may be
selected to determine the operator for their lowest common
ancestor, i.e., root node of expression tree in this example.

In our deep reinforcement learning framework, we use
real-valued vector that constitutes features of selected quan-
tity pair to represent state. Its associated action is to deter-
mine a proper operator for these two quantities. In the tree
construction, we iteratively select pairs of quantity and its
operator through feedback of environment in the form of
positive or negative rewards. For DQN, we construct a two-
layer feed-forward neural network to calculate the expected
Q-value. The parameters of the DQN are learnt using gradi-
ent descent of the loss function to reduce the discrepancy be-
tween Q-value predicted by DQN and the target optimal Q-
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Table 1: Extracted features of quantity pairs for state construction.
Feature Description
Individual feature It contains fields indicating the associated verb with the quantity; whether the quan-

tity has a rate unit; whether the rate unit present in the question; and whether any
adjective, comparative or adverb word is around the quantity.

Pair feature It contains fields indicating whether the pair of quantities have the same verb men-
tion; whether the two quantities have the same unit; whether the tokens of the one’s
unit present in the other’s rate unit; whether the value of the former quantity is
greater than the value of the other.

Question feature It contains fields indicating whether any comparison token (e.g., “more”, “less” or
“than”) or rate token (e.g., “each” or “one”) presents in the question.

value. In the following, we explicitly explain the states, ac-
tions, rewards, and training procedure tailored for the math
word problem solver.

States

In previous efforts of deep reinforcement learning, such
as information extraction (Narasimhan, Yala, and Barzilay
2016) and text game (He et al. 2016), states were repre-
sented as real-valued vector with fixed number of dimen-
sions. These vectors, combined with an interaction func-
tion, were fed into a neural network to approximate the Q-
function in reinforcement learning.

In this paper, we adopt such state construction strategy
and concatenate features of selected quantity pair to repre-
sent state, which is used as input of a two-layer feed-forward
neural network to approximate Q-function. The crafted fea-
tures are similar to the quantity schema proposed in (Roy
and Roth 2015). As shown in Table 1, three types of fea-
tures for individual quantity, pair quantities, and questions
are extracted for state construction. These features can be
automatically generated from a given math problem by an-
alyzing its derived parser tree using tools such as Stanford
Parser (Socher et al. 2013a), and they are helpful in action
selection to determine a correct operator node.

In addition, we add two dimensions in the state vector to
provide additional clues for action selection. Each dimen-
sion is used to indicate whether the associated quantity has
appeared in the partial expression tree constructed so far. In
other words, the flag values indicate the level of operator
node to be determined. If both flags are unset, we are con-
structing an operator node for two quantities in the leaf level.
If one of them is set, we are determining operators in interval
tree nodes.

Actions

In each step, the agent takes actions to select two quantities
with the maximum expected reward and determine its low-
est common ancestor which is essentially an operator. Since
we handle simple arithmetic problems, there are four basic
types of operators involved: addition +, subtraction −, mul-
tiplication × and division ÷.

We also notice that the quantities in the bottom level of
expression tree may not follow the same order of their oc-
currence in the math word problem. Thus, we introduce two
new operators: reverse subtraction −inv (i.e., a −inv b =
b−a) and reverse division ÷inv (i.e., a÷invb = b÷a). There

is no need to define additional reserve operators for addition
and multiplication because a+ b = b+a and a× b = b×a.

Reward Function

In reinforcement learning, the agent receives positive or neg-
ative rewards from the environment for each action selected
during the training stage. The reward is leveraged in the loss
function to calculate the target optimal Q-value, whose dis-
crepancy with the predicted Q-value will be used as feed-
back to adjust parameters in DQN. Our definition of reward
function is straightforward. If the selected operator is correct
for its two associated quantities, the environment returns a
positive reward. Otherwise, a negative reward is returned as
punishment.

Parameter Learning

We use a two-layer feed-forward neural network as the deep
Q-network (DQN) to calculate the expected Q-value. The
network parameters θ will be learned from the feedback
of environment in the form of rewards. We also maintain
an experience replay memory D to store state transitions.
To perform update of θ, we sample a batch of transitions
(s, a, s′, r) at random from D. With the min-batch sampling,
the model is updated periodically by minimizing the loss
function:

Lt(θt) = Es,a[(yt −Q(s, a; θt))
2]

where yt = r+ γmaxa′ Q(s′, a′; θt−1) is the target optimal
Q-value, which is calculated by summing up the current re-
ward r and the optimal Q-value in the subsequent step. The
expectation is over the sampled transitions (s, a, s′, r).

The parameters θ of the DQN are learnt using gradient
descent of the loss function to close the gap between Q-value
predicted by DQN and the target optimal Q-value derived
from the Bellman equation:

∇θtLt(θt) = E[(yt −Q(s, a; θt))∇θtQ(s, a; θt)]

Training

To sum up, we illustrate the complete training procedure via
DQN in Algorithm 1. In the initialization step, we create an
experience replay memory D to store transitions (s, a, r, s′)
and an action-value function Q with random weight. The
whole training dataset is passed through for M epochs. In
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each epoch, we traverse the math word problems and ex-
tract their quantity schema. The irrelevant quantities are dis-
carded and the remaining are used for expression tree con-
struction. The features used for relevance classifier include
fields whether the unit of the quantity appears in the ques-
tion; whether other quantities have better match with the
question, the number of quantities with the best match with
the question and certain miscellaneous features.

We adopt ε-greedy strategy to obtain trade-off between
exploration and exploitation in reinforcement learning. With
probability ε, a random action is selected for exploration. In
our implementation, we follow (Mnih et al. 2013) to linearly
anneal ε (say from 1 to 0.1) with more epochs. However,
since the exploration space of expression tree construction
is not as huge as video game playing, we gradually reduce
ε from 0.5 to 0.01 to prefer exploitation. With the selected
operator, we obtain reward rt and new state st+1. This tran-
sition is stored in replay memory D. Note that if D is full,
we only pop transitions with reward rt < 0 to create space
for the new transition. This is because the number of nega-
tive transitions is much higher than that of positive rewards.
When popping a negative reward, the percentage (sampling
probability) for both types of transitions always remains the
same. After that, we uniformly sample transitions in D to
update parameters in DQN. In particular, we update the opti-
mal target Q-value with the current reward, calculate the loss
and use gradient descent to update θ. The training procedure
for a math word problem terminates if all the extracted rele-
vant quantities have been selected in the expression tree.

Algorithm 1: Training Procedure via Deep Q-
Network

1

1: Initialize an experience replay memory D
2: Initialize an action-value function Q with random weight
3: for episode = 1,M do
4: for w = 1,W do
5: Extract quantity schema from Qw and remove irrelevant

quantities.
6: for t = 1, T do
7: if random() < ε then
8: Select a random action at

9: else
10: Select at = maxa Q(φ(st), a; θ)
11: end if
12: Obtain reward rt and new state st+1 by executing

action at

13: Store transition (st, at, rt, st+1) in D
14: Sample random mini-batch of transitions

(sj , aj , rj , sj+1) from D
15: if φ(sj+1) is terminal then
16: yj = rj
17: else
18: yj = rj + γmaxa′ Q(φ(sj+1), a

′; θ)
19: end if
20: Perform gradient descent on the loss L(θ) based on yj
21: if all the relevant quantities have been selected then
22: break
23: end if
24: end for
25: end for
26: end for

Experimental Study

In this section, we evaluate the proposed DQN framework
on three publicly available datasets of arithmetic word prob-
lems. We evaluate both accuracy and efficiency by compar-
ing with state-of-the-art methods. All the experiments were
conducted on the same server, with 4 CPU cores (Intel Xeon
CPU E5-2650 with 2:30GHz) and 32GB memory.

Datasets

Since the Dolphin dataset (Huang et al. 2016) has not been
publicly accessible, we cannot use it to evaluate the gener-
ality of our solution. Instead, we still apply the same set of
benchmark datasets on arithmetic math problems as used in
the state-of-the-art work (Roy and Roth 2015).

1. AI2 (Hosseini et al. 2014). There are 395 single-step or
multi-step arithmetic word problems involving only addi-
tion and subtraction. Each math problem contains multi-
ple quantities, which may be irrelevant to the solution.

2. IL (Roy, Vieira, and Roth 2015). There are 562 single-
step word problems with only one operator, including
addition, subtraction, multiplication, and division. Each
math problem also contains irrelevant quantities.

3. CC (Roy and Roth 2015). There are 600 multi-step
problems without irrelevant quantities, harvested from
commoncoresheets2. It involves combination of four
types of operators, including (a) addition followed by sub-
traction; (b) subtraction followed by addition; (c) addition
and multiplication; (d) addition and division; (e) subtrac-
tion and multiplication; and (f) subtraction and division.

4. ArithS. It is a subset of the union of AI2, IL and CC.
There are 890 single-step arithmetic problems that involve
only one operator.

5. ArithM. It is also collected from AI2
⋃

IL
⋃

CC. There
are 667 multi-step arithmetic problems that involve at
least two operators.

Comparison Methods

The comparison methods in this paper include
KAZB (Kushman et al. 2014), ExpTree (Roy and Roth
2015), ALGES (Koncel-Kedziorski et al. 2015) and Unit-
Dep (Roy and Roth 2017). We note that the main differences
between UnitDep and ExpTree are that UnitDep introduces
the unit rate graph and also takes context into consideration
when extracting features. Thus, we use UnitDep-context to
denote UnitDep without considering the effect of context
feature and UnitDep-rate to denote UnitDep without unit
rate graph. For our proposed MathDQN, we also use
MathDQN-reorder to denote the method without re-order
mechanism.

Parameter Settings

In our DQN model, we set the size of replay memory D to
15, 000 and the discount factor γ = 0.9. The DQN model
was implemented on top of TensorFlow and the learning
rate is set to 0.0001 for RMSProp. To adjust the trade-off

2http://www.commoncoresheets.com/
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between exploration and exploitation, we reduce ε in the
greedy strategy from 0.5 to 0.01 over 30, 000 epochs. A
mini-batch gradient update is executed every one step of ex-
pression tree construction and we set the size of mini-batch
to 32. The feed-forward neural network contains 2 hidden
layers, each with 50 dimensions.

Accuracy Results

We report the precision results for the three benchmarks
AI2, IL and CC in Table 2. The last column refers to the
average precision among all these math problems.

Table 2: Accuracy on the benchmark datasets.
AI2 IL CC Average

KAZB 62.0 73.7 2.2 43.2
ALGES 52.4 72.9 65.0 64.6
ExpTree 72.0 73.9 45.2 62.3
UnitDep 56.2 71.0 53.5 60.5

UnitDep-context 74.7 74.8 47.3 64.2
UnitDep-rate 56.2 70.8 44.3 56.9

MathDQN-Reorder 78.5 73.3 63.7 70.9
MathDQN 78.5 73.3 75.5 75.4

First, we observe that MathDQN achieves the best perfor-
mance and significantly improves the accuracy in AI2 and
CC datasets. Overall, it boosts the average precision by 15
percent on the benchmark datasets. The results validate the
effectiveness of our proposed DQN framework.

Second, MathDQN is the only method that performs
equally well on all the three datasets. ExpTree and UnitDep-
context achieve very promising results in AI2 and IL but
cannot handle CC effectively. ALGES works well in IL and
CC, but its accuracy in AI2 is not satisfactory. This find-
ing, to a certain extent, can reflect the generality of the DQN
framework.

Third, the unit dependency graph proposed in UnitDep
does not take effect in AI2 because AI2 only involves op-
erators + and −. The context feature proposed in UnitDep
is effective in CC (increasing the accuracy from 47.3% to
53.5%) but generates negative impact in AI2 (reducing the
accuracy from 74.7% to 56.2%). This shows the limitation
of hand-crafted features in UnitDep.

Fourth, the re-order mechanism is effective in CC, boost-
ing the accuracy from 63.7% to 75.5%. AI2 only contains
operators of + and − and the order of operators in tree con-
struction is not important because these two operators be-
long to the same priority. IL only contains single-step prob-
lems and there is no need for tree construction.

We also conduct a break-down analysis to compare the
performance within the single-step (S-STEP) and multi-step
(M-STEP) datasets in Table 3. The results show that all the
methods demonstrate similar performance in solving arith-
metic problems with single step operation, which can be
considered as a classification task when relevant quantities
are identified. The reason why our method achieves the best
performance in ArithS (as in Table 3) but not in IL (as in Ta-
ble 2) is that our extracted features work better in problems

with operators + and − than problems with × and ÷. As the
complexity of math problem increases, our DQN framework
exhibits significant superiority over its competitors. The re-
sults show that our method improves the accuracy over the
state-of-the-art by 18.9% in ArithM with multi-step math
problems.

Table 3: Break-down analysis for single-step and multi-step.
ArithS ArithM

KAZB 68.6 9.3
ALGES 65.8 63.9
ExpTree 74.0 46.2
UnitDep 66.1 52.9

UnitDep-context 74.89 50.1
UnitDep-rate 66.0 44.7

MathDQN-Reorder 74.94 66.4
MathDQN 74.94 76.0

The evolution of average reward and its associated accu-
racy are illustrated in Figure 3 and 4 respectively. We can
see that initially the rewards are negative for two main rea-
sons. First, we set ε a moderate value around 0.5 in the initial
stage and the agent has a noticeable probability to select a
random action for exploration. Second, the agent has not yet
received sufficient training feedback from the environment.
With more epochs, the agent learns quickly from the trial-
and-error process. We also observe that the reward in AI2
dataset is higher than CC dataset because it only involves
two types of operators for action selection.
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Figure 3: Evolution of average reward on three datasets.

Effect of RL and DQN

We also implement two new baseline methods to better jus-
tify the effect of RL and DQN.
• M1: We replace Q-Learning with Sarsa and retain the

two-layer feed-forward neural network. This is used to
justify the effect of Q-learning framework.

• M2: We simply use a neural-network-based classifier
without using the RL framework. Specifically, we train
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Figure 4: Evolution of accuracy on three datasets.

an operator classifier with two-layer feed-forward neural
network. Given a math problem with multi operators, we
extract each pair of quantities and their operator as the
training sample. In the test stage, after re-ordering the leaf
nodes in the expression tree, we use the classifier to deter-
mine the operator in each step of tree construction. This
baseline is used to justify the effect of RL.

Table 4: Evaluating the effect of RL and DQN.
M1 M2 MathDQN

AI2 72.8 76.2 78.5
CC 71.8 72.5 75.5

We use AI2 and CC because they contain multi-step prob-
lems. The results in Table 4 show that when both using
neural network to approximate Q-table, the Q-learning al-
gorithm is better than Sarsa. Moreover, MathDQN is bet-
ter than neural-network-based classifier, verifying the effec-
tiveness of RL and DQN. To find the reason, we conduct
a break-down analysis to examine the accuracy of operator
classification in each step. We find that in the first step of op-
erator classification, M2 is even slightly (i.e., 0.2%) higher
than MathDQN, but is worse than MathDQN in the sub-
sequent steps. Our explanation is that MathDQN trains the
multi-step problem as a whole in the RL framework. Thus,
it shows better performance for multi-step problems.

Running Time Results

We also study the efficiency of these math word problem
solvers as users expect to obtain the results instantly. The
average running time to solve a math problem is reported
in Table 5. CC contains only multi-step problems and its
running time is higher than the other two datasets. ALGES
runs the slowest because it uses integer linear programming
to enumerate all the possible expression trees. ExpTree and
UnitDep adopt beam search to reduce the tree enumeration
space and thus improves the efficiency dramatically. Math-
DQN performs slightly slower than ExpTree in ArithM be-
cause it requires a two-layer feed-forward neural network

for action selection whereas ExpTree simply uses SVM for
LCA node classification.

Table 5: Average running time (in millisecond).
AI2 IL CC ArithS ArithM

KAZB 4.6 3.8 25.7 3.8 25.2
ALGES 713.8 308 1308 393 1342
ExpTree 5.8 4.8 6.5 4.9 6.9
UnitDep 8.5 5.9 13.2 5.9 14.1

MathDQN 4.7 3.6 9.1 3.7 9.1

Error Analysis

Finally, we analyze bad cases that our proposed DQN frame-
work cannot solve. The main reasons are summarized in
four-folds: 1) missing quantities. It is possible that certain
important quantities may be correctly identified by existing
syntax parser. For example, quantity “two” in a token “two-
bedroom” was not extracted in our experiments. 2) imper-
fect relevance classifier. We use relevant quantities as the
bottom level of the expression tree. Determining whether an
extracted quantity is relevant or not is also crucial to the fi-
nal accuracy. However, it is possible that the classifier can-
not identify all the correct quantities. Then, the expression
tree would be built on a wrong foundation. 3) limitation of
the crafted features. We concatenate features extracted from
quantity schema, which may not well handle operators like
multiplication and division and leads to incorrect operator
classification. 4) limitation of state representation. Ideally,
we should model expression tree as a Markov Decision Pro-
cess and each state is expected to represent a partial tree that
has been constructed so far. However, we use features of se-
lected pair of quantities to construct state for reinforcement
learning, which can be viewed as an approximate represen-
tation.

Conclusion and Future Work

In this paper, we make the first attempt to propose a deep
reinforcement learning framework for an automatic arith-
metic word problem solver. The experimental results on the
benchmark datasets are promising. Our method runs effi-
ciently and achieves superior performance, especially on the
more challenging multi-step problems. These findings shed
certain light towards a general MWP solver that can evolve
without too much human intervention.

In our future work, we will continue the line of re-
search in two main directions. First, we observe that there
have been intensive studies about utilizing deep learning
models to learn effective and compact representations of
words, sentences or paragraphs, such as recusrive autoen-
coders (Socher et al. 2011), recursive neural tensor net-
work (Socher et al. 2013b), convolutional neural networks
(Kim 2014), DCNN with dynamic k-max pooling (Kalch-
brenner, Grefenstette, and Blunsom 2014), recurrent convo-
lutional neural network (Lai et al. 2015) and even character-
level deep models (Zhang, Zhao, and LeCun 2015). Since
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all the existing solvers for math word problems have to care-
fully craft useful features, it would be an interesting break-
through to automatically learn effective representation of the
syntactic information and thus significantly reduce the hu-
man intervention. An initial study in this area can be found
in (Wang, Liu, and Shi 2017; Huang et al. 2017). Second,
the state-of-the-art methods for equation set problems are
far from satisfactory when experiments were conducted on
large-scale diverse datasets. Thus, there still remains a wide
gap to bridge and it is worth exploring the generality of deep
reinforcement learning on the equation set problems.
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