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Abstract

Linguistic Inquiry and Word Count (LIWC) is a word count-
ing software tool which has been used for quantitative text
analysis in many fields. Due to its success and popularity,
the core lexicon has been translated into Chinese and many
other languages. However, the lexicon only contains several
thousand of words, which is deficient compared with the
number of common words in Chinese. Current approaches
often require manually expanding the lexicon, but it often
takes too much time and requires linguistic experts to ex-
tend the lexicon. To address this issue, we propose to ex-
pand the LIWC lexicon automatically. Specifically, we con-
sider it as a hierarchical classification problem and utilize
the Sequence-to-Sequence model to classify words in the
lexicon. Moreover, we use the sememe information with
the attention mechanism to capture the exact meanings of
a word, so that we can expand a more precise and com-
prehensive lexicon. The experimental results show that our
model has a better understanding of word meanings with
the help of sememes and achieves significant and consis-
tent improvements compared with the state-of-the-art meth-
ods. The source code of this paper can be obtained from
https://github.com/thunlp/Auto CLIWC.

Introduction

Linguistic Inquiry and Word Count (Pennebaker, Booth, and
Francis 2007, LIWC) has been widely used for comput-
erized text analysis in social science. LIWC groups words
into manually-defined coarse-to-fine grained categories, and
it was originally developed to address content analytic is-
sues in experimental psychology. Nowadays, there is an in-
creasing number of applications across fields such as com-
putational linguistics (Grimmer and Stewart 2013), demo-
graphics (Newman et al. 2008), health diagnostics (Bucci
and Maskit 2005), social relationship (Kacewicz et al. 2014),
etc.

Chinese is the most spoken language in the world (Lewis
et al. 2009), but we cannot use the original LIWC to ana-
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lyze Chinese text. Fortunately, Chinese LIWC (Huang et al.
2012) has been released to fill the vacancy. In this paper, we
mainly focus on Chinese LIWC and use LIWC to stand for
Chinese LIWC if not otherwise specified.

While LIWC has been used in a variety of fields, its lexi-
con only contains less than 7,000 words. This is insufficient
because according to (Li and others 2008), there are at least
56,008 common words in Chinese. Moreover, LIWC lexi-
con does not consider the emerging words and phrases on
the Internet. Therefore, it is reasonable and necessary to ex-
pand the LIWC lexicon so that it is more accurate and com-
prehensive for scientific research. One way to expand LIWC
lexicon is to annotate the new words manually. However, it
is too time-consuming and often requires language expertise
to add new words. Hence, we propose to automatically ex-
pand LIWC lexicon. To the best of our knowledge, we are
the first to expand LIWC lexicon automatically.

Automatically LIWC lexicon expansion faces the prob-
lems of polysemy and indistinctness. Polysemy means
words and phrases have multiple meanings and are thereby
classified into multiple irrelevant categories. Indistinctness
means many categories in LIWC are fine-grained, and thus
making it more difficult to distinguish them.

One important feature in LIWC lexicon is that categories
form a tree structure hierarchy. Therefore, hierarchical clas-
sification algorithms such as Hierarchical SVM (Support
Vector Machine) (Chen, Crawford, and Ghosh 2004), can be
easily applied to LIWC lexicon expansion. However, these
methods are often too generic, without considering the pol-
ysemy property of words and LIWC lexicon and indistinct-
ness property of LIWC categories.

To address these issues, we propose to incorporate exter-
nal annotated word information when expanding the lexicon.
In linguistics, each word has one or more senses, and each
sense consists of one or more sememes, which are defined as
the smallest semantic language unit of meaning (Bloomfield
1926). In this paper, we use HowNet (Dong and Dong 2003)
where words are annotated with relevant sememes. For pol-
ysemy problem, sememes can explicitly express different
meanings of a word and make it possible to assign multi-
ple labels. For indistinctness problem, sememe is also help-
ful in differentiating fine-grained categories since we have
more detailed semantic information about the word mean-
ings. Moreover, sememes should be given different weights
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when classifying words into different categories. Thus, we
propose to use attention mechanism to better utilize sememe
information. The experimental results show that our model
achieves significant improvements as compared to the state-
of-the-art methods.

The contributions of this paper can be summarized as fol-
lows:

• To the best of our knowledge, our model is the first at-
tempt to expand LIWC lexicon automatically.

• To address the polysemy and indistinctness problems, we
propose to use sememe information to distinguish mean-
ings among words.

• To better utilize sememe information, we use attention
mechanism to assign different weights to sememes when
classifying each word.

• In the experiments, we show that our model outperforms
the state-of-the-art methods significantly.

Related Work

In this section, we first introduce some previous works based
on LIWC and then describe recent research in the hierarchi-
cal classification. Lastly, we briefly mention studies about
HowNet.

The original English version of LIWC lexicon is one of
the most well-known dictionaries in quantitative text anal-
ysis. It was first released in the early 1990s and has been
updated several times, with the latest version released in
2015 (Pennebaker et al. 2015). Over these years, there have
emerged numerous scientific findings across different fields
with the help of the original lexicon. (Mehl et al. 2007)
found that women and men both spoke about 16,000 words
per day, dispelling the myth of female talkativeness. (Bucci
and Maskit 2007) showed that word counting approach tends
to be less biased than clinician’s self-reports in therapeutic
improvements. (Rohrbaugh et al. 2008) found that the use of
we indicated relationship closeness and was even predictive
of heart failure improvements. (Schwartz et al. 2013) ana-
lyzed personality, gender, and age in social media using an
open-vocabulary approach. Due to the success and the im-
portance of the original LIWC, (Huang et al. 2012) manually
developed the first Chinese LIWC, and there is an increas-
ing number of applications (Gao et al. 2013; Yu et al. 2016;
Li et al. 2014) based on it. However, as a manually anno-
tated dictionary, this lexicon only contains less than 7,000
words, which is a serious limitation compared to the number
of common words. Hence, we propose to expand the lexicon
automatically.

To the best of our knowledge, most previous works
on lexicon expansion are based on feature engineering
techniques (Bravo-Marquez, Frank, and Pfahringer 2015;
Bravo-Marquez et al. 2016). Therefore, it requires lots of
human knowledge to design features for a different lex-
icon and makes it non-trivial to adopt previous methods
for LIWC expansion. Also, many of them cannot be for-
mulated as a classification problem (Coden et al. 2014;
da Silva Guimarães 2016). Since the categories in LIWC

annotation form a tree hierarchy, we can adopt hierarchi-
cal classification methods for automatically LIWC expan-
sion. As the first effort on LIWC lexicon expansion, we be-
lieve that the works in hierarchical classification problems
are more correlated to LIWC expansion and more suitable
for baseline comparisons.

For hierarchical classification, (Silla Jr and Freitas 2011)
summarized a variety of them from different fields and cat-
egorized them into five approaches. Flat Classifier (Barbedo
and Lopes 2007) is the simplest one to deal with hierarchical
classification problems. In this approach, the classifier com-
pletely ignores the hierarchy and predicts only classes at the
leaf nodes. Local Classifier Per Node (Fagni and Sebastiani
2007) consists of training one binary classifier for class. Lo-
cal Classifier Per Parent Node (Silla and Freitas 2009) is the
approach where, for each parent node in the class hierar-
chy, a multiclass classifier is trained to distinguish among
its child nodes. Similar to Local Classifier Per Parent Node
approach, Local Classifier Per Level (Clare and King 2003)
trains one multiclass classifier, but at each level instead of
each node. The last one is Global Classifier (Kiritchenko et
al. 2006), where a single classification model is trained to
take into account the hierarchy as a whole.

In recent years, there have been some attempts to use neu-
ral networks for hierarchical classification. (Cerri, Barros,
and De Carvalho 2014) trained the multilayer perceptron
level by level, and used the predictions of the neural network
as inputs for the next neural network associated with the next
hierarchical level. (Karn, Waltinger, and Schütze 2017) pro-
posed to use RNN encoder-decoder for entity mention clas-
sification, which is a problem with a hierarchical class struc-
ture. The encoder-decoder performs classification by gen-
erating paths in the hierarchy from top node to leaf nodes.
However, due to the polysemy and indistinctness problems,
these methods are not suitable for LIWC expansion. There-
fore, we propose to incorporate sememe information.

During these years, people manually annotate sememes
and build many linguistic knowledge bases. HowNet (Dong
and Dong 2003) is a typical knowledge base with annotated
sememes, and it has far more words than LIWC. Therefore,
we can use it directly to help expand the LIWC lexicon.
HowNet has also been widely used in sentiment analysis
(Fu et al. 2013) and word representation learning (Niu et
al. 2017).

Problem Formalization
In this section, we first give an illustrative example of words
and categories in LIWC lexicon. Then we give the formal
definition of LIWC lexicon expansion problem.

Figure 1 is an example which demonstrates the LIWC cat-
egories of the word apex. We can see that the word apex
belongs to two parent categories, namely PersonalConcerns
and relative. The two parent categories have one child cate-
gory each, which are achieve and space respectively.

As illustrated in Figure 1, LIWC categories are hierarchi-
cally organized and each word in LIWC can belong to more
than one category at any given level of the hierarchy. In other
words, it is considered to be hierarchical multilabel. More-
over, each word does not necessarily belong to a leaf cate-
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gory. This is often referred to as non-mandatory prediction.
Therefore, LIWC lexicon expansion is a non-mandatory
hierarchical multilabel classification problem.

Formally, we follow the proposed framework for hierar-
chical classification problems in (Silla Jr and Freitas 2011).
The LIWC lexicon expansion problem is described as the
3-tuple < T , MPL, PD >, where:

• T indicates that the classes are arranged into a tree struc-
ture;

• MPL (Multiple Paths of Labels) is equivalent to the term
hierarchical multilabel;

• PD (Partial Depth Labeling) indicates that some in-
stances have a partial depth of labeling, i.e., the value of
the class label at some level (typically the leaf level) is
unknown.

PersonalConcerns

spaceachieve

relative

Figure 1: Example word apex and its categories in LIWC
lexicon.

Methodology

In this section, we introduce our framework Hierarchical
Decoder with Sememe Attention. It exploits the Sequence-
to-Sequence decoder for hierarchical classification and uti-
lizes the attention mechanism to incorporate sememe infor-
mation to expand a better LIWC lexicon.

In the following sections, we first describe the structure
of HowNet. Next, we introduce the decoder to hierarchi-
cally predict word labels. Finally, we propose to use atten-
tion mechanism in the decoder for incorporating sememe in-
formation into the model.

HowNet Structure

In this section, we discuss words, sememes and their rela-
tionship in HowNet. Each word in HowNet has one or mul-
tiple senses. For each sense, it is annotated by sememes and
sememes can form complicated relations.

Figure 2 is the example word apex and its relating se-
memes. As illustrated in Figure 2, the word apex has two
main senses: one means the highest achievement or ex-
cellence (acme), and another means a concept in geome-
try (vertex). The following layers are sememes annotating
each sense. Sememe is usually considered as a semantic

entity angular

Boundary

most

GreaterThanNormal

location

dot

acme vertex

Figure 2: Example word apex and its senses and sememes in
HowNet annotation.

language unit of meaning. For example, the sense vertex
has sememes dot, angular and location, indicating
that dot, angular and location represent their literal
meaning and they serve as the basic unit of the sense vertex.

We can observe from Figure 2 that in HowNet, sememes
and senses have various relations, such as host and modifier,
and through the relations, they form complicated hierarchi-
cal structures. In this work, we only consider all sememes of
each word as a sememe set without exploring their compli-
cated relations, which is left in our future work.

Comparing Figure 1 with Figure 2, we can find out that
sense acme and its relating sememes represent a specific
meaning in word apex which can be classified into Personal-
Concerns and achieve, and so is sense vertex. In other words,
annotated sememes in HowNet can help us distinguish dif-
ferent meanings in words, and hence are useful in LIWC
lexicon expansion.

Hierarchical Decoder

We model the hierarchical classification problem as a
Sequence-to-Sequence decoding, where the input is the
word embedding and the output is its hierarchical labels.
The Sequence-to-Sequence models have been widely used
in NLP for modeling sentences (Sutskever, Vinyals, and Le
2014).

Formally, let Y denotes the label set and π:Y → Y de-
notes the parent relationship where π(y) is the parent node
of y ∈ Y . Given a word x, its labels form a tree structure
hierarchy. We then choose each path from root node to leaf
node, and transform it into a sequence y = (y1, y2, . . . , yL)
where π(yi) = yi−1, ∀i ∈ [2, L] and L is the number of lev-
els in the hierarchy. In this way, when the Hierarchical De-
coder (HD) predicts a label yi, it takes into consideration the
probability of parent label sequence (y1,. . . ,yi−1). Formally,
the decoder defines a probability over the label sequence y:
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p(y) =
L∏

i=1

p(yi|(y1, . . . , yi−1), x), (1)

where y = (y1, . . . , yL). A common approach for decoder
is to use LSTM (Hochreiter and Schmidhuber 1997) so that
each conditional probability is computed as

p(yi|(y1, . . . , yi−1), x) = f(yi−1, si)

= oi ◦ tanh(si), (2)

where

si = fi ◦ si−1 + zi ◦ s̃i,
s̃i = tanh(Ws · [si−1, yi−1] + bs),

oi = σ(Wo · [si−1, yi−1] + bo),

zi = σ(Wz · [si−1, yi−1] + bz),

fi = σ(Wf · [si−1, yi−1] + bf ), (3)

where ◦ is an element-wise multiplication, σ represents sig-
moid function and si is the i-th hidden state of the LSTM.
Ws, Wo, Wz , Wf are weights and bs, bo, bz , bf are biases.
oi, zi and fi are known as output gate layer, input gate layer
and forget gate layer respectively.

To take advantage of word embeddings, we define the ini-
tial state s0 = ex where ex represents the embedding of the
word. In other words, the word embeddings are applied as
the initial state of the decoder.

Specifically, the input of Hierarchical Decoder is word
embeddings and label embeddings. First, we transform raw
words into word embeddings by an embedding matrix V ∈
R

|V |×dw , where dw is the word embedding dimension.
Then, at each time step, we input label embeddings y, which
is obtained by a label embedding matrix Y ∈ R

|Y |×dy ,
where dy is the label embedding dimension. Here word em-
beddings are pre-trained and fixed during training.

Generally speaking, Hierarchical Decoder is expected to
decode word labels hierarchically based on word embed-
dings. At each time step, it will predict the current label de-
pending on previously predicted labels.

Hierarchical Decoder with Sememe Attention

The Hierarchical Decoder uses word embeddings as the ini-
tial state, then predicts word labels hierarchically as se-
quences. However, each word in the Hierarchical Decoder
model has only one representation. This is insufficient be-
cause it is difficult to handle polysemy and indistinctness
using a single real-valued vector. Therefore, we propose to
incorporate sememe information.

Because different sememes represent different meanings
of a word, they should have different weights when predict-
ing word labels. Moreover, the same sememe should have
different weights in different categories. Take the word apex
in Figure 2 for example. The sememe location should
have a relatively higher weight when the decoder chooses
among the sub-classes of relative. However, when choosing
among the sub-classes of PersonalConcerns, location
should have a lower weight because it represents a relatively
irrelevant sense vertex.

y1 y2 y3

y1

c

1 2 N

y2 y3

Figure 3: HDSA with word embeddings as the initial state.

To achieve the above goals, we propose to utilize the at-
tention mechanism (Bahdanau, Cho, and Bengio 2014) to
incorporate sememe information when decoding word label
sequence. The structure of Hierarchical Decoder with Se-
meme Attention (HDSA) is illustrated in Figure 3.

Similar to the Hierarchical Decoder approach, we apply
word embeddings as the initial state of the decoder. The pri-
mary difference is that the conditional probability is defined
as:

p(yi|(y1, . . . , yi−1), x, ci) = f([yi−1, ci], si), (4)
where ci is known as context vector. The context vector ci
depends on a set of sememe embeddings {h1, . . . , hN}, ac-
quired by a sememe embedding matrix S ∈ R

|S|×ds , where
ds is the sememe embedding dimension.

To be more specific, the context vector ci is computed as
a weighted sum of the sememe embedding hj :

ci =
N∑

j=1

αijhj . (5)

The weight αij of each sememe embedding hj is defined as

αij =
exp(eij)∑N
k=1 exp(eik)

, (6)

where
eij = vT tanh(W1yi−1 +W2hj), (7)

is regarded as a score which indicates how well the sememe
embedding hj is associated when predicting the current la-
bel yi. Here, v ∈ R

a,W1 ∈ R
a×dy and W2 ∈ R

a×ds are
weight matrices. a is the number of hidden units in attention
model.

Intuitively, at each time step, HDSA chooses which se-
memes to pay attention to when predicting the current word
label. In this way, different sememes can have different
weights, and the same sememe can have different weights
in different categories. With the support of sememe atten-
tion, HDSA can deal with the polysemy and indistinctness
problems and thus can expand a more accurate and compre-
hensive LIWC lexicon.
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Optimization and Implementation Details

Here, we present the implementation and optimization de-
tails of our model. The objective function is defined using
cross entropy.

J = − 1

T

T∑

n=1

∑

m

(ymn log(y
′
mn)), (8)

where ymn ∈ {0, 1} represents whether word wn belongs to
label ym, y′mn represents the predicted probability of word
wn belonging to label ym, computed by Equation (4), and
T is the number of words. We use the Adam algorithm
(Kingma and Ba 2014) to automatically adapt the learning
rate of each parameter.

In the implementation, we utilize the LSTM network.
When inferring word labels, we employ beam search to ad-
dress the hierarchical multilabel issue. We empirically set a
threshold δ and assign a label sequence y to a word only
when the following inequality constraint is met.

log p(y) > δ. (9)

We also employ Recurrent Dropout (Semeniuta, Severyn,
and Barth 2016) and Layer Normalization (Ba, Kiros, and
Hinton 2016) to the LSTM to prevent overfitting. The Layer
Normalization is applied before the internal non-linearity.

Experiments

Our experiments are intended to demonstrate the effective-
ness of Hierarchical Decoder with Sememe Attention on
LIWC lexicon expansion.

Dataset

We use the Chinese LIWC developed by (Huang et al. 2012)
and its hierarchy depth is 3. we list its statistics in Table 1.

Num. words Num. labels
Overall 6,828 51
Level 1 6,828 10
Level 2 6,363 34
Level 3 589 7

Table 1: Statistics of LIWC lexicon.

We employ the sememe annotation in HowNet. The to-
tal number of words in HowNet is over 100,000 and the
number of distinct sememes used in this paper is 1,617. We
use Sogou-T as the corpus to learn both word embeddings
and sememe embeddings. Sogou-T contains over 130 mil-
lion web pages and is supplied by a Chinese commercial
search engine.

Algorithms for Comparison

Since LIWC lexicon expansion is a hierarchical classifica-
tion problem, we mainly choose hierarchical algorithms for
comparison.

• Top-down k-NN (TD k-NN): Top-down decision making
using k-NN at each parent label.

• Top-down SVM (TD SVM): Top-down decision making
using SVM at each parent label.

• Structural SVM (Joachims, Finley, and Yu 2009): a mar-
gin rescaled structural SVM using the 1-slack formulation
and cutting plane method. We use Pystruct1 (Müller and
Behnke 2014) for implementation.

• CSSA (Condensing Sort and Select Algorithm) (Bi and
Kwok 2011): a hierarchical classification algorithm which
can be used on both tree- and DAG-structured hierarchies.

• HD (Hierarchical Decoder): the Hierarchical Decoder
without sememe attention.

The above Top-down approaches are also referred to as Lo-
cal Classifier Per Parent Node Approach in (Silla Jr and Fre-
itas 2011).

Experimental Settings

The word embedding matrix V and sememe embedding ma-
trix S are pre-trained and fixed during the training process.
Because sememes can be seen as words, we directly use their
pre-trained word embeddings as sememe embeddings, and
employ word2vec model to learn the embeddings. Specifi-
cally, We use Skip Gram model with embedding dimension
ds = dw = 300, window size K = 5 and negative sampling
number NS = 5. We keep the words with frequency over 50
and filter out the less frequent words in LIWC lexicon. For
label embedding matrix Y, we randomly initialize them and
use backpropagation to update their value during training.

For a fair comparison, we use the same embeddings for all
methods and use hold-out evaluation. For Top-down k-NN,
we set k = 5. For Top-down SVM and structural SVM, we
set regularization parameter C = 1 and convergence toler-
ance tol = 0.01. For CSSA, each sample is given 4 labels
when prediction. In the Top-down approaches, each sample
is given 1 label when choosing among child nodes.

For parameters in our model, we set a and dy to be 300.
When predicting word labels, we empirically set beam size
of beam search to be 5 and δ = −1.6. For Adam algorithm,
we set the initial learning rate α = 0.001, β1 = 0.9, β2 =
0.999 and ε = 10−8.

When transforming the tree structured labels into label se-
quences, if a word has more than one path in the tree struc-
ture, we transform it into multiple label sequences. For ex-
ample, if word x has labels {yi1 , yi2 , yi3 , yi4} and π(yi3) =
yi2 , π(yi4) = yi2 , π(yi2) = yi1 , we transform it into two se-
quences y = (yi1 , yi2 , yi3) and y′ = (yi1 , yi2 , yi4). Hence, a
word can match multiple sequences after the transformation.

Evaluation Metrics

We employ the widely-used Micro-F1 and Macro-F1 along
with their Precision and Recall metrics to measure the per-
formance of all the methods (Zhang and Zhou 2014).

• Micro-F1 is a common metric used to evaluate classifica-
tion algorithms and it gives equal weight to each example.

1https://pystruct.github.io/
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Overall Level 1 Level 2 Level 3
Model Micro-F1 W-M-F1 Micro-F1 W-M-F1 Micro-F1 W-M-F1 Micro-F1 W-M-F1

TD k-NN 0.6198 0.6169 0.6756 0.6772 0.5716 0.5646 0.4884 0.4858
TD SVM 0.6283 0.6106 0.6858 0.6785 0.5766 0.5557 0.4503 0.4142

Structural SVM 0.6444 0.6448 0.7011 0.7010 0.5919 0.5919 0.5725 0.5718
CSSA 0.6511 0.6319 0.6880 0.6864 0.6172 0.5914 0.4729 0.4322

HD 0.7023 0.7000 0.7495 0.7476 0.6658 0.6614 0.6113 0.6064
HDSA 0.7224 0.7204 0.7636 0.7616 0.6927 0.6874 0.6270 0.6234

Table 2: Micro-F1 and W-M-F1 results in all and each layer(s).

Overall Level 1 Level 2 Level 3
Model Precision Recall Precision Recall Precision Recall Precision Recall

TD k-NN 0.7230 0.5494 0.7718 0.6069 0.6912 0.4945 0.4905 0.4846
TD SVM 0.7297 0.5422 0.7707 0.6161 0.6988 0.4822 0.5855 0.3308

Structural SVM 0.6607 0.6341 0.7193 0.6843 0.6059 0.5862 0.5788 0.5769
CSSA 0.6168 0.6910 0.6068 0.7973 0.6306 0.6062 0.5797 0.3692

HD 0.7216 0.6859 0.7767 0.7238 0.6711 0.6604 0.6051 0.6169
HDSA 0.7473 0.7001 0.7976 0.7311 0.7052 0.6804 0.6354 0.6308

Table 3: W-M averaging Precision and Recall results in all and each layer(s)

• Macro-F1 is also a commonly used metric and it gives
equal weight to each class label. However, this may cause
instability because categories in LIWC are highly imbal-
anced with some categories containing more than 1,000
instances while some only have less than 40 instances.
Therefore, we use the weighted Macro-F1 (W-M-F1) to
evaluate the performance of models.

Experimental Results

Table 2 and Table 3 shows the results of all baselines and our
model. We have the following observations (the improve-
ments are statistically significant using t-test at 0.01 level in
overall scores):

First, it is clear from the table that both the HD and
HDSA outperform all other baselines in the overall perfor-
mance. This demonstrates that it is reasonable and effective
to transform hierarchical labels into label sequences and em-
ploy neural network for classification. In each layer, HD and
HDSA also have advantages over other algorithms, except
that CSSA has higher recall at level 1. However, Micro-F1

and W-M-F1 of CSSA are lower than HD and HDSA at
every level. Therefore, HD and HDSA are still better than
CSSA in LIWC lexicon expansion.

Second, the HDSA outperforms HD by approximately
2%, which indicates that incorporating sememe information
into the decoder model is useful for LIWC lexicon expan-
sion. It is mainly because sememes can represent different
meanings in a word, and help our model to alleviate the pol-
ysemy and indistinctness problems. In other words, HDSA
can expand a more comprehensive and precise LIWC lexi-
con with the aid of sememe information.

Third, comparing HDSA with conventional Top-Down
approaches like TD k-NN and TD SVM, one can notice
that while the difference in precision between them is only
around 2% in Layer 1, it increases to approximately 5% or
more in Layer 3. Intuitively, this demonstrates that HDSA
is more capable of preventing the error from propagating

through layers.
One may argue that precision is often more important than

recall in lexicon expansion for the fact that accuracy is often
more important than completion for a lexicon. This is favor-
able for our model since we can increase the threshold δ to
get a more accurate lexicon. Furthermore, Micro-F1 and W-
M-F1 scores also change when we adjust δ. Therefore, we
illustrate the effect of δ with HDSA model in Figure 4.

Figure 4: The effect of δ on Micro-F1, W-M-F1, W-M aver-
aging Precision and Recall with HDSA model.

We can see from Figure 4 that δ has a direct impact on
both precision and recall. As δ gradually increases from
−2.0 to −1.0, precision also increases from 71.8% to 79.1%
while recall decreases from 72.9% to 64.5%. This meets our
expectation because higher δ means more strict standard and
ruling out more labels than lower δ, resulting in higher pre-
cision and lower recall.

Unlike precision and recall, Micro-F1 and W-M-F1 do not
change much as δ increases. The fluctuation range of Micro-
F1 and W-M-F1 is about ±1%. It is primarily because the
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Word Sememes HD Prediction HDSA Prediction True Labels

恋人 (sweetheart) 交往 (associate),人 (human),
爱恋 (love) social←friend social←friend,

affect←posemo
social←friend,
affect←posemo

今天 (today) 时间 (time),现在 (present),
特定 (specific),日 (day) relativ←time funct←TenseM←PresentM,

relativ←time
funct←TenseM←PresentM,

relativ←time

市镇 (town) 乡 (village),市 (city),
地方 (place)

PersonalConcerns
←work relativ←space relativ←space

无望 (hopeless) 悲惨 (miserable) cogmech←discrep affect←negemo←sad affect←negemo←sad

种种 (all kinds of) 多种 (various) funct←negate funct←quant funct←quant

天空 (sky) 空域 (airspace) relativ←time relativ←space relativ←space

联盟 (alliance) 结盟(ally),
团体(community)

PersonalConcerns
←work

social,
PersonalConcerns←work

PersonalConcerns
←work

泪珠 (teardrop) 部件(part),体液 (BodyFluid),
动物(AnimalHuman) affect←negemo←sad affect←negemo,

bio←health affect←negemo←sad

Table 4: Examples of words, sememes, HD prediction and HDSA prediction.

increase of precision and decrease of recall counteract each
other and thus the fluctuation is small. This indicates that
our model is robust against the choices of δ in a reasonable
range.

Case Study

Table 4 shows some examples which HDSA predicts cor-
rectly with the favor of sememes while HD fails. It also
shows some drawback where HDSA fails because of se-
memes. For each word, we show its relating sememes, the
results of HD, the results of HDSA and the ground truth.
Here we use y1 ← y2 to represent y1 is the parent of y2 for
simplicity.

From the table, we have the following observations. First,
words sweetheart and today have multiple labels hierarchi-
cally and the results of HD are only partially correct. This is
mainly because of the polysemy of the words. On the con-
trary, with the help of sememes, such as love in sweetheart
and present in today, HDSA successfully gives correct
predictions, indicating that sememes are indeed useful for
word polysemy.

Second, the results of HD in words town and hopeless are
completely wrong. This could be caused by imprecise word
embeddings. Instead, due to the extra information provided
by sememes, such as place in town and miserable in
hopeless, HDSA can predict them accurately.

Third, because of the indistinctness problem, HD may
make mistakes when distinguishing categories. Words all
kinds of and sky are two examples. On the other hand, since
sememes can explicitly express meanings of words, such as
various and airspace, HDSA gives errorless predic-
tions.

Lastly, the result of HDSA in words alliance and teardrop
are partially incorrect while HD gives correct predictions.
This is mainly because sememes can sometimes be mislead-
ing, such as community in alliance and BodyFuild in
teardrop. We will take the relations among sememes into
consideration in the future work to better utilize sememe in-

formation.
We can conclude from the above observations that se-

memes are clearly useful for LIWC lexicon expansion and
give HDSA improvements over the HD. Also, it indicates
that HDSA is still not perfect and we will try to improve it
in the future.

Conclusion and Future Works

In this paper, we utilize the Sequence-to-Sequence model for
hierarchical classification of words to expand LIWC lexicon.
To capture the exact meanings of words, we propose to use
sememe information and utilize the attention mechanism to
select appropriate senses of words when expanding the lex-
icon. In the experiments, we compare our model with other
state-of-the-art methods and the results show that our model
outperforms all of them. We also analyze several cases to
show the effectiveness of sememes. The cases indicate that
our model is more capable of understanding the meaning of
words with the help of sememe attention.

In the future, we will explore the following directions:

• The sememes and words in HowNet have complicated
structure and relations, and we currently ignore them in
our model. We will explore to use this extra information
for more precise and comprehensive LIWC lexicon.

• Currently our model needs pre-trained embeddings, and
they are fixed during training. In the future, we will ex-
plore to update them during training or even not to use
pre-trained embeddings.
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