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Abstract

Partially inspired by successful applications of variational re-
current neural networks, we propose a novel variational recur-
rent neural machine translation (VRNMT) model in this pa-
per. Different from the variational NMT, VRNMT introduces
a series of latent random variables to model the translation
procedure of a sentence in a generative way, instead of a sin-
gle latent variable. Specifically, the latent random variables
are included into the hidden states of the NMT decoder with
elements from the variational autoencoder. In this way, these
variables are recurrently generated, which enables them to
further capture strong and complex dependencies among the
output translations at different timesteps. In order to deal with
the challenges in performing efficient posterior inference and
large-scale training during the incorporation of latent vari-
ables, we build a neural posterior approximator, and equip
it with a reparameterization technique to estimate the vari-
ational lower bound. Experiments on Chinese-English and
English-German translation tasks demonstrate that the pro-
posed model achieves significant improvements over both the
conventional and variational NMT models.

1. Introduction

Recently, neural machine translation (NMT) has gradually
established state-of-the-art results over statistical machine
translation (SMT) on various language pairs. Most NMT
models consist of two recurrent neural networks (RNNs):
a bidirectional RNN based encoder that transforms source
sentence x = {x1, x2...xTx} into a hidden state sequence,
and a decoder that generates the corresponding target sen-
tence y = {y1, y2...yTy

} by exploiting source-side contexts
via an attention network (Bahdanau, Cho, and Bengio 2015).
This attentional neural encoder-decoder framework has now
become the dominant architecture for NMT.

Within this framework, semantic representations of
source and target sentences are learned in an implicit way.
As a result, the learned semantic representations are far
from being sufficient for capturing all semantic details and
dependencies (Sutskever, Vinyals, and Le 2014; Tu et al.
2016). To complement the insufficiency of semantic repre-
sentations of NMT, Zhang et al. (2016a) present variational
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NMT (VNMT) which incorporates a latent random variable
into NMT, serving as a global semantic signal for generating
good translations. However, the internal transition structure
of RNN is entirely deterministic, and hence, this implemen-
tation may not be an effective way to model high variability
observed in structured data, such as language modeling and
machine translation (Chung et al. 2015). Therefore, the po-
tential of VNMT is limited and how to better improve NMT
with latent variables is still open for further exploration.

In this paper, we propose a variational recurrent NMT
(VRNMT) model to deal with the above-mentioned prob-
lem, motivated by recent success of the variational recurrent
neural network (VRNN) (Chung et al. 2015). It is illustrated
in Fig. 1. VRNMT explicitly models underlying semantics
of bilingual sentence pairs, which are then exploited to re-
fine translation. However, instead of only employing a single
latent variable to capture the global semantics of each par-
allel sentence, we assume that there is a continuous latent
random variable sequence z = {z1, z2..., zTy

} in the under-
lying semantic space, where the iteratively generated vari-
able zj participates in the generations of each target word yj
and hidden state sj+1. Formally, the conditional probability
p(y|x) is decomposed as follows:

p(y|x) =
Ty∏
j=1

p(yj |x, y<j) =

Ty∏
j=1

∫
zj

p(yj , zj |x, y<j)dzj

=

Ty∏
j=1

∫
zj

p(yj |x, y<j , zj)p(zj |x, y<j)dzj (1)

where zj encodes the semantic contexts at the j-th timestep.
In doing so, we expect these latent variables to efficiently
model the strong and complex dependencies between adja-
cent target words, which may not be effectively and suffi-
ciently captured by the conventional NMT or VNMT.

However, the incorporation of latent variables into the
existing NMT models faces two challenges, as mentioned
in (Zhang et al. 2016a): 1) the posterior inference in our
model is intractable; 2) large-scale training, which lays the
ground for the data-driven NMT, is accordingly problem-
atic. To address these two issues, we follow Zhang et al.
(2016a) to use deep neural networks, which are capable of
learning highly nonlinear functions, to fit the latent-variable-
related distributions, i.e. the prior and posterior. The former
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Figure 1: Illustration of VRNMT as a directed graph. The green dotted lines illustrate the modeling procedure of the latent
variable zj . The orange lines show the information flow for the prediction of target word yj . The red lines highlight the incor-
poration of zj into the encoding of hidden state vector sj+1.

is pθ(zj |x, y<j), conditioned on source sentence and pre-
viously generated target words. The latter is qφ(zj |x, y≤j),
approximated from all observed variables. To enable effi-
cient inference and learning, we adopt the reparameteriza-
tion trick (Kingma and Welling 2014; Rezende, Mohamed,
and Wierstra 2014) to bridge the gap between these two dis-
tributions. In this way, our model becomes an end-to-end
neural network endowed with the stochastic optimization
ability for enhancing its generality.

Our main contributions in this work are twofold:

• We propose a VRNMT model that not only explores the
utilization of high-level latent random variables but also
efficiently captures the strong and complex dependencies
between neighboring target words for NMT. To the best
of our knowledge, this is the first attempt to adapt VRNN
into NMT modeling.

• Experimental results on Chinese-English and English-
German translation tasks show that the proposed model
significantly outperforms the conventional NMT and
VNMT models.

2. Background

In this section, we briefly describe the attention-based NMT
model and VRNN, which provide background knowledge
for the proposed model.

2.1 Attention-based NMT Model

Currently, the dominant NMT model mainly consists of a
neural encoder and a neural decoder with an attention net-
work (Bahdanau, Cho, and Bengio 2015).

Generally, the encoder is a bidirectional RNN learning
hidden representations of a source sentence in the forward
and backward directions. The learned hidden states in two
directions are then concatenated to form source annotations
{hi = [

−→
h T

i ,
←−
h T

i ]
T }, where hi encodes the contextual se-

mantics of the i-th word with respect to all other surrounding
source words.

Likewise, the decoder is a forward RNN that adopts the
nonlinear function g(·) to sequentially generate the trans-
lation y as p(yj |x, y<j)=g(yj−1, sj , cj), where sj and cj
denote the decoding state and the source context at the j-
th timestep, respectively. Among them, si is computed as
sj=GRU(sj−1, yj−1, cj). Here we use GRU for both the en-
coder and decoder in this work. However, our work is also
applicable to other types of RNNs. According to the atten-
tion mechanism, we calculate cj as the weighted sum of the
source annotations {hi}:

cj =

Tx∑
i=1

αj,i · hi, (2)

where αj,i evaluates how well yj and hi match, computed
as follows:

αj,i =
exp(ej,i)∑Tx

i′=1 exp(ej,i′)
, (3)

ej,i = vTa tanh(Wasj−1 + Uahi), (4)
where Wa, Ua and va are the weight matrices of the attention
model.

2.2 VRNN

VRNN is a recurrent extension of the conventional VAE
(Chung et al. 2015). As shown in Fig. 2, it contains a VAE at
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(a) Prior (b) Generation (c) Recurrence (d) Inference

Figure 2: Graphical illustrations of each operation of the
VRNN.

every timestep and introduces four kinds of operations to ex-
plicitly model the dependencies between latent random vari-
ables across subsequent timesteps.

Prior, Generation and Recurrence. Based on the hidden
state ht−1 of the RNN, VRNN first produces a latent seman-
tic variable zt, which is then used to guide the generation of
the hidden state ht and word xt at the t-th timestep. In doing
so, the temporal structure of sequential data is exploited for
VRNN modeling.

Different from the standard VAE where the prior on the
latent random variable follows a standard Gaussian distribu-
tion, VRNN assumes that zt obeys the following Gaussian
with the parameters μ0,t and σ0,t

zt ∼ N (μ0,t, diag(σ2
0,t)), (5)

where μ0,t and σ0,t can be produced by any highly flexible
neural networks. Moreover, the generation distribution of xt

will be conditioned on both zt and ht−1 such that
xt|zt ∼ N (μx,t, diag(σ2

x,t)), (6)
where μx,t and σx,t are the parameters of the generation dis-
tribution. Note that they can also be computed by any highly
flexible neural network.

Then, we introduce zt to update the hidden state ht in a
recurrent way

ht = fθ(ht−1, xt, zt). (7)
Finally, the parameterization of the generative model can

be factorized as follows:

pθ(x) =

∫
z

pθ(x, z)dz, (8)

pθ(x, z) =
T∏

t=1

p(xt|x<t, z≤t)p(zt|x<t, z<t), (9)

where T is the sequence length.
Inference. Similarly, the approximate posterior is defined

as a function of both xt and ht

zt|xt ∼ N (μz,t, diag(σ2
z,t)), (10)

where μz,t and σz,t are the parameters of the approximate
posterior. In doing so, ht enables the encoding of the approx-
imate posterior and the decoding for generation are closely
tied.

Finally, the objective function becomes a timestep-wise
variational lower bound

LVRNN(θ, φ;x) = Eq(z≤M |x≤T )[

T∑
t=1

(−KL(q(zt|x≤t, z<t)

||p(zt|x<t, z<t)) + logp(xt|z≤t, x<t) )] (11)

As implemented in VAE, we maximize the variational lower
bound with respect to their parameters to jointly learn the
generative and inference models. Note that we also have
to model the posterior pθ(zt|x≤t, z<t) while the integration
of zt still leads to difficulties in the posterior inference and
large-scale learning. Likewise, we adopt the neural approxi-
mation and reparameterization trick to handle this issue.

3. Our Model

In this section, we extend VNMT into VRNMT by adapt-
ing VRNN into NMT. In VRNMT, the semantic dependen-
cies between adjacent target words can be captured to re-
fine translation. Formally, the variational lower bound of
VRNMT is defined as follows:

LVRNMT(y|x; θ, φ) =
Ty∑
j=1

LVRNMT(yj |x, y<j ; θ, φ)

=

Ty∑
j=1

{ −KL(qφ(zj |x, y≤j)||pθ(zj |x, y<j))

+ Eqφ(zj |x,y≤j)[logpθ(yj |x, y<j , zj)]}, (12)

where pθ(zj |x, y<j) is the prior, qφ(zj |x, y≤j) is the ap-
proximated posterior, and pθ(yj |x, y<j , zj) is the generation
model.

As shown in Eq. (12), VRNMT mainly contains three
neural network based components: (1) a neural encoder for
encoding source sentences, (2) a variational neural inferer
for qφ(zj |x, y≤j) and pθ(zj |x, y<j), and (3) a variational
neural decoder that models pθ(yj |x, y<j , zj).

3.1 Neural Encoder

The encoder of VRNMT is the same as that of the conven-
tional NMT. Due to the limitation of space, we omit the de-
scription of the VRNMT encoder (See Section 2.1 for refer-
ence).

3.2 Variational Neural Inferer

As described previously, the key of variational models lies in
how to model the distributions related to latent random vari-
ables. With respect to VRNMT, we focus on how to model
the posterior qφ(zj |x, y≤j) and the prior pθ(zj |x, y<j).

The Posterior Model. Under the assumption that the pos-
terior qφ(zj |x, y≤j) follows the multivariate Gaussian distri-
bution with a diagonal covariance structure, we apply neu-
ral networks to simulate the posterior model. Concretely, we
compute qφ(zj |x, y≤j) as

qφ(zj |x, y≤j) = N (zj ;μj(x, y≤j), σj(x, y≤j)
2I). (13)

As illustrated in Fig. 1, the mean μj and standard derivation
σj of neural networks are imposed on x and y≤j .

Obviously, the key to estimate zj is how to calculate μj

and σj . To this end, we first apply the element-wise activa-
tion function g(·) to perform a nonlinear transformation pro-
jecting yj−1, sj , cj and yj onto our latent semantic space:

hzj = g(Wφ
z [yj−1; sj ; cj ; yj ] + bφz ). (14)
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where Wφ
z and bφz are the parameter matrix and bias term, re-

spectively. Finally, we introduce linear regressions with pa-
rameters Wφ

μ , Wφ
σ , bφμ and bφσ to obtain dz-dimension vectors

μj and logσ2
j as follows:

μj = Wφ
μhzj + bφμ (15)

logσ2
j = Wφ

σ hzj + bφσ (16)

To obtain a representation for latent variable zj , we fol-
low the implementation of VAE to reparameterize it as zj =
μj + σj � ε, ε ∼ N (0, I). Intuitively, this reparameteri-
zation procedure bridges the gap between pθ(yj |x, y<j , zj)
and qφ(zj |x, y≤j). Thus, our model is an end-to-end neural
network endowed with the generality ability.

The Prior Model. Except for the absence of yj , the neural
model for the prior pθ(zj |x, y<j) is identical to that (i.e. Eq
(13)) for the posterior qφ(zj |x, y≤j). Here we still model the
prior as a multivariate Gaussian distribution but introduce
different parameters for the prior and the posterior:

pθ(zj |x, y<j) = N (zj ;μ
′
j(x, y<j), σ

′
j(x, y<j)

2I), (17)

Using the similar way in computing the posterior model,
we first calculate h′zj without yj in the following way:

h′zj = g(W θ
z [yj−1; sj ; cj ] + bθz). (18)

Here W θ
z and bθz are the parameter matrix and bias term,

respectively.
Then, we use h′zj to generate the mean μ′j and standard

derivation logσ
′2
j with the parameters W θ

∗ and bθ∗:

μ′j = W θ
μh
′
zj + bθμ (19)

logσ
′2
j = W θ

σh
′
zj + bθσ (20)

Different from the posterior model, we directly set zj as μ′j ,
as implemented in (Zhang et al. 2016a). Note that we also
introduce noises to generate non-fixed representation zj in
practice, which enables our model to avoid overfitting to
some extent.

Finally, zj is integrated into our decoder to improve trans-
lation. The details will be illustrated in the following subsec-
tion.

3.3 Variational Neural Decoder

Given the source sentence x, the previously generated target
words y<j , and the semantic latent variable zj , we compute
the probability distribution over the translation yj as

p(yj |x, y<j , zj) = gVRNMT(yj−1, sj , cj)

∝ exp{g(Wd[yj−1; sj ; cj ; zj ] + bd)} (21)

Unlike the conventional NMT, we first produce zj using
yj−1, sj , and cj (see the dashed green lines in Fig. 1), and
then integrate zj with yj−1, sj , and cj to generate transla-
tion probability distribution (see the orange lines in Fig. 1).
Besides, we use zj to generate the next hidden state (see the

red lines in Fig. 1). Formally, the GRU transition equations
of our decoder are as follows:

rj+1 = σ(Wr�yj + Ursj + Crcj + Vrzj + br) (22)
uj+1 = σ(Wu�yj + Uusj + Cucj + Vuzj + bu) (23)
s̃j+1 = tanh(W�yj + U [rj+1 � sj ] + Ccj + V zj + b)

(24)
sj+1 = (1− uj+1)� sj + uj+1 � s̃j+1, (25)

where W∗, U∗, C∗, V∗, and b∗, are the model parameters of
GRU in VRNMT. Particularly, we initialize the hidden state
s0 in a way similar to (Bahdanau, Cho, and Bengio 2015).

It should be noted that the latent semantic variable zj has
an important influence on the representation of hidden state
sj+1 through the gates rj+1 and uj+1, and temporary hid-
den state s̃j+1. This allows our model to access the seman-
tic information of zj indirectly since the prediction of yj+1

depends on sj+1. On the other hand, sj+1, in turn will con-
strain the generation of zj+1 at the next timestep. Therefore,
the context dependencies between adjacent timesteps are in-
directly exploited to refine translation.

Model Training

The final objective for one bilingual sen-
tence (x,y) involves the following two parts:
−KL(qφ(zj |x, y≤j)||pθ(zj |x, y<j)) and Eqφ(zj |x,y≤j)[·].
We also apply the Monte Carlo method to approximate
Eqφ(zj |x,y≤j)[·]. Formally, the joint training objective
becomes

LRLV (θ, φ;x,y) =

Ty∑
j=1

{ −KL(qφ(zj |x, y≤j)||pθ(zj |x, y<j))

+ Eqφ(zj |x,y≤j)[logpθ(yj |x, y<j , zj)] }

�
Ty∑
j=1

{ −KL(qφ(zj |x, y≤j)||pθ(zj |x, y<j))

+
1

L

L∑
l=1

logpθ(yj |x, y<j , z
(l)
j ) } (26)

where z(l)j = μj+σj�ε(l), ε(l) ∼ N (0, I), and L is the num-
ber of samples. Essentially, VRNMT can be considered as a
regularized version of NMT, which introduces noise ε(l) at
each timestep to enhance its robustness. Notice that both the
KL divergence and the approximate expectation are differ-
entiable. Therefore, we can jointly optimize the model pa-
rameters θ and variational parameters φ using standard gra-
dient ascent.

4. Experiments

We conducted experiments on Chinese-English and English-
German translation to examine the effectiveness of our
model.

4.1 Setup

Our Chinese-English training data consists of 1.25M LDC
sentence pairs, with 27.9M Chinese words and 34.5M En-
glish words respectively. We used the NIST MT02 dataset
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as the validation set, and the NIST MT03/04/05/06 datasets
as the test sets. In English-German translation, our training
data consists of 4.46M sentence pairs with 116.1M English
words and 108.9M German words. We used the news-test
2013 as the validation set and the news-test 2015 as the
test set. Following Sennrich et al., (2016), we adopted byte
pair encoding to segment words into subwords for English-
German translation. Finally, we used BLEU (Papineni et al.
2002) as our evaluation metric, and performed paired boot-
strap sampling (Koehn 2004) for statistical significance test
using the Moses script.

We set the maximum length of training sentences
to be 50 words, and preserved the most frequent 30K
(Chinese-English) and 50K (English-German) words as both
the source and target vocabulary, covering approximately
97.4%/100.0% and 99.3%/98.2% on the source/target side
of the two parallel corpora respectively. All other words
were replaced with a specific token “UNK”. We applied
Rmsprop (Graves 2013) with iterNum=5, momentum=0,
ρ=0.95, and ε=1×10−4 to train various NMT models. The
settings of our model were the same as in (Bahdanau,
Cho, and Bengio 2015), except for some hyper-parameters
specific to our model. Specifically, we set word embed-
ding dimension as 620, hidden layer size as 1000, learn-
ing rate as 5×10−4, batch size as 80, gradient norm as 1.0,
and dropout rate as 0.3. Particularly, we initialized the pa-
rameters of VRNMT with the trained conventional NMT
model. As implemented in VAE, we set the sampling num-
ber L=1, and d′e=dz=2df=2000 according to preliminary ex-
periments. During decoding, we used the beam-search algo-
rithm, and set beam sizes of all models as 10.

4.2 Systems for Comparison

We compared our model against the following systems:
(1) Moses1. An open source phrase-based SMT system

with default settings and a 4-gram language model trained
on the target portion of the training data.

(2) DL4MT. Our re-implementation of the attention-
based NMT system (Bahdanau, Cho, and Bengio 2015) with
slight changes from dl4mt tutorial2.

(3) VNMT. It is a variational NMT system (Zhang et
al. 2016a) that incorporates a continuous latent variable to
model the underlying semantics of sentence pairs.

(4) VRNMT(-TD). A variant of our model without in-
troducing temporal dependencies between the latent random
variables. It differs from our model in that the input of poste-
rior model contains only yj but not yj−1, sj , cj . More specif-
ically, we removed yj−1, sj , and cj from Eq. (14). Thus, the
latent variables of VRNMT(-TD) directly obey the standard
Gauss distribution rather than depend on the output at the
previous timestep. As we incorporate temporal dependen-
cies into the prior, we will directly study the impact of the
latent random variables on modeling variability character-
ized by dependencies among output words in comparison to
VRNMT(-TD).

1http://www.statmt.org/moses/
2https://github.com/nyu-dl/dl4mt-tutorial

System MT03 MT04 MT05 MT06 Ave.

COVERAGE 34.49 38.34 34.91 34.25 35.50
MemDec 35.09 37.73 35.53 34.32 35.67
DeepLAU 36.16 39.81 35.91 35.98 36.97
DMAtten 38.33 40.11 36.71 35.29 37.61
Moses 32.93 34.76 31.31 31.05 32.51
DL4MT 36.59 39.57 35.56 35.29 36.75
VNMT 37.23 40.32 36.28 35.73 37.39
VRNMT(-TD) 36.97 40.07 36.13 35.49 37.17
VRNMT 38.08∗++ 41.07∗∗

++ 36.82∗∗
++ 36.72∗

++ 38.17

Table 1: Case-insensitive BLEU scores of Chinese-English
translation. ∗/∗∗ and +/++: significant over VNMT and
VRNMT(-TD) at 0.05/0.01, respectively. COVERAGE (Tu
et al. 2016) presented a coverage model to alleviate the
over-translation and under-translation problems. MemDec
(Meng et al. 2016) exploited a readable and writable atten-
tion mechanism to record interactive history in decoding.
DeepLAU (Wang et al. 2016) introduced external memory
to improve translation quality. DMAtten (Zhang et al. 2017)
explicitly incorporated the word reordering knowledge into
the attention model of NMT. Note that all these studies focus
on capturing semantic information for NMT.

28

31

34

37

40

43

( 0 , 1 0 ] ( 1 0 , 2 0 ] ( 2 0 , 3 0 ] ( 3 0 , 4 0 ] ( 4 0 , 5 0 ] ( 5 0 , 1 0 0 ]

B
le

u 
Sc

or
e

Length of source sentence

Moses DL4MT VNMT VRNMT(-TD) VRNMT

Figure 3: BLEU scores over different lengths of translated
sentences.

4.3 Results on Chinese-English Translation

In addition to the above systems for comparison, we also
displayed the BLEU scores of several recent NMT models
(Tu et al. 2016; Meng et al. 2016; Wang et al. 2016; Zhang et
al. 2017) that have been trained on the same training corpus
as ours.

Table 1 shows case-insensitive BLEU scores on Chinese-
English datasets. Overall, VRNMT significantly improves
translation quality on all test sets, achieving the gains of
5.66, 1.42, 0.78 and 1.0 BLEU points over Moses, DL4MT,
VNMT and VRNMT(-TD), respectively. Compared to the
existing NMT models, VRNMT is better than them as shown
in Table 1. These results echo the results reported in (Zhang
et al. 2016a), indicating the integration of latent variables
is effective for improving NMT. Particularly, VRNMT per-
forms significantly better than VRNMT(-TD), indicating
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Source pı́ngrǎng cǎiqǔ shàngshù xı́ngdòng zhīhòu sı̀ tiān , liǎnhéguó ānquán lǐshı̀huı̀ de wǔ gè
chángrèn lǐshı̀guó dōu wèi cǐ yī wēijī cǎiqǔ yùfángxı̀ng wàijiāo xı́ngdòng .

Reference four days after pyongyang adopted the aforesaid action , the five permanent members of united
nations security council have all taken preemptive diplomatic actions for the crisis .

Moses pyongyang by four days after the operation of
���
the

��
un

�������
security

������
council , the five permanent members

to adopt preventive diplomacy this crisis .

DL4MT
the

���
four permanent member states of the united nations security council and the five permanent

members of the un security council have adopted a preventive diplomatic action following the four
- day . . . . . . . . . .operation ..

VNMT four days after
����
north

�����
korea took the above actions , the five permanent members of the un security

council have adopted preventive diplomatic . . . . . . . . . .activities ..

VRNMT(-TD) ���
four permanent members of the security council of the united nations security council have taken

preventive diplomatic actions during the four - day period . . . . . . . . . .following . . . .the . . . . . .above. . . . . . . .actions. ..

VRNMT four days after pyongyang took the action , the five permanent members of the un security council
have adopted preventive diplomatic actions for the crisis .

Table 2: Translation examples of different systems. Words highlighted in underlines are not fluently translated, in wavy lines
are incorrectly translated, in dashed lines are over-translated, and in dotted lines are under-translated.

System 1-Gram 2-Gram 3-Gram 4-Gram

Reference 12.94 1.80 0.93 1.29
DL4MT 19.62 5.34 2.96 2.31
VNMT 19.45 5.24 2.93 2.29
VRNMT(-TD) 19.54 5.25 2.93 2.35
VRNMT 18.83 4.97 2.90 2.25

Table 3: Evaluation of over-translation. The lower the score,
the better the system deals with the over-translation problem.

that explicitly modeling the temporal dependencies between
latent random variables indeed further benefits NMT.

Results on Source Sentences with Different Lengths

Further, we carried out experiments to investigate our model
on different groups of the test sets, which are divided ac-
cording to the lengths of source sentences. Figure 3 shows
that our system outperforms the others over sentences with
different length spans.

Analysis on Over Translation

As mentioned in (Tu et al. 2016), over-translation is one
of big challenges for NMT. Here we followed Zhang et al.
(2017) to evaluate over-translations generated by different
NMT models. Concretely, we directly used N-Gram Repeti-
tion Rate (N-GRR) metric (Zhang, Xiong, and Su 2017) to
calculate the portion of repeated n-grams in a sentence as
follows:

N-GRR =
1

C ·R
C∑

c=1

R∑
r=1

|N-gramsc,r| − |u(N-gramsc,r)|
|N-gramsc,r|

(27)

where |N-gramsc,r| is the number of total n-grams in the
r-th translation of the c-th sentence in the testing corpus,
and |u(N-gramsc,r)| denotes the number of n-grams after
duplicate ngrams are removed. By comparing N-GRR scores

System AER SAER

DL4MT 50.07 63.42
VNMT 49.23 62.28
VRNMT(-TD) 49.95 63.17
VRNMT 48.11 61.24

Table 4: Evaluation of word alignment quality. The lower
the score is, the better word alignments are.

of translations against those of references, we can roughly
know how serious the over-translation problem is. Table 3
gives the final results. We find that our model is able to better
deal with over-translation issue than other models.

Analysis on Attention Results

The attention model heavily depends on target-side hidden
state vectors, which are in turn dependent on the previous la-
tent random variables in our model, as illustrated in Eq. (22)-
(25). Therefore, if latent variables are helpful for the calcula-
tion of target-side hidden state vectors, the attention model
can also be improved accordingly. To testify this, we con-
ducted experiments on the evaluation dataset provided by
Liu and Sun (2015), which contains 900 manually aligned
Chinese-English sentence pairs. Specifically, we first forced
the decoder to output reference translations so as to obtain
word alignments between input sentences and their refer-
ence translations according to attention weights. Then, we
used the alignment error rate (AER) (Och and Ney 2003)
and the soft version (SAER) of AER (Tu et al. 2016) to eval-
uate alignment performance. From Table 4, we can conclude
that the incorporation of latent variables also improves the
attention model as expected.

Case Study

To understand why our model outperforms the others, we
compared and analyzed their 1-best translations. Table 2
provides a translation example with its various translations.
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System BLEU

BPEChar 23.9
RecAtten 25.0
ConvEncoder 24.2
Moses 20.54
DL4MT 24.88
VNMT 25.49
VRNMT(-TD) 25.34
VRNMT 25.93∗

++

Table 5: Case-sensitive BLEU scores of English-German
translation. We directly displayed the results of the first
three models provided in (Gehring et al. 2017). BPEChar
(Chung, Cho, and Bengio 2016) presented a character-level
decoder for NMT, RecAtten (Yang et al. 2017) introduced a
recurrent attention model to better capture source-side con-
text for NMT, and ConvEncoder (Gehring et al. 2017) ex-
plored the convolutional encoder to encode the source sen-
tence.

We have found that the translation produced by Moses is
non-fluent than those of NMT systems. In addition to the
issues of incorrect translation and over-translation, the first
three NMT systems (DL4MT, VNMT, VRNMT(-TD)) do
not adequately convey the meaning of the source sentence
to the target as some source phrases have not been translated
at all, such as “wèi cǐ yī wēijī (for this crisis)”. By contrast,
due to the advantage of modeling long-distance dependen-
cies among target words, VRNMT is able to produce a more
complete, fluent, and accurate translation.

4.4 Results on English-German Translation

We also carried out experiments on English-German trans-
lation. Results are shown in Table 5. We provided re-
sults of previous work (Chung, Cho, and Bengio 2016;
Yang et al. 2017; Gehring et al. 2017) on this dataset too.

Specifically, VRNMT still outperforms Moses, DL4MT,
VNMT, VRNMT(-TD), achieving gains of 5.39, 1.05, 0.44
and 0.59 BLEU points. Additionally, VRNMT reaches the
performance level that is competitive to or higher than sev-
eral recent NMT systems. Note that our approach is orthog-
onal to these previous models. Therefore it can be adapted
to these models. We leave this adaptation to our future work.

5. Related Work

The previous studies that are related to our work mainly in-
clude NMT and variational neural models.

NMT. Most NMT models focus on how to translate
a source sentence to a target sentence with an encoder-
decoder neural network (Kalchbrenner and Blunsom 2013;
Cho et al. 2014; Sutskever, Vinyals, and Le 2014). To
handle the defeat of encoding all source-side information
into a fixed-length vector, Bahdanau et al. (2015) proposed
attention-based NMT, which has now become the dominant
architecture. However, this model usually suffer from at-
tention failures, which usually lead to undesirable transla-
tions. Therefore, many researchers then resorted to better
attention mechanisms (Luong, Pham, and Manning 2015;

Cheng et al. 2016; Tu et al. 2016; Feng et al. 2016; Meng et
al. 2016; Calixto, Liu, and Campbell 2017), or more effec-
tive neural networks (Wang et al. 2016; Gehring et al. 2017;
Wang et al. 2017), or exploiting external semantics (Zhang
et al. 2016b; Chen et al. 2017; Li et al. 2017). All these mod-
els are designed within the discriminative encoder-decoder
framework, leaving the explicit exploration of underlying se-
mantics an open problem. To combine the strengths of dis-
criminative and generative modeling, Zhang et al. (2016a)
presented VNMT that incorporates a continuous latent vari-
able to model the underlying semantics of sentence pairs.

Variational Neural Networks. Kingma et al. (2014) as
well as Rezende et al. (2014) focused on variational neural
networks, which are effective in the inference and learning
of directed probabilistic models on large-scale dataset. Typ-
ically, these models introduce a neural inference model to
approximate the intractable posterior, and optimize model
parameters jointly with a reparameterized variational lower
bound. Further, Kingma et al., (2014b) adapted these mod-
els to semi-supervised learning. Chung et al. (2015) incor-
porated latent variables into the hidden states of a recur-
rent neural network, while Gregor et al. (2015) combined a
novel spatial attention mechanism that mimics the foveation
of human eyes, with a sequential variational auto-encoding
framework that allows the iterative construction of complex
images. Miao et al. (2016) proposed a generic variational in-
ference framework for generative and conditional models of
text.

Both (Zhang et al. 2016a) and (Chung et al. 2015) are
the most related to our work. In our model, we extended
VNMT (Zhang et al. 2016a) to a recurrent framework, which
has been proven to be more effective for machine transla-
tion. Besides, different from Chung et al. (2015) that work
on speech generation and handwriting generation, we intro-
duces a sequence of recurrent latent variables for the seman-
tic modeling of NMT, which, to the best of our knowledge,
has never been investigated before.

6. Conclusions and Future Work

This paper has presented a variational recurrent NMT model
that introduces a sequence of continuous latent variables to
capture the underlying semantics of sentence pairs. Similar
to VNMT, we approximate the posterior distribution with
neural networks and reparameterize the variational lower
bound. In doing so, our model becomes an end-to-end neu-
ral network which can be optimized through the stochas-
tic gradient algorithms. Compared with the dominant NMT
and VNMT, our model not only captures the global seman-
tic contexts but also models strong and complex dependen-
cies among generated words at different timesteps. Experi-
ments on Chinese-English and English-German translation
tasks demonstrate the effectiveness of our model.

Our future works include the following aspects. We will
study how to better exploit latent variables to further im-
prove NMT. Additionally, we are also interested in apply-
ing our model to other similar tasks using encoder-decoder
framework, such as neural text summarization, neural dia-
logue generation.

5494



Acknowledgments

The authors were supported by National Natural Sci-
ence Foundation of China (Nos. 61672440, 61622209 and
61573294), Scientific Research Project of National Lan-
guage Committee of China (Grant No. YB135-49). We also
thank the reviewers for their insightful comments.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate. In
Proc. of ICLR2015.
Calixto, I.; Liu, Q.; and Campbell, N. 2017. Doubly-
attentive decoder for multi-modal neural machine transla-
tion. In Proc. of ACL2017, 1913–1924.
Chen, H.; Huang, S.; Chiang, D.; and Chen, J. 2017. Im-
proved neural machine translation with a syntax-aware en-
coder and decoder. In Proc. of ACL2017, 1936–1945.
Cheng, Y.; Shen, S.; He, Z.; He, W.; Wu, H.; Sun, M.; and
Liu, Y. 2016. Agreement-based joint training for bidirec-
tional attention-based neural machine translation. In Proc.
of IJCAI2016, 2761–2767.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder–decoder for statis-
tical machine translation. In Proc. of EMNLP2014, 1724–
1734.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. In Proc. of NIPS2015.
Chung, J.; Cho, K.; and Bengio, Y. 2016. A character-level
decoder without explicit segmentation for neural machine
translation. In Proc. of ACL2016, 1693–1703.
Feng, S.; Liu, S.; Yang, N.; Li, M.; Zhou, M.; and Zhu, K. Q.
2016. Improving attention modeling with implicit distor-
tion and fertility for machine translation. In Proc. of COL-
ING2016, 3082–3092.
Gehring, J.; Auli, M.; Grangier, D.; and Dauphin, Y. 2017. A
convolutional encoder model for neural machine translation.
In Proc. of ACL2017, 123–135.
Graves, A. 2013. Generating sequences with recurrent neu-
ral networks. In arXiv:1308.0850v5.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; and
Wierstra, D. 2015. Draw: A recurrent neural network for
image generation. In Proc. of ICML2015, 1462–1471.
Kalchbrenner, N., and Blunsom, P. 2013. Recurrent con-
tinuous translation models. In Proc. of EMNLP2013, 1700–
1709.
Kingma, D. P., and Welling, M. 2014. Auto-encoding vari-
ational bayes. In Proc. of ICLR2014.
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling,
M. 2014b. Semi-supervised learning with deep generative
models. In Proc. of NIPS2014, 3581–3589.
Koehn, P. 2004. Statistical significance tests for machine
translation evaluation. In Proc. of EMNLP2004, 388–395.

Li, J.; Xiong, D.; Tu, Z.; Zhu, M.; Zhang, M.; and Zhou, G.
2017. Modeling source syntax for neural machine transla-
tion. In Proc. of ACL2017, 688–697.
Liu, Y., and Sun, M. 2015. Contrastive unsupervised word
alignment with non-local features. In Proc. of AAAI2015,
857–868.
Luong, M.-T.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. In Proc. of EMNLP2015, 1412–1421.
Meng, F.; Lu, Z.; Li, H.; and Liu, Q. 2016. Interactive at-
tention for neural machine translation. In Proc. of COL-
ING2016, 2174–2185.
Miao, Y.; Yu, L.; and Blunsom, P. 2016. Neural variational
inference for text processing. In Proc. of ICML2016, 1727–
1736.
Och, F. J., and Ney, H. 2003. A systematic comparison
of various statistical alignment models. In Computational
Linguistics, 2003(29), 19–51.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W. 2002. Bleu:
A method for automatic evaluation of machine translation.
In Proc. of ACL2002, 311–318.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. In Proc. of ICML2014, 1278–1286.
Sennrich, R.; Haddow, B.; and Birch, A. 2016. Neural ma-
chine translation of rare words with subword units. In Proc.
of ACL2016, 1715–1725.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Proc. of
NIPS2014, 3104–3112.
Tu, Z.; Lu, Z.; Liu, Y.; Liu, X.; and Li, H. 2016. Mod-
eling coverage for neural machine translation. In Proc. of
ACL2016, 76–85.
Wang, M.; Lu, Z.; Li, H.; and Liu, Q. 2016. Memory-
enhanced decoder for neural machine translation. In Proc.
of EMNLP2016, 278–286.
Wang, M.; Lu, Z.; Zhou, J.; and Liu, Q. 2017. Deep neural
machine translation with linear associative unit. In Proc. of
ACL2017, 136–145.
Yang, Z.; Hu, Z.; Deng, Y.; Dyer, C.; and Smola, A. 2017.
Neural machine translation with recurrent attention model-
ing. In Proc. of EACL2017, 383–387.
Zhang, B.; Xiong, D.; su, j.; Duan, H.; and Zhang, M.
2016a. Variational neural machine translation. In Proc. of
EMNLP2016, 521–530.
Zhang, J.; Li, L.; Way, A.; and Liu, Q. 2016b. Topic-
informed neural machine translation. In Proc. of COL-
ING2016, 1807–1817.
Zhang, J.; Liu, Y.; Luan, H.; Xu, J.; and Sun, M. 2017. Prior
knowledge integration for neural machine translation using
posterior regularization. In Proc. of ACL2017, 1514–1523.
Zhang, B.; Xiong, D.; and Su, J. 2017. Generating Sentences
from a Continuous Space. ArXiv e-prints.

5495


