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Abstract

Using a dictionary to map independently trained word em-
beddings to a shared space has shown to be an effective ap-
proach to learn bilingual word embeddings. In this work, we
propose a multi-step framework of linear transformations that
generalizes a substantial body of previous work. The core
step of the framework is an orthogonal transformation, and
existing methods can be explained in terms of the additional
normalization, whitening, re-weighting, de-whitening and di-
mensionality reduction steps. This allows us to gain new in-
sights into the behavior of existing methods, including the
effectiveness of inverse regression, and design a novel variant
that obtains the best published results in zero-shot bilingual
lexicon extraction. The corresponding software is released as
an open source project.

1 Introduction

Bilingual word embeddings have attracted a lot of atten-
tion in recent times. Most methods to learn them use some
sort of bilingual signal at the document level, either in
the form of document-aligned or label-aligned compara-
ble corpora (Søgaard et al. 2015; Vulić and Moens 2016;
Mogadala and Rettinger 2016) or, more commonly, in the
form of parallel corpora (Gouws, Bengio, and Corrado 2015;
Luong, Pham, and Manning 2015).

An alternative approach that we address in this paper is
to independently train the embeddings for each language
on monolingual corpora, and then map them to a shared
space based on a bilingual dictionary (Mikolov, Le, and
Sutskever 2013; Lazaridou, Dinu, and Baroni 2015). This
requires minimal bilingual supervision compared to other
approaches, while allowing to leverage large amounts of
monolingual corpora with competitive results (Vulić and
Korhonen 2016; Artetxe, Labaka, and Agirre 2017). More-
over, the learned mappings can also be applied to words
that were missing in the training dictionary, and thus induce
their translations, with improvements in machine translation
(Zhao, Hassan, and Auli 2015).

Authors have proposed different methods to learn such
word embedding mappings, but their approach and motiva-
tions are often divergent, making it difficult to get a general
understanding of the topic. In this work, we tackle this issue
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and propose a multi-step framework that generalizes previ-
ous work. The core step of the framework, which maps both
languages to a shared space using an orthogonal transforma-
tion, is shared by all variants, and the differences between
previous methods are exclusively explained in terms of their
normalization, whitening, re-weighting and dimensionality
reduction behavior. We analyze the effect of each of these
steps with experimental support, which allows us to gain
new insights into the behavior of existing methods. Based
on these insights, we design a novel variant that improves
the state-of-the-art in bilingual lexicon extraction.

Our framework is highly related to the zero-shot learning
paradigm, where a multi-class classifier trained over a sub-
set of the labels learns to predict unseen labels by exploiting
a common representation for them (Palatucci et al. 2009).
In our scenario, these labels correspond to the target lan-
guage words and their common representation is provided
by their corresponding embeddings. This is a prototypical
zero-shot learning problem, and similar mapping techniques
have also been used in other zero-shot tasks like image label-
ing (Shigeto et al. 2015; Lazaridou, Dinu, and Baroni 2015)
and drug discovery (Larochelle, Erhan, and Bengio 2008).

The remaining of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 explains the pro-
posed multi-step framework and shows the equivalence with
previous methods. Section 4 then presents the experimen-
tal settings, while Section 5 discusses the obtained results.
Section 6 concludes the paper.

2 Related work
For the sake of space, we will focus on related work di-
rectly relevant to embedding mappings and bilingual lexi-
con extraction. Bilingual embedding mapping methods work
by independently training the word embeddings in two lan-
guages, and then mapping them to a shared space based on
a bilingual dictionary. Even if the literature in the topic is
quite broad, existing methods can be classified in the fol-
lowing four groups:

1. Regression methods map the embeddings in one lan-
guage to maximize their similarity with the other lan-
guage. For that purpose, methods in this group use a least-
squares objective function that learns the linear transfor-
mation minimizing the sum of squared Euclidean dis-
tances for the dictionary entries. This approach was first
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proposed by Mikolov, Le, and Sutskever (2013), and
later adopted by many other authors that incorporated
L2 regularization (Dinu, Lazaridou, and Baroni 2015;
Lazaridou, Dinu, and Baroni 2015; Vulić and Korhonen
2016). Even if the linear transformation is usually learned
from the source language into the target language, Shigeto
et al. (2015) argue that it is better to map the target lan-
guage into the source language as a way to address the
hubness problem1.

2. Canonical methods map the embeddings in both lan-
guages to a shared space where their similarity is max-
imized. This is usually done through Canonical Corre-
lation Analysis (CCA) as first proposed by Faruqui and
Dyer (2014), who motivate their method as a way to im-
prove the quality of monolingual embeddings using bilin-
gual data. With a similar motivation, Lu et al. (2015) ex-
tend this work and use Deep Canonical Correlation Anal-
ysis to learn non-linear mappings. CCA was also extended
to the multilingual scenario by Ammar et al. (2016) taking
English as the pivot language.

3. Orthogonal methods map the embeddings in one or both
languages to maximize their similarity, but constrain the
transformation to be orthogonal. This constraint has been
introduced with different motivations. Xing et al. (2015)
allege inconsistencies in previous approaches, and orthog-
onality serves to preserve the length normalization per-
formed by their method to address them. Artetxe, Labaka,
and Agirre (2016) motivate orthogonality as a way to
preserve monolingual invariance, preventing the degrada-
tion in monolingual tasks observed for other techniques.
Zhang et al. (2016) focus on a transfer-learning scenario
with only ten translation pairs for training, and incorpo-
rate orthogonality as a hard regularizer. Finally, Smith et
al. (2017) point out that the mapping should be orthogonal
in order to be self-consistent.

4. Margin methods map the embeddings in one language to
maximize the margin between the correct translations and
the rest of the candidates. This approach was proposed
by Lazaridou, Dinu, and Baroni (2015) as a way to ad-
dress the hubness problem, with the addition of intruder
negative sampling to generate more informative training
examples.

As it can be seen, the previous work on embedding map-
pings is quite diverse, with many authors working under dif-
ferent scenarios and motivations. In an attempt to provide
a more general view, Artetxe, Labaka, and Agirre (2016)
show the equivalence of different objective functions under
orthogonality and different normalization procedures, and
clarify that regression, canonical and orthogonal methods
essentially differ on the constraints imposed on the mapping.

1Hubness (Radovanović, Nanopoulos, and Ivanović 2010a;
2010b) refers to the phenomenon of some points (known as
hubs) being the nearest neighbors of many other points in high-
dimensional spaces, and has been reported to severely affect bilin-
gual embedding mappings (Dinu, Lazaridou, and Baroni 2015;
Lazaridou, Dinu, and Baroni 2015; Shigeto et al. 2015; Smith et
al. 2017).

In contrast, our framework decomposes these differences
into several interpretable steps, which allows us to gain ad-
ditional insights into the behavior of previous methods and
design new variants addressing their deficiencies. We also
cover additional methods, including most references in this
section (see Table 1).

A practical application of embedding mappings, as well
as the main evaluation task, is bilingual lexicon extraction,
that is, the zero-shot translation of words that were missing
in the training dictionary. This is usually done through near-
est neighbor retrieval, taking the closest embedding in the
target language according to some similarity metric (usu-
ally cosine). However, Dinu, Lazaridou, and Baroni (2015)
argue that this approach suffers from the hubness problem,
and propose using inverted nearest neighbor retrieval2 in-
stead, which takes the target embedding that has the source
embedding ranked highest in its nearest neighbor list. Ties
are solved by taking the candidate with the highest cosine
similarity. Finally, inverted softmax retrieval (Smith et al.
2017) also works by reversing the direction of the query, but
instead of using the cosine in the similarity computations, it
uses a softmax function with a hyperparameter to control the
temperature, which is tuned in the training dictionary. In this
paper we revisit these techniques, and show that the alterna-
tives to nearest neighbor mitigated deficiencies in previous
mapping methods, while our method learns better mappings.

3 Proposed framework
Let X and Z be the word embedding matrices in two lan-
guages for a given bilingual dictionary so that their ith row
Xi∗ and Zi∗ are the embeddings of the ith entry. We aim
to learn the transformation matrices WX and WZ so the
mapped embeddings XWX and ZWZ are close to each
other.

We next propose a multi-step framework to learn such
mappings that allows to generalize previous work. The ith
step of the framework applies a linear transformation to
the output embeddings of the previous step in each lan-
guage. This way, if X(i) denotes the output embeddings in
the source language at step i and WX(i) the linear transfor-
mation at step i, we will have X(i) = X(i−1)WX(i) and
WX =

∏
i WX(i), and analogously for the target language.

As it is clear from this last expression, the composition of
several linear transformations is another linear transforma-
tion, so the purpose of our framework is not to improve the
expressive power of linear mappings, but rather to decom-
pose them into several meaningful steps. More concretely,
our framework consists of the following steps:
• Step 0: Normalization (optional): In this optional pre-

processing step, the word embeddings in each language
are independently normalized. This can involve length
normalization (making all embeddings have a unit Eu-
clidean norm), and mean centering (making each compo-
nent have a zero mean). Note that this is done as a pre-
processing step, obtaining the initial embedding matrices
X(0) and Z(0) that will be mapped by the following ones.

2Note that the original paper refers to this method as globally-
corrected retrieval.
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S0 (l) S0 (m) S1 S2 S3 S4 (src) S4 (trg) S5

OLS Mikolov, Le, and Sutskever (2013) x x src trg trg
Shigeto et al. (2015) x x trg src src

CCA Faruqui and Dyer (2014) x x x x x

Orth.

Xing et al. (2015) x x
Zhang et al. (2016) x
Artetxe, Labaka, and Agirre (2016) x x x
Smith et al. (2017) x x x

Proposed (Section 5) x x x x trg src trg x

Table 1: Equivalence of the proposed framework with previous methods. (l) and (m) denote length normalization and mean
centering, respectively.

• Step 1: Whitening (optional). This optional step applies
a whitening or sphering transformation to the embeddings
in each language, which makes their different components
have a unit variance and be uncorrelated among them-
selves, turning their covariance matrices into the iden-
tity matrix3. For that purpose, we adopt the Mahalanobis
or ZCA whitening, taking WX(1) = (XTX)−

1
2 and

WZ(1) = (ZTZ)−
1
2 .

• Step 2: Orthogonal mapping. This step maps the embed-
dings in both languages to a shared space. Both transfor-
mations are constrained to be orthogonal, preserving the
dot product for each of the languages on their own. More
concretely, we take WX(2) = U and WZ(2) = V , where
USV T = XT

(1)Z(1) is the SVD factorization of XT
(1)Z(1).

This maximizes the summative cross-covariance of the
mapped embeddings Tr(X(1)WX(2)W

T
Z(2)Z

T
(1)). More-

over, the ith component of the mapped embeddings cor-
responds to the direction of maximum cross-covariance
being orthogonal to the previous ones, and Sii is its corre-
sponding cross-covariance value. Note that when whiten-
ing is applied at step 1, the variance in all directions
is 1, so the cross-covariance is equivalent to the cross-
correlation.

• Step 3: Re-weighting (optional): This optional step
re-weights each component according to its cross-
correlation, increasing the relevance of those that best
match across languages. So as to simplify the formaliza-
tion, we will only consider this step if step 1 was applied
before, in which case the cross-correlations correspond to
the singular values in S (step 2). The re-weighting can be
applied to the source language embeddings (WX(3) = S
and WZ(3) = I), or to the target language embeddings
(WX(3) = I and WZ(3) = S).

• Step 4: De-whitening (optional): This optional step re-
stores the original variance in every direction, and it is

3Note that our use of the variance and covariance concepts at
this step and the following ones assumes that the embeddings are
already mean centered (i.e. we take XTX as (proportional to) the
covariance matrix of X , ZTZ as the covariance matrix of Z, and
XTZ as the cross-covariance matrix of X and Z).

thus only meaningful if step 1 was applied before. The
embeddings in a given language can be de-whitened with
respect to the original variance in that same language, but
also with respect to the original variance in the other lan-
guage, as both languages are in the same space after step
2. In either case, de-whitening language A with respect to
B requires WA(4) = WT

B(2)W
−1
B(1)WB(2).

• Step 5: Dimensionality reduction (optional): This op-
tional step keeps the first n components of the result-
ing embeddings and drops the rest, which is obtained by
WX(5) = WZ(5) = (In 0)T . This can be seen as an ex-
treme form of re-weighting, where the first n components
are re-weighted by one and the remaining ones by zero.

An interesting aspect of this framework is that the map-
ping of both languages to a common space is reduced to
a single step that is shared by all variants (step 2). More-
over, this mapping is orthogonal and, therefore, preserves
monolingual invariance. Therefore, different variants, in-
cluding existing methods, will only differ on their treatment
of normalization, whitening/de-whitening, re-weighting and
dimensionality reduction, which are easier to interpret. More
concretely, the equivalence of this framework with existing
methods, detailed in Table 1, is as follows:

• Regression methods correspond to the case where both
languages are whitened, re-weighting is applied to the
source language, and both languages are de-whitened
with respect to the target language (or inversely if the
regression is applied from the target language into the
source language). This equivalence is directly given by
the close-form solution of the unregularized variant,
known as Ordinary Least Squares (OLS)4, and we leave
the analysis of L2 regularization for future work.

4The optimal solution of OLS is given by WOLS = X+Z,
where X+ =

(
XTX

)−1
XT is the Moore-Penrose pseudoinverse

of X . At the same time, by simple algebraic development of our
claimed equivalence, WX =

(
XTX

)−1
XTZV and WZ = V ,

where V is an orthogonal matrix given by the SVD factorization at
step 2. Therefore, both solutions are equivalent up to the orthogonal
transformation V of the resulting space, which is invariant with
respect to the dot product.
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• Canonical methods (CCA) correspond to the case where
both languages are whitened, none is de-whitened, re-
weighting is not used, and dimensionality reduction is ap-
plied. The equivalence is given by the SVD solution of
CCA (see for instance Lu and Foster (2014)).

• Orthogonal methods correspond to the simplest case
without any whitening, re-weighting and de-whitening.
The equivalence is directly given by the transformation
learned at step 2, which is equivalent to the solutions
of Artetxe, Labaka, and Agirre (2016) and Smith et al.
(2017).

As it can be seen, our framework covers all mapping fam-
ilies with the exception of margin based ones, which were
only explored by Lazaridou, Dinu, and Baroni (2015) and
surpassed by subsequent work.

4 Experimental settings

For easier comparison with related work, we performed our
experiments in the bilingual lexicon extraction scenario pro-
posed by Dinu, Lazaridou, and Baroni (2015) and used by
subsequent authors. Their public English-Italian dataset5 in-
cludes monolingual word embeddings in both languages to-
gether with a bilingual dictionary split in a training set and
a test set. Artetxe, Labaka, and Agirre (2017) extended this
dataset to English-German and English-Finnish, which we
also use in our experiments. In all cases, the embeddings
were trained with the word2vec toolkit with CBOW and
negative sampling (Mikolov et al. 2013)6. The training and
test sets were derived from dictionaries built from Europarl
word alignments and available at OPUS (Tiedemann 2012),
taking 1,500 random entries uniformly distributed in 5 fre-
quency bins as the test set and the 5,000 most frequent pairs
of the remaining word pairs as the training set. The corpora
used consisted of 2.8 billion words for English (ukWaC +
Wikipedia + BNC), 1.6 billion words for Italian (itWaC), 0.9
billion words for German (SdeWaC), and 2.8 billion words
for Finnish (Common Crawl from WMT 2016).

In addition to these languages, we further extended the
dataset to English-Spanish using the exact same settings de-
scribed above. For that purpose, we used the WMT News
Crawl 2007-2012 corpus7 for Spanish, which consists of 386
million words. Tokenization was performed using standard
Moses tools. Note that the resulting Spanish corpus has a
different domain to the previous ones (news vs web crawl-
ing), and it is also smaller, which explains the lower accu-
racy numbers in the next section.

The goal of our experiments is twofold. On the one hand,
we want to analyze the effect of each of the steps of our
framework on their own, and interpret the results in rela-
tion to the behavior of previous methods. On the other hand,
we want to identify the best variant of our framework, and

5http://clic.cimec.unitn.it/∼georgiana.dinu/down/
6The context window was set to 5 words, the dimension of the

embeddings to 300, the sub-sampling to 1e-05 and the number of
negative samples to 10, and the vocabulary was restricted to the
200,000 most frequent words.

7http://www.statmt.org/wmt13/translation-task.html

compare it with existing methods proposed in the litera-
ture. Given that the effect of normalization was already an-
alyzed in detail by Artetxe, Labaka, and Agirre (2016), we
leave this factor aside in our experiments and use their rec-
ommended configuration, which performs length normaliza-
tion followed by mean centering. Moreover, we use cosine
similarity with standard nearest neighbor as our retrieval
method unless otherwise specified, which allows us to bet-
ter evaluate the quality of the mapping itself. The remain-
ing factors are analyzed independently, and their best com-
bination is then compared to the state-of-the-art. The code
and resources to reproduce our experiments are available at
https://github.com/artetxem/vecmap.

5 Results and discussion

From Section 5.1 to 5.4, we respectively analyze the effect
of whitening/de-whitening, re-weighting, dimensionality re-
duction and the retrieval method. Section 5.5 then compares
the proposed system with other methods in the literature.

5.1 Whitening and de-whitening (steps 1 and 4)

As discussed before, existing methods have a very differ-
ent behavior with respect to whitening. While orthogonal
methods do not perform any whitening, both CCA and OLS
whiten both languages, and the latter also de-whitens them
with respect to one of the languages, depending on the di-
rection of regression (see Table 1).

Table 2 shows our results for different whitening/de-
whitening strategies. In addition to the said variants implic-
itly used by existing methods, it also includes our proposed
variant: the more intuitive choice of de-whitening each lan-
guage with respect to the original variance in that same lan-
guage.

As it can be seen, the results show that, for most language
pairs, whitening and de-whitening each language with re-
spect to itself brings a small improvement over not whiten-
ing at all. The only exception is English-Finnish, whose ac-
curacy drops almost one point with respect to not applying
any whitening or de-whitening. A possible explanation of
why proper whitening and de-whitening helps is a hypothet-
ical bias that would otherwise push directions with high vari-
ance together.

But, more importantly, the results show that the
whitening/de-whitening behavior of both CCA and OLS is
not only counterintuitive, but also harmful. In the case of the
former, simply whitening both languages causes a huge ac-
curacy drop of 7-9 points, suggesting that the variances of
the original embeddings are relevant and should not be ig-
nored by any means. In the case of the latter, de-whitening
with respect to either language causes an accuracy drop of
2-4 points, showing that this de-whitening strategy is bet-
ter than not de-whitening at all, but worse than the natural
choice of de-whitening with respect to the language in ques-
tion.

5.2 Re-weighting (step 3)

As seen in the Section 3, neither orthogonal methods nor
CCA use re-weighting, while OLS re-weights either the
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Motivation S1 S4 (src) S4 (trg) EN-IT EN-DE EN-FI EN-ES

Orth. 39.27% 41.87% 30.62% 31.40%

CCA x 32.27% 33.00% 22.05% 23.73%

OLS x src src 37.33% 38.47% 25.35% 28.87%
x trg trg 38.00% 36.60% 26.33% 28.80%

New x src trg 39.47% 41.93% 29.71% 31.67%

Table 2: Accuracy for different whitening (S1) and de-whitening (S4) configurations. All settings use length normalization and
mean centering, and do not re-weight nor apply dimensionality reduction.

Mot. S3 EN-IT EN-DE EN-FI EN-ES

Orth. 39.47% 41.93% 29.71% 31.67%/ CCA

OLS src 38.53% 41.73% 28.65% 30.47%
trg 43.80% 44.27% 32.79% 36.47%

Table 3: Accuracy for different re-weighting (S3) configura-
tions. All settings use length normalization, mean centering,
and whitening/de-whitening with respect to the original lan-
guage.

source or the target language depending on the direction of
regression. Table 3 shows the results obtained for all these
different re-weighting strategies.

As it can be seen, re-weighting the target language is
highly beneficial, bringing an improvement of 3-5 points in
all cases, while re-weighting the source language is always
harmful. Interestingly, which side to re-weight should not
be a relevant factor when using the dot product, so this dif-
ference must be explained by the length normalization per-
formed by cosine similarity. Note that, when re-weighting
the source language, this length normalization is applied to
each source language word on its own, but its nearest neigh-
bor list is not affected in any way, as its similarity with re-
spect to all target language words is only scaled by a con-
stant normalization factor. As a consequence, for the length
normalization of cosine similarity to be effective in nearest
neighbor retrieval, the re-weighting must be applied in the
target language, which can explain why we obtain better re-
sults for it.

This behavior is also consistent with the findings of
Shigeto et al. (2015) regarding the direction of regression.
Recall that these authors claim that mapping the target lan-
guage into the source language is better than mapping the
source language into the target language, which respec-
tively correspond to re-weighting the target language and the
source language according to our framework (see Table 1).
While Shigeto et al. (2015) explain the relevance of the re-
gression direction in terms of the emergence of hubs in the
subsequent nearest neighbor retrieval, our work identifies
that the origin of this problem is in the implicit re-weighting
direction and its relation with the length normalization per-
formed by cosine similarity.

S3 S5 EN-IT EN-DE EN-FI EN-ES

39.47% 41.93% 29.71% 31.67%
x 42.53% 44.53% 32.09% 33.80%

trg 43.80% 44.27% 32.79% 36.47%
x 44.00% 44.27% 32.94% 36.53%

Table 4: Accuracy for different dimensionality reduction
(S5) and re-weighting (S3) configurations. All settings use
length normalization, mean centering, whitening, and de-
whitening with respect to the original language.

5.3 Dimensionality reduction (step 5)

As discussed before, CCA is always used with dimension-
ality reduction, while OLS never is. Dimensionality reduc-
tion is typically not applied in orthogonal methods either,
although Smith et al. (2017) recently introduced it for the
first time.

Table 4 shows our results with and without dimensionality
reduction. When performing dimensionality reduction, we
always chose the number of dimensions that yield the high-
est accuracy in the training dictionary, and then evaluate in
the test set. As discussed in Section 3, dimensionality reduc-
tion can be seen as an extreme form of re-weighting, so we
performed these experiments with and without re-weighting
the target language so as to better understand how these two
steps interact.

As it can be seen, dimensionality reduction has a positive
effect in all cases. However, its impact is very small when
using target language re-weighting (an improvement of 0.20
points in the best case), and much bigger when not using
any re-weighting (improvements of 2-3 points). This sug-
gests that re-weighting and dimensionality reduction have
an overlapping effect, which reinforces our interpretation
that dimensionality reduction is just an extreme form of
re-weighting that removes the components with smallest
cross-correlation. In relation to that, it is remarkable that re-
weighting gives considerably better results than dimension-
ality reduction alone, which can be attributed to its smooth
rescaling of embedding components in contrast to the bi-
nary discarding performed by dimensionality reduction. The
only exception in this regard is English-German, for which
dimensionality reduction alone gives slightly better results.

All in all, we can conclude that, in spite of being con-
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Retrieval method EN-IT EN-DE EN-FI EN-ES

Nearest neighbor 44.00% 44.27% 32.94% 36.53%
Inverted nearest neighbor 43.07% 42.20% 31.18% 32.53%

Inverted softmax 45.27% 44.13% 32.94% 36.60%

Table 5: Accuracy for different retrieval methods. All settings use length normalization, mean centering, whitening, target
language re-weighting, de-whitening with respect to the original language, and dimensionality reduction tuned in training.

EN-IT EN-DE EN-FI EN-ES

Mikolov, Le, and Sutskever (2013) 34.93% (**) 35.00% (**) 25.91% (**) 27.73% (**)
Faruqui and Dyer (2014) 38.40% (*) 37.13% (*) 27.60% (*) 26.80% (*)
Shigeto et al. (2015) 41.53% (**) 43.07% (**) 31.04% (**) 33.73% (**)
Dinu, Lazaridou, and Baroni (2015) 37.7% / 38.53% (*) 38.93% (*) 29.14% (*) 30.40% (*)
Lazaridou, Dinu, and Baroni (2015) 40.2% - - -
Xing et al. (2015) 36.87% (**) 41.27% (**) 28.23% (**) 31.20% (**)
Zhang et al. (2016) 36.73% (**) 40.80% (**) 28.16% (**) 31.07% (**)
Artetxe, Labaka, and Agirre (2016) 39.27% 41.87% (*) 30.62% (*) 31.40% (*)
Smith et al. (2017) 43.1% / 44.53% (**) 43.33% (**) 29.42% (**) 35.13% (**)

Proposed (nearest neighbor) 44.00% 44.27% 32.94% 36.53%
Proposed (inverted softmax) 45.27% 44.13% 32.94% 36.60%

Table 6: Accuracy of our method in comparison with previous work. (*) means that the results were obtained using the original
implementation from the authors, while (**) means that the results were obtained using our custom implementation as part
of our proposed framework. The rest of the results were reported in the original papers. For methods that were not originally
proposed for bilingual lexicon extraction, we used nearest neighbor retrieval.

nected, re-weighting tends to work considerably better than
dimensionality reduction thanks to its smooth nature. More-
over, combining them has a small but positive impact, and
should be the preferred configuration to use.

5.4 Retrieval method

Most previous work uses standard nearest neighbor for bilin-
gual lexicon extraction (see Section 2), but alternative re-
trieval methods have been proposed to address the hubness
problem attributed to it (Dinu, Lazaridou, and Baroni 2015;
Smith et al. 2017). Table 5 reports the results for each of
these methods. In the case of inverted softmax, we tune the
inverse temperature to optimize the accuracy in the train-
ing set, which we find to work better than maximizing the
log-likelihood as originally proposed by Smith et al. (2017).
To speed up the computations, we take a random sample of
1,500 words to estimate the partition function of the softmax
during tuning, but use the entire source vocabulary in the test
set. Similarly, we use the entire source vocabulary as pivots
when using inverted nearest neighbor.

As it can be seen, inverted softmax performs at par with
standard nearest neighbor retrieval for all language pairs ex-
cept for English-Italian, where it brings an improvement of
1.27 points. Note that this number is considerably smaller
than the nearly 5 points reported by Smith et al. (2017) for
the same dataset. At the same time, inverted nearest neigh-
bor performs worse than standard nearest neighbor in our
experiments. This suggests that alternative retrieval methods
are not fully complementary with the improvements brought

by our framework. We hypothesize that this is connected
to our previous discussion on re-weighting. Recall that our
work explains that, for the length normalization performed
by cosine similarity to be effective in nearest neighbor re-
trieval, the re-weighting should be performed in the opposite
side. Nevertheless, most previous work was not applying re-
weighting properly, and alternative retrieval methods would
mitigate the problem by reversing the direction of nearest
neighbor. Note, thus, that the alternative methods were al-
leviating an inherent flaw of the mapping methods during
retrieval, while our framework learns better mappings.

5.5 Comparison with the state-of-the-art

Having analyzed the different steps of the proposed frame-
work on their own, we next analyze how it performs in
comparison to other methods proposed in the literature. For
that purpose, we choose the recommended variant of our
framework as discussed throughout the section, which is the
one using whitening, re-weighting the target language, de-
whitening with respect the original language, and applying
dimensionality reduction (see Table 1). The obtained results
are given in Table 6. Note that we only tried limited com-
binations of well-motivated steps and, given that we tested
in several pairs of languages, we think that our conclusions
are well supported. Moreover, note that our implementation
of inverted softmax optimizes accuracy and uses the entire
source vocabulary for computing the partition function at
test time as described in Section 5.4, which performs bet-
ter than the variant reported in Smith et al. (2017) as shown
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by its corresponding line in the table (43.1 vs. 44.53 for EN-
IT).

As it can be seen, our system obtains the best published
results in all the four language pairs. Moreover, it also sur-
passes the previous state-of-the-art even when using stan-
dard nearest neighbor retrieval, which shows the superiority
of the mapping method itself.

6 Conclusions and future work

In this work, we propose a new framework to learn bilin-
gual embedding mappings that generalizes a substantial
body of previous work (Mikolov, Le, and Sutskever 2013;
Faruqui and Dyer 2014; Shigeto et al. 2015; Xing et al. 2015;
Zhang et al. 2016; Artetxe, Labaka, and Agirre 2016; Smith
et al. 2017). A key aspect of our framework is that the map-
ping to a common space is reduced to a single orthogonal
transformation that is shared by all variants, and their differ-
ences are exclusively explained in terms of their normaliza-
tion, whitening, re-weighting, de-whitening and dimension-
ality reduction behavior. This allows us to gain new insights
into existing mapping methods, as follows:
• Whitening can bring small improvements, but only if de-

whitened appropriately. Our work shows that the implicit
de-whitening behavior of both OLS methods (Mikolov,
Le, and Sutskever 2013) and CCA methods (Faruqui and
Dyer 2014) is flawed.

• Re-weighting is very helpful, but, contrary to most previ-
ous work, it should be performed in the target language
for the length normalization performed by cosine similar-
ity to be effective in nearest neighbor retrieval. This ex-
plains why mapping the target language into the source
language performs better than mapping the source lan-
guage into the target language for regression methods
(Shigeto et al. 2015).

• Dimensionality reduction is an extreme form of re-
weighting. Even if it was shown to be beneficial with CCA
methods (Faruqui and Dyer 2014) and orthogonal meth-
ods (Smith et al. 2017), smooth re-weighting gives even
better results. Using both of them together is not harmful,
bringing further improvements in some cases, and should
be the default configuration to try.
Moreover, we also shed light on the relation between

mapping methods and retrieval methods when inducing
bilingual lexicons:
• The use of alternative retrieval methods to nearest neigh-

bor (Dinu, Lazaridou, and Baroni 2015; Smith et al. 2017)
mitigated deficiencies in the implicit re-weighting behav-
ior of previous mapping methods. When re-weighting is
properly applied in the target language, inverted softmax
(Smith et al. 2017) performs at par with standard nearest
neighbor in most cases, while inverted nearest neighbor
gives considerably worse results.
Based on these insights, we propose a new variant that

obtains the best published results in bilingual lexicon ex-
traction for all the four language pairs tested. We re-
lease our implementation as an open source project, which
allows to replicate several previous methods as well as

our improved variant (Mikolov, Le, and Sutskever 2013;
Faruqui and Dyer 2014; Dinu, Lazaridou, and Baroni 2015;
Shigeto et al. 2015; Xing et al. 2015; Zhang et al. 2016;
Smith et al. 2017; Artetxe, Labaka, and Agirre 2016). In
the future, we would like to incorporate L2 regularization in
our framework and extend our analysis to max-margin meth-
ods (Lazaridou, Dinu, and Baroni 2015) and non-linear map-
pings (Lu et al. 2015). Moreover, we would like to introduce
hyperparameters to control the intensity of whitening/de-
whitening and re-weighting, which we believe could bring
further improvements with proper tuning. Finally, we would
like to adapt and evaluate our framework in other zero-shot
learning scenarios.
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