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Abstract

Automated multi-document extractive text summarization is
a widely studied research problem in the field of natural lan-
guage understanding. Such extractive mechanisms compute
in some form the worthiness of a sentence to be included
into the summary. While the conventional approaches rely on
human crafted document-independent features to generate a
summary, we develop a data-driven novel summary system
called HNet, which exploits the various semantic and com-
positional aspects latent in a sentence to capture document
independent features. The network learns sentence represen-
tation in a way that, salient sentences are closer in the vector
space than non-salient sentences. This semantic and composi-
tional feature vector is then concatenated with the document-
dependent features for sentence ranking. Experiments on the
DUC benchmark datasets (DUC-2001, DUC-2002 and DUC-
2004) indicate that our model shows significant performance
gain of around 1.5-2 points in terms of ROUGE score com-
pared with the state-of-the-art baselines.

1 Introduction
The rapid growth of online news over the web has generated
an epochal change in the way we retrieve, analyze and con-
sume data. The readers now have access to a huge amount
of information on the web. For a human, understanding large
documents and assimilating crucial information out of it is
often a laborious and time-consuming task. Motivation to
make a concise representation of huge text while retaining
the core meaning of the original text has led to the develop-
ment of various automated summarization systems. These
systems provide users filtered, high-quality concise content
to work at unprecedented scale and speed. Summarization
methods are mainly classified into two categories: extrac-
tive and abstractive. Extractive methods aim to select salient
phrases, sentences or elements from the text while abstrac-
tive techniques focus on generating summaries from scratch
without the constraint of reusing phrases from the original
text.

The majority of literature on text summarization is dedi-
cated to extractive summarization approach. Previous meth-
ods can be predominantly categorized as (1) greedy ap-
proaches (e.g. (Carbonell and Goldstein 1998)), (2) graph
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based approaches (e.g. (Erkan and Radev 2004)) and (3)
constraint optimization based approaches (e.g. (McDon-
ald 2007)). These approaches rely mainly on a set of
features which were manually crafted. Recently, few ef-
forts have been made towards data-driven learning ap-
proaches for extractive summarization using neural net-
works. Kågebäck et al. (2014) used recursive autoencoders
to summarize documents, achieving good performance on
the Opinosis (Ganesan, Zhai, and Han 2010) dataset. Cao et
al. (2015b) used convolution neural networks for address-
ing the problem of learning summary prior representation
for multi-document extractive summarization. Cheng and
Lapata (2016) introduced attention based neural encoder-
decoder model for extractive single document summariza-
tion trained on a large corpus of news articles collected from
the Daily Mail. Their work focuses on sentence-level as
well as the word-level extractive summarization of individ-
ual documents using encoder-decoder architecture. Singh,
Gupta, and Varma (2017) proposed a combination of mem-
ory network and convolutional BLSTM (Bidirectional Long
Short Term Memory) network to learn better unified docu-
ment representation which jointly captures n-gram features,
sentential information and the notion of the summary wor-
thiness of sentences leading to better summary generation.

Most successful multi-document summarization systems
use extractive methods. Sentence extraction is a crucial
step in such a system. The idea is to find a representa-
tive subset of sentences, which contains the information of
the entire set. Thus, sentence ranking is imperative in find-
ing such an informative subset, which sets our focus to
sentence-level summarization. The performance of the sum-
marization system using sentence ranking approach is pro-
foundly determined by the feature engineering, irrespective
of the ranking models (Osborne 2002; Conroy et al. 2004;
Galley 2006; Li et al. 2007). Features are broadly classi-
fied as: (a) document-dependent features (e.g., position, term
frequency), and (b) document-independent features (e.g.,
length, stop-word ratio, word polarity). Document indepen-
dent features often reveal the aspect that a sentence can be
considered summary worthy irrespective of which document
it is present in. Consider the following example.

1. Six killed, eight wounded in a shooting at Quebec City.

2. It was the shooting that killed six people and injured eight
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people at a Quebec City mosque.

While the former sentence conveys prominent information
in concrete terms, the latter is a more verbose way of por-
trayal with similar meaning. In the case of multi-document
summary, the former sentence is the best candidate, as it is a
concise representation keeping important information intact.
This intuition was called as summary prior nature by Cao et
al. (2015b), and can be captured by learning better document
independent features.

We aim to learn a better sentence representation that in-
corporates both document dependent features as well as doc-
ument independent features to capture the notion of saliency
of a sentence. Since the sentence representation comprises
of two different kinds of features, we call it a heterogeneous
representation. Contrary to the orthodox method of painstak-
ingly engineering document independent features, we pro-
pose a model with a Convolutional Sentence Tree Indexer
(CSTI), a novel data-driven neural network for capturing se-
mantic and compositional aspects in a sentence. CSTI slides
over the input sequence to produce higher-level representa-
tion by compressing all the input information into a single
representation vector of the root node in the constructed bi-
nary tree. We present details in Section 3. Final sentence rep-
resentation obtained by concatenating the transformed doc-
ument dependent features and the features obtained from
CSTI (document independent features) is used under a re-
gression framework for sentence ranking.

Deep neural networks perform better in the case of
huge training data. However, non-availability of large multi-
document summarization corpus makes learning challeng-
ing for deep networks and often results procured are not of
high quality. To overcome this issue, we use transfer learn-
ing approach where we first train the network on single doc-
ument summarization corpus (Cheng and Lapata 2016) and
then fine-tune the network with the multi-document datasets.
We summarize our key contributions below.

1. We propose CSTI, a novel method to encode semantic and
compositional features latent in a sentence which can be
combined with document dependent features to learn a
better heterogeneous sentence representation for captur-
ing the notion of summary worthiness of a sentence.

2. Further, we propose a novel Siamese CSTI (Siam-CSTI)
model for effectively identifying redundant sentences dur-
ing the sentence selection process.

3. We use transfer learning method to overcome the problem
of lack of data for multi-document summarization.

4. We experimentally show that our method outperforms
the basic systems and several competitive baselines. Our
model achieves significant performance gain on the DUC
2001, 2002 and 2004 multi-document summarization
datasets.

2 Related Work

Extractive document summarization has been traditionally
connected to the task of sentence ranking. Sentence ranking
models by Osborne; Conroy et al.; Galley; Li et al. (2002;

2004; 2006; 2007) are dependent on the human-crafted fea-
tures. Shen et al. (2007) modeled extractive document sum-
marization as a sequence classification problem using Con-
ditional Random Fields. Our approach is different from
theirs as we use a data-driven approach to automatically ac-
quire document-independent features for representing sen-
tences without the need of manually crafted document inde-
pendent features. Hong and Nenkova (2014) built a summa-
rization system using advanced document-independent fea-
tures which can be seen as an attempt to capture better sen-
tence representation. These features are often hand-crafted
and fail to capture various semantic aspects. Summarization
system CTSUM (Wan and Zhang 2014) attempts to rank
sentences using certainty score. However, certainty score
alone is not enough to reveal all possible latent semantic
aspects. Ren et al. (2016) develop a redundancy aware sen-
tence regression framework for multi-document extractive
summarization. They model importance and redundancy si-
multaneously by evaluating the relative importance of a sen-
tence given a set of selected sentences. Along with single
sentence features they incorporate additional features de-
rived from the sentence relations. They manually crafted
sentence importance features and sentence relation features
while we use deep neural network for getting automatic
document-independent features.

Recursive Neural Networks are known to model compo-
sitionality in natural language over trees. The tree structure
is predefined by a syntactic parser (Socher et al. 2013) and
each non-leaf tree node is associated with a node composi-
tion function. Socher et al. (2013) also proposed Tensor net-
works as composition function for sentence level sentiment
analysis tasks. Recently, Zhu, Sobihani, and Guo (2015) in-
troduced S-LSTM which extends LSTM units to compose
tree nodes in a recursive fashion. Neural Tree Indexer (NTI),
an extension of S-LSTM was proposed for natural language
inference and QA task (Yu and Munkhdalai 2017). In our
work we introduce a CSTI, an enhanced version of NTI
adapted for summarization task. Unlike NTI, our model uses
(a) CNNs that can slide over inputs to produce higher-level
representations, and (b) BLSTM as the primary composition
function.

3 Proposed Model

Our architecture intends to learn a better representation of
a sentence with consideration of both document-dependent
and document-independent features in order to measure the
worthiness of a sentence in the summary. The proposed sys-
tem architecture is illustrated in Figure 1. The principal com-
ponents of our model architecture are as follows.

1. CSTI: captures local (word n-grams and phrase level),
global (sequential and compositional dependencies be-
tween phrases) information and the notion of saliency of
a sentence. Details in Section 3.1.

2. Extractor: extracts document dependent features from the
given sentence. Details in Section 3.2.

3. Regression Layer: predicts sentence scores and thus, helps
in the sentence ranking process.
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Figure 1: The System Architecture of HNet. After max pool
operation padding vectors (represented in black color) are
added to form a full binary tree.

CSTI provides an embedding which incorporates document-
independent features. Final unified sentence embedding
is obtained by concatenating embedding from CSTI and
document-dependent features, which is then forwarded
through the regression layer to obtain saliency score of a
sentence. Since the model makes use of the heterogeneous
representation of the sentence, we name our model as Het-
erogeneous Net (HNet). In this section, we first describe the
CSTI and then present details of the extractor and the regres-
sion layer.

3.1 Convolutional Sentence Tree Indexer (CSTI)

We focus on learning a hierarchical sentence representation
that not only incorporates phrase level features and global
sentence level information but it should also include the no-
tion of saliency of a sentence. The hierarchical nature of
our model reflects the fact that sentences are generated from
words, phrases and often have some sequential and composi-
tional dependencies among these units. Therefore, we use an
architecture to obtain a representation with minimum infor-
mation loss such that the global information gets discovered
and the local information remains preserved.

CSTI comprises of: (a) Convolutional Encoder: We use a
Convolution Neural Network (CNN) with multiple filters to
automatically capture set of phrase (n-grams) based features
followed by a max-over-time pooling operation to obtain a
set of feature vectors. We do this because phrases with dif-
ferent lengths can exhibit the same characteristics of sum-
mary prior nature. (b) Bidirectional Long Short Term Mem-
ory Tree Indexer (BLSTM Tree Indexer) to obtain a compre-
hensive set of document-independent features incorporating
semantic and compositional aspects in a sentence. We use
BLSTM Tree Indexer because: (a) it models conditional and
compositional power of sequential RNNs and syntactic tree
based recursive neural nets, and (b) it is a robust syntactic
parsing-independent tree structure model and does not re-
quire a parse tree structure.

Convolutional Encoder For first level sentence encoding,
we choose convolution neural network for the following rea-

sons: (1) it is easily trainable without long-term dependen-
cies, (2) it handles sentences of variable length inherently
and is able to learn compressed representation of n-grams
effectively, (3) previous research has shown that it can be
successfully used for sentence-level classification tasks such
as sentiment analysis (Kim 2014).

Conventional convolution neural network uses convolu-
tion operation over various word embeddings which is then
followed by a max pooling operation. Suppose, d dimen-
sional word embedding of the ith word in the sentence is wi,
and let wi:i+n denote the concatenation of word embeddings
wi, ..., wi+n. Then, convolution operation over a window of
c words using a filter of θct ∈ R

m×cd yields new features
with m dimensions. Convolution operation is written as fol-
lows.

f c
i = tanh(θct × wi:i+c−1 + b) (1)

Here b is the bias term. We obtain a feature map F c by ap-
plying filter θct over all possible windows of c words in the
sentence of length N .

F c = [f c
1 , f

c
2 , ..., f

c
N−c+1] (2)

Our intention is to capture the most prominent features in
the feature map. Hence, we used max-over-time pooling op-
eration (Collobert et al. 2011) to acquire final features for
a filter of fixed window size. To exploit several latent fea-
tures from phrase based information, we used multiple fil-
ters of different window widths. Let θ1t , θ

2
t , ..., θ

k
t be k filters

for window sizes from 1 to k then we have k feature maps
F 1, F 2, ..., F k. Applying max-over-time pooling operation
helps to get most salient features. They seem to capture the
phrase-level information nicely. The first level features φ1

obtained from convolution network can be denoted as fol-
lows.

φ1 = {max{F 1},max{F 2}, ...,max{F k}} (3)

We use an enhanced convolution network which is differ-
ent from the one used for sentence classification task (Kim
2014) or for learning the prior summary task (Cao et
al. 2015b). Kim (2014) reserves all representation gener-
ated by filters to a fully connected layer which ignores
relations among phrases with different lengths. Cao et
al. (2015b) tried to capture this relation by performing two-
stage max-over-time pooling operation. Unlike these mod-
els, our model captures the relation among different length
phrases by passing the representations generated after max-
over-time pooling operation to the BLSTM Tree Indexer net-
work. Representation thus obtained also incorporates the la-
tent temporal and compositional dependencies among vari-
able length phrases.

BLSTM Tree Indexer (BTI) Sequential LSTMs are
known to learn syntactic structure (conditional transition)
from natural language. However their generalization to un-
seen text is relatively poor in comparison with models that
exploit syntactic tree structure (Bowman, Manning, and
Potts 2015). BLSTM Tree Indexer leverages the sequential
power of LSTMs and the compositional power of recursive
models, without the need of a parse tree. The model con-
structs a binary tree by processing the input sequences with
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its node function in a bottom-up fashion. It compresses all
the input information into a single representation vector of
the root node. This representation seems to capture both se-
mantic and compositional aspects in the sentence.

The output of the convolutional encoder is padded with
padding vectors to form a full binary tree and fed as input
to the BLSTM Tree Indexer. The input set consists of a se-
quence of vectors (φ1). BTI can be a full n-ary tree structure.
To reduce computational complexity, we have implemented
binary tree form of BTI in our study. It has two types of
transformation functions: (a) a non-leaf node composition
function fnode(h1, ..., hq) and (b) a leaf node transformation
function f leaf (φj

1), where φj
1 is jth feature vector from set

φ1. fnode(h1, ..., hq) is a composition function of the rep-
resentation of its child nodes h1, ..., hq , where q is the total
number of child nodes of this non-leaf node. f leaf (φj

1) is
some non-linear transformation of the input vector φj

1.
As we use the binary tree form of BTI, a non-leaf node

can only take two direct child nodes, i.e., q = 2. Hence,
the function fnode(hl, hr) learns a composition over its left
child node hl and right child node hr. The node and the leaf
node functions are actually parameterized neural networks.

We present our approach for the two types of transforma-
tion functions in the following.
Leaf Node Transformation: We use a MLP (Multi-Layer
Perceptron) with ReLU function (for non-linear transforma-
tion) for the leaf node function f leaf as follows.

hj = ReLU(MLP (φj
1; θ)) (4)

where φj
1 is input sequence fed to the multi-layer perceptron,

θ is the learning parameter and hj is the vector representa-
tion for the leaf node.
Non-Leaf Node Composition: A Bidirectional LSTM
(BLSTM) is used as the composition function fnode(hl, hr)
to get the representation of the parent node. BLSTM pro-
cesses the input both in the forward order as well in the re-
verse order, allowing to combine future and past informa-
tion in every time step. It comprises of two LSTM layers
processing the input separately to produce

−→
h , −→c , the hid-

den and cell states of an LSTM processing the input in the
forward order, and

←−
h and ←−c , the hidden and the cell states

of an LSTM processing the input in reverse order. Both,
−→
h

and
←−
h , are then combined to produce output sequence of the

BLSTM layer. Let hl
t, h

r
t , clt and crt be the vector represen-

tations and cell states for left and right children. A BLSTM
computes a parent node representation hp

t+1 and a node cell
state cpt+1 as follows.
Forward order:

−−→
it+1 = σ(W1

−→
hl
t +W2

−→
hr
t +W3

−→
clt ) +W4

−→
crt (5)

−−→
f l
t+1 = σ(W5

−→
hl
t +W6

−→
hr
t +W7

−→
clt ) +W8

−→
crt (6)

−−→
fr
t+1 = σ(W9

−→
hl
t +W10

−→
hr
t +W11

−→
clt ) +W12

−→
crt (7)

−−→
cpt+1 =

−−→
f l
t+1�

−→
clt+

−−→
fr
t+1�

−→
crt +

−−→
it+1�tanh(W13

−→
hl
t+W14

−→
hr
t )

(8)

−−→ot+1 = σ(W15

−→
hl
t +W16

−→
hr
t +W17

−−→
cpt+1) (9)

−−→
hp
t+1 = −−→ot+1 � tanh(

−−→
cpt+1) (10)

Similarly, in the reverse order we obtain
←−−
hp
t+1 and

←−−
cpt+1. Fi-

nally, we combine them to obtain the vectors cpt+1 and hp
t+1

as follows.
cpt+1 = mean(

−−→
cpt+1,

←−−
cpt+1), hp

t+1 = mean(
−−→
hp
t+1,

←−−
hp
t+1)

where W1, ..., W17 ∈ R
k×k (k = N − c + 1) are trainable

weights. For brevity we eliminated the bias terms. σ and �
denote the element-wise sigmoid function and the element-
wise vector multiplication respectively. Each non-leaf node
computes its representation by composing its children rep-
resentation using the above set of equations. This represen-
tation is passed towards the root in a bottom-up fashion to
construct the tree representation. The vector representation
of the root hroot (also referred as φf ) incorporates semantic
and compositional aspects latent in a sentence.

3.2 Extractor

Besides just using the document independent features, we
also intend to use document dependent features in learning
better sentence representation for saliency estimation of sen-
tences. Our feature set includes the following: (1) The po-
sition of the sentence, (2) The averaged cluster frequency
values of words in the sentence, (3) The average term fre-
quency values of the words in the sentence, (4) The average
word IDF values in the sentence, divided by sentence length,
and (5) The maximal word IDF score in the sentence.

We choose these features for the following reasons: (1)
They tend to impart some contextual knowledge. (2) They
are often simple to calculate and have been extensively used
in previous research (Cao et al. 2015a; 2015b).

3.3 Regression Layer

We follow traditional supervised learning approach for sen-
tence ranking (Carbonell and Goldstein 1998; Li et al. 2007).
The regression layer at the end of the architecture aims to as-
sign scores to a sentence. Sentences are ranked based on the
score predicted by the regression layer. Since our approach
focuses on learning a better sentence representation embrac-
ing both document-independent and document-dependent
features, we concatenate the document-independent features
obtained from the CSTI net with the transformed extracted
document-dependent features (using a dense layer). Let φe

be the transformed extracted document-dependent features
and let Si denote the heterogeneous sentence embedding of
the ith sentence. Thus, Si = [φf , φe].
The sentence worthiness is scored by ROUGE-2 (Lin and
Hovy 2003) (without stop words) and our model tries to es-
timate this score. Given sentence i, the final sentence repre-
sentation Si is used in the regression layer to score saliency
as yi = σ(WT × Si) where W are the regression weights
and σ is the softmax function. The softmax function gives a
nice distribution over the range [0, 1] which makes it suitable
to imitate ROUGE score.

This score is used to rank sentences. Higher the score,
higher is the chance of the sentence to be included in the
generated summary.
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Figure 2: Siamese CSTI Architecture

3.4 Removing Redundant Sentences

A good summary should be informative with non-redundant
content. We generate the final summary by choosing top
ranked sentences taking into account the redundancy among
the selected sentences. The sentences are sorted in descend-
ing order of saliency scores. To identify whether the next
candidate sentence is redundant, we compare it with all the
sentences in the summary generated so far. We introduce a
Siamese CSTI (Siam-CSTI) network for identifying redun-
dant sentences. Figure 2 shows the Siam-CSTI architecture.
The base network consists of the CSTI net. Weight parame-
ters are tied for the base network. Two CSTI nets feed their
output to a distance metric layer. We experiment with cosine,
Euclidean and Manhattan distances and empirically find that
the Manhattan distance seems to perform better in our case.

Siam-CSTI network is trained for sentence similarity task
on the SICK data (Marelli et al. 2014). We present dataset
details in Section 4.1. Formally, we consider a supervised
learning setting where each training example consists of a
pair of sequences (xa

1 , ..., x
a
Ta
), (xb

1, ..., x
b
Tb
) of fixed-size

vectors (each xa
i , xb

j ∈ R
d is d-dimensional word vector)

along with a single label y for the pair. The sequences may
be of different lengths Ta �= Tb and the sequence lengths
can vary from example to example. The similarity function
g is based on the Manhattan distance metric as follows.

g(ha
Ta
, hb

Tb
) = exp(−||ha

Ta
− hb

Tb
||1) ∈ [0, 1] (11)

where ha
Ta

, hb
Tb

are the learned representations of the se-
quences xa

Ta
, xb

Tb
respectively such that ha

Ta
and hb

Tb
are

closer in the vector space if xa
Ta

and xb
Tb

are similar oth-
erwise they reside far apart. Mean Squared Error (MSE) is
used as loss function (after rescaling the training set relat-
edness labels to lie in [0, 1]). The Siam-CSTI model trained
on paired examples seems to learn a highly structured space
of sentence representations by exploiting the sequential and
recursive power of CSTI that captures rich semantics. Simi-
lar sentences (y = 1) are considered as redundant sentences
and non-similar sentences (y = 0) are considered as non-
redundant sentences. The final summary is generated by it-
eratively picking up a sentence from the set of previously

Ranking by Dependency Tree-LSTM Tree M S

a woman is slicing potatoes

• a woman is cutting potatoes 4.82 4.87 4.91
• potatoes are being sliced by a woman 4.70 4.38 4.68
• tofu is being sliced by a woman 4.39 3.51 3.62
a boy is waving at some young runners from the ocean

• a group of men is playing with a ball on the beach 3.79 3.13 2.68
• a young boy wearing a red swimsuit is jumping out of a
blue kiddies pool

3.37 3.48 3.29

• the man is tossing a kid into the swimming pool that is
near the ocean

3.19 2.26 1.87

Table 1: Most similar sentences (from 1000-sentence sub-
sample) in the SICK test data according to the Tree-LSTM.
Tree/M/S denote relatedness (with the sentence preceding
each group) predicted by the Tree-LSTM/MaLSTM/Siam-
CSTI.

sorted sentences and adding it to current summary if the
picked sentence is non-redundant.

4 Experimental Setup

We experiment with our CSTI and Siam-CSTI based sum-
marization model (HNet) for the task of multi-document
summarization. In this section, we present our experimen-
tal setup for assessing the performance of our system. We
discuss the corpora used for training and evaluation and pro-
vide implementation details of our approach.

4.1 Datasets

Initial training of our model is done on the Daily Mail
corpus, used for the task of single document summariza-
tion by (Cheng and Lapata 2016). Overall, we have 193986
training documents, 12147 validation documents and 10350
test documents in the corpus. For the purpose of training,
we created a sentence and its ROUGE-2 score pairs from
this corpus. Sentences which are part of the summary get
high ROUGE scores than non-summary sentences. We ex-
periment on DUC 2001-2004 datasets which are used for
generic multi-document summarization task. These docu-
ments are from newswires which are grouped into several
thematic clusters. The full DUC data set can be availed by
request at http://duc.nist.gov/data.html. The
DUC 2001, 2002 and 2004 datasets consist of 11295, 15878
and 13070 sentences respectively. The SICK dataset which
contains 9927 sentence pairs with a 5,000/4,927 training/test
split (Marelli et al. 2014) was used for training the Siam-
CSTI net. Each pair has a relatedness label ∈ [1, 5] corre-
sponding to the average relatedness judged by 10 different
individuals.

4.2 Implementation Details

We fine tuned our model on DUC datasets after initial train-
ing on Daily Mail corpus. DUC 2003 data is used as de-
velopment set and we perform a 3-fold cross-validation on
DUC 2001, 2002 and 2004 datasets with two years of data as
training set and one year of data as the test set. The word vec-
tors were initialized with 250-dimensional pre-trained em-
beddings (Mikolov et al. 2013). The embeddings for “out of
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vocabulary” words were set to zero vector. The size of the
hidden units of BLSTM was set to 150. After tuning on the
validation set, we fix the dimension m of the latent features
from convolutional encoder as 125 and window size k = 5
for HNet system. We use Adam (Kingma and Ba 2014) as
the optimizer with mini batches of size 35. Learning rates
are set to {0.009, 0.0009}. For our network, we use regular-
ization dropout of {0.2, 0.5}.

4.3 Baseline Methods

In this section of the paper, we describe several summariza-
tion baseline systems that we choose to compare against
our system. These baselines include best peer systems
(PeerT, Peer26, and Peer65) which participated in DUC
data evaluations, state-of-the-art summarization results on
DUC 2001, 2002 and 2004 corpus respectively. We select
the systems that performed best on DUC 2001, 2002, 2004
datasets, which are: (1) R2N2 (Cao et al. 2015a), (2) Clus-
terCMRW (Wan and Yang 2008), (3) REGSUM (Hong and
Nenkova 2014), (4) PriorSum (Cao et al. 2015b), and (5)
RASR (Ren et al. 2016). The R2N2 system uses a recursive
neural network to rank sentences by automatically learn-
ing to weigh hand-crafted features. ClusterCMRW system
leverages the cluster-level information and incorporates this
information into a graph-based ranking algorithm. REG-
SUM follows a word regression approach for doing better
estimation of word importance which leads to better ex-
tractive summaries. PriorSum captures summary prior na-
ture by exploiting phrase based information. RASR uses re-
gression framework that simultaneously learns the model
importance and redundancy information by calculating the
relative gain of a sentence with respect to given set of
selected sentences. Further, we use LexRank (Erkan and
Radev 2004) as a baseline to compare performance level
of regression approaches. We also compare with Standard-
CNN and Reg Manual. StandardCNN consists of just con-
ventional CNNs with fixed window size for learning sen-
tence representation. Reg Manual is used as a baseline sys-
tem to explore and understand the effects of learned sen-
tence representation prior to the summary. It adopts human-
compiled document-independent features: (a) NUMBER (if
a number exists), (b) NENTITY (if named entities exist),
and (c) STOPRATIO (the ratio of stopwords). It combines
these features with document dependent features and tunes
the feature weights through LIBLINEAR1 support vector re-
gression.

5 Results and Analysis

In this section, we compare the performance of our system
against various summarization baselines using ROUGE-1
(unigram match) and ROUGE-2 (bigram match) measures.
We also attempt to analyze our system trained with differ-
ent approaches with intuition and empirical evidence pre-
sented in the form of tables and graphs. Lastly, we conclude
this section by presenting examples of sentences selected for
summaries by the proposed system.

1http://www.csie.ntu.edu.tw/∼cjlin/liblinear

We carried out extensive experiments with diverse set-
tings in order to evaluate our system. In doing so, we cre-
ated several variations of HNet model which are: (1) HNet-
B: uses Convolutional BLSTM as sentence encoder instead
of CSTI. (2) HNet-B(T): refers to HNet-B model which is
trained with transfer learning approach, i.e., the model was
first trained on Daily Mail dataset (Cheng and Lapata 2016)
and was then fine-tuned on multi-document DUC datasets.
(3) HNet: refers to our proposed model with CSTI as sen-
tence encoder for sentence ranking and Siam-CSTI as re-
dundancy identifier for sentence selection task. (4) HNet(T):
refers to HNet model which was first trained on Daily Mail
dataset (Cheng and Lapata 2016) and was then fine-tuned
on multi-document DUC datasets. (5) HNet−: refers to the
HNet model when the embedding from the extractor (φe) is
made zero.

It is evident from the results presented in Table 2 that
our basic systems HNet-B and HNet-B (T) significantly out-
perform (T-test with p-value=0.05) state-of-the-art summa-
rization systems R2N2, Cluster-CMRW, REGSUM, Prior-
Sum, and RASR. This is encouraging because despite hav-
ing not so complex deep network architecture the HNet-
B system is able to learn efficient document-dependent se-
mantic features. It also outperforms the Reg Manual base-
line which uses human-compiled features for obtaining the
document-independent features and the graph-based sum-
marization system LexRank. From the results shown in Ta-
ble 2 it is clear that HNet-B outperforms the StandardCNN
baseline. This is due to the fact that the additional BLSTM
network used in HNet-B helps in learning temporal (sequen-
tial) dependencies among variable length phrases exploit-
ing past as well as future context. Finally, our proposed
model (HNet/HNet (T)) significantly outperforms our ba-
sic systems HNet-B/HNet-B (T) which supports the fact
that HNet is equipped with suitable deep network archi-
tecture for procuring latent semantic features (document-
independent features) from a sentence. In the following, we
analyze different aspects of the proposed system.
Contribution of Document Independent Features To ex-
plore the contribution of the learned document independent
features towards the saliency estimation of a sentence prior
to the summary, we follow a simple approach. For each sen-
tence, we ignore document dependent features by setting the
φe vector to 0, and then applying the regression transform
to calculate the saliency score. We refer to this model as
HNet−. This setting helps us in analyzing the intuitive fea-
tures latent in our heterogeneous representation of the sen-
tence without consideration of the contextual features. After
comparing results of HNet− and HNet in Table 2, we ob-
serve a difference of around 3–4 points and 1–2 points in
terms of ROUGE-1 and ROUGE-2 scores respectively. The
drop in points has resulted due to the absence of document
dependent features. Therefore, we can conclude that doc-
ument independent features have a major contribution to-
wards saliency estimation of a sentence. This experiment
also supports the need of document dependent features as
incorporating them results in significant increase in ROUGE
scores as provided in Table 2.
Significance of BTI in CSTI (HNet Model) After perform-
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2001 2002 2004
System ROUGE-1 ROUGE-2 System ROUGE-1 ROUGE-2 System ROUGE-1 ROUGE-2
PeerT 33.03 7.86 Peer26 35.15 7.64 Peer65 37.88 9.18
R2N2 35.88 7.64 ClusterCMRW 38.55 8.65 REGSUM 38.57 9.75
LexRank 33.43 6.09 LexRank 35.29 7.54 LexRank 37.87 8.88
Reg Manual 35.95 7.86 Reg Manual 35.81 8.32 Reg Manual 38.24 9.74
StandardCNN 35.19 7.63 StandardCNN 35.73 8.69 StandardCNN 37.9 9.93
PriorSum 35.98 7.89 PriorSum 36.63 8.97 PriorSum 38.91 10.07
RASR 36.31 8.49 RASR 37.8 9.61 RASR 36.6 10.57
HNet-B 36.82 8.64 HNet-B 38.79 9.43 HNet-B 39.27 10.85
HNet-B(T) 37.69 9.12 HNet-B(T) 39.52 9.69 HNet-B(T) 39.9 11.08
HNet 37.21 8.96 HNet 39.17 9.61 HNet 39.54 10.94
HNet− 34.51 7.88 HNet− 35.86 8.24 HNet− 35.66 9.37
HNet(T) 38.18 9.43 HNet(T) 39.94 9.92 HNet(T) 40.34 11.29

Table 2: Comparison Results (%) on DUC Datasets

ing rigorous experiments, we observe that the use of BTI
as part of CSTI significantly enhances the performance of
the HNet system. This fact is evident when we compare
HNet performance against StandardCNN and PriorSum as
they use only CNN for obtaining semantic representation
of a sentence. The performance improvement is better re-
flected in the case of HNet(T) system because of increase
in the training data. Adding BLSTM Tree Indexer increases
the number of parameters to be learned in the network.
The more the training data the better the robustness of the
system. HNet also outperforms (T-test with p-value=0.04)
HNet-B. This is due to the fact that BTI constructs a full
binary tree by processing the input sequence with its node
functions in a bottom-up fashion. It compresses all the input
information into a single representation vector of the root.
This representation seems to capture the sequential and re-
cursive dependencies among various units (words/phrases)
of the sentence.
Significance of Siam-CSTI in Sentence Selection From
Table 1 it is evident that Siam-CSTI performs better (T-
test with p-value=0.02) than similar state-of-the-art archi-
tectures: TreeLSTM (Tai, Socher, and Manning 2015) and
MaLSTM (Mueller and Thyagarajan 2016) for sentence
similarity task. We also experimented with basic TF-IDF
cosine similarity and empirically found the superior perfor-
mance of Siam-CSTI. The network seems to exploit the se-
quential and recursive aspects of the sentences to learn a rich
set of semantics that help in identifying similar sentences.
Contribution of Transfer Learning Method The fact that
increase in training data results in better performance as the
system becomes more robust motivated us to pre-train the
HNet-B and HNet systems on Daily Mail dataset first and
then fine-tune the systems to multi-document summariza-
tion setting. We refer to these systems as HNet-B(T) and
HNet(T). Table 2 shows the improvement in results for these
systems in terms of ROUGE-1 and ROUGE-2 scores on
DUC benchmark datasets. HNet(T) is the best performing
system amongst the HNet variants.
Examples of Sentences Selected by HNet(T): In Table 3,
we provide examples of some high scored sentences and
low scored sentences selected by our HNet(T) system. From
Table 3, we observe that the learned representation high-
scores the sentences that consist of more facts (named en-

tities, numbers etc.) and low-scores the sentences that con-
tain more stop-words and/or are informal and so often fail to
provide rich facts.

H
ig

h
sc

or
ed

• The largest tanker spill in history resulted from the July 19, 1979, collision
off Tobago of the supertankers Atlantic Empress and Aegean Captain, in which
300,000 tons more than 80 million gallons of oil was lost.
• If the approximate 200,000 illegal aliens were not counted, the county would
loose an estimated $56 million a year in federal revenue and lose representatives
in Congress.

L
ow

sc
or

ed
• His coach and physician had also testified at the inquiry.
• The House had twice rejected efforts to exclude aliens.
• However, that oil burned as well as spilled.
• The new growth will attract a larger variety of birds and other animal life to the
area.

Table 3: Example Sentences Selected by HNet(T)

6 Conclusions

We proposed a novel deep neural network to learn sen-
tence representations combining both document-dependent
and document-independent aspects. The architecture con-
sists of a CSTI which acts as a sentence encoder, an extrac-
tor module which extracts document dependent features, a
Siam-CSTI net which identifies redundant sentences, and a
regression layer which performs sentence saliency scoring.
The proposed system discovers various inherent semantic
and compositional aspects as part of document-independent
features. We also showed that the use of transfer learning
approach helps in overcoming the learning issues faced by
the network due to the shortage of training data for multi-
document summarization. Experimental results on DUC
2001, 2002, and 2004 datasets confirmed that our system
outperforms several state-of-the-art baselines.

References

Bowman, S. R.; Manning, C. D.; and Potts, C. 2015. Tree-
Structured Composition in Neural Networks without Tree-
Structured Architectures. In NIPS Workshop on Cognitive
Computation: Integrating Neural and Symbolic Approaches.
Cao, Z.; Wei, F.; Dong, L.; Li, S.; and Zhou, M. 2015a.
Ranking with Recursive Neural Networks and Its Applica-

5479



tion to Multi-Document Summarization. In AAAI, 2153–
2159.
Cao, Z.; Wei, F.; Li, S.; Li, W.; Zhou, M.; and Wang, H.
2015b. Learning Summary Prior Representation for Extrac-
tive Summarization. In ACL (2), 829–833.
Carbonell, J., and Goldstein, J. 1998. The Use of MMR,
Diversity-based Reranking for Reordering Documents and
Producing Summaries. In SIGIR, 335–336.
Cheng, J., and Lapata, M. 2016. Neural Summarization by
Extracting Sentences and Words. In ACL.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural Language
Processing (almost) from Scratch. Journal of Machine
Learning Research 12(Aug):2493–2537.
Conroy, J. M.; Schlesinger, J. D.; Goldstein, J.; and Oleary,
D. P. 2004. Left-Brain/Right-Brain Multi-Document Sum-
marization. In Proc. of the Document Understanding Conf.
(DUC 2004).
Erkan, G., and Radev, D. R. 2004. Lexrank: Graph-based
Lexical Centrality as Salience in Text Summarization. Jour-
nal of Artificial Intelligence Research 22:457–479.
Galley, M. 2006. A Skip-Chain Conditional Random Field
for Ranking Meeting Utterances by Importance. In EMNLP,
364–372. Association for Computational Linguistics.
Ganesan, K.; Zhai, C.; and Han, J. 2010. Opinosis: A Graph-
based Approach to Abstractive Summarization of Highly
Redundant Opinions. In Proc. of the 23rd Intl. Conf. on
Computational Linguistics, 340–348. Association for Com-
putational Linguistics.
Hong, K., and Nenkova, A. 2014. Improving the Estimation
of Word Importance for News Multi-Document Summariza-
tion. In EACL, 712–721.
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