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Abstract

Word similarity and word relatedness are fundamental to nat-
ural language processing and more generally, understanding
how humans relate concepts in semantic memory. A growing
number of datasets are being proposed as evaluation bench-
marks, however, the heterogeneity and focus of each respec-
tive dataset makes it difficult to draw plausible conclusions
as to how a unified semantic model would perform. Addi-
tionally, we want to identify the transferability of knowledge
obtained from one task to another, within the same domain
and across domains. Hence, this paper first presents an evalu-
ation and comparison of eight chosen datasets tested using
the best performing regression models. As a baseline, we
present regression models that incorporate both lexical fea-
tures and word embeddings to produce consistent and com-
petitive results compared to the state of the art. We present our
main contribution, the best performing model across seven
of the eight datasets - a Gated Recurrent Siamese Network
that learns relationships between lexical word definitions.
A parameter transfer learning strategy is employed for the
Siamese Network. Subsequently, we present a secondary con-
tribution which is the best performing non-sequential model:
an Inductive and Transductive Transfer Learning strategy for
transferring decision trees within a Random Forest to a target
task that is learned from only few instances. The method in-
volves measuring semantic distance between hidden factored
matrix representations of decision tree traversal matrices.

Introduction

The task of measuring word similarity and word associa-
tion/relatedness is a fundamental natural language task that
has direct impact on upstream challenges such as informa-
tion extraction, taxonomy generation, natural language un-
derstanding and generation etc. The distinction between as-
sociation and similarity has been highlighted and well stud-
ied in previous work (Hill, Reichart, and Korhonen 2016). It
is also an active area of research in neuroscience and cogni-
tive science (Patterson, Nestor, and Rogers 2007), studying
the complex relationships between concept representations
in semantic distributed neural networks and how action se-
lectivity in neuron activity occurs for different symbolic re-
lationships in the frontal cortex. This phenomena has been
modeled from text by utilizing lexical resources (Alvarez
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and Lim 2007; Hughes and Ramage 2007) and distributional
semantic models (DSMs) for distance and similarity estima-
tion (Bollegala, Matsuo, and Ishizuka 2007) by manually
constructing a semantic network (i.e humanly annotated re-
sources) for how humans might perceive concepts to be re-
lated or similar, akin to selectivity of neurons in the same
regions of the Visual Word Form Area (VWFA) given a par-
ticular task (e.g association or similarity). Likewise, this pa-
per begins with an evaluation of both lexical and embed-
ding similarity features across eight (one similarity-based
and seven relatedness-based) datasets on ten best perform-
ing regressors as a baseline. We then select the top perform-
ing models and propose a method for transferring instances,
parameters and features from one task to another, within the
same domain and across domains only using few instances
from the target task. Secondly, a Gated Recurrent Siamese
Network (GRU-SN) for pairwise learning of word definitions
is presented. In addition, the more generalizable 1st hidden
layer is transferred across the GRU-SN’s between the related
domains, while the second layer is tuned but constrained
to the weight distribution of the source task, Ts. All results
are compared against the SoTA for each dataset, while also
proposing a new baseline for transfer learning (TL) on these
benchmark datasets.

Dataset Descriptions

Recently, a number of datasets have been established as gold
standard evaluations for association/relatedness and similar-
ity. However, many of these datasets focus on varying as-
pects of similarity and relatedness e.g different distributions
of part of speech (PoS), concept concreteness, and task fo-
cus (i.e relatedness, similarity or both). We start with a brief
overview of these datasets, splitting both the descriptions
into subsections based on relatedness/association and true
similarity.

Relatedness/Association Based Datasets

SimVerb is a verb similarity dataset that was created by
Gerz et al. (Kipper et al. 2008) by leveraging VerbNet and
its verb class extensions, consisting of a test set of 3000
pairs and a development set of 500 verb pairs. There are 827
unique verbs (by lemma) from 29 VerbNet Levin classes.
Verb lemmas are split into 4 categories based on frequency
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provided by the British National Corpus1 (BNC). The an-
notator agreement is ρ̄p = 0.84 for 843 native speakers
(65,000 ratings in total) and the correlation between the av-
erage score of a rater and the remaining raters is ρp =
0.86. The best performing distributional model uses a de-
pendency based skip-gram model with negative sampling
with a projection layer dimension hproj = 500, achieving
a ρs = 0.389 (ρs denotes Spearman Correlation) on the
development set and ρs = 0.351 on the test set. Bruni et
al. (Bruni, Tran, and Baroni 2011) introduced BLESS, a
dataset for comparing distributional models for semantic re-
latedness and compositionality. BLESS consists of 200 con-
crete nouns of various classes, paired with related nouns,
verbs or adjectives, with different relation types (e.g hyper-
nymy, meronymy) along with random relations. This makes
up 26,553 pairs in total, the largest dataset analysed in this
paper. The Semantic Neighbors (SN) dataset (Panchenko
2013) includes 14,682 pairs of 462 nouns, half are randomly
chosen and others are synonym pairs retrieved from Word-
Net and a synonym database, complementing BLESS since it
does not contain synonym pairs. Finkelstein et al’s. (Finkel-
stein et al. 2001) WordSim353 semantic similarity dataset
has been considered as a benchmark for semantic similar-
ity, consisting of 353 word pairs in English with 13 hu-
man annotated similarity judgments. The original work fo-
cused on vector representations where the dimensions of a
vector represent the frequency of a word across 27 differ-
ent domains, with the intuition that words with similar fre-
quencies across domains are related. Similarly to our work,
they also use WordNet measures to account for word rela-
tions and use a combination of this with the vector of do-
main word frequencies. This was the basis for which Word-
Sim353 was created. The MEN dataset is one of the largest
datasets in this section, consisting of 3000 word pairs with
relatedness scores (0-1] created by online raters. MEN was
created (Bruni, Tran, and Baroni 2014) to benchmark the
evaluation of multi-modal models. Word pairs were sampled
from a combined corpora ukWaC and Wackypedia if the fre-
quency f � 700, providing good coverage over the degree
of relatedness. Two of the authors annotated all 3000 pairs
in random order which produced p = 0.68 and also had an
average correlation with the annotators of ρ̄s = 0.84. Sim-
ilarity is tested on a development set (33% of dataset) to
test the generalization, in our evaluation we report 10-fold
cross validation results to ensure full coverage of all pairs.
The Rareword dataset (Luong, Socher, and Manning 2013)
includes 2034 morphologically complex and subsequently
rare word pairs with the average similarity rating from 10
raters, originally used to build DSMs by splitting words into
morpheme units and passing these units separately as input
vectors to an RNN encoder achieving ρs = 0.436, which we
consider as a baseline for subsequent evaluation of single
task and few shot transfer results.

Similarity Dataset

RG65 The Rubenstein and Goodenough (RG) (Ruben-
stein and Goodenough 1965) dataset was first introduced

1http://www.natcorp.ox.ac.uk/

in 1965 with the purpose of answering the question, “are
words that are synonymous more likely to be contextually
similar ?”. They address this question and also conjecture
that words are synonymous if the contexts overlap, “how-
ever, is apparently uncertain since words of low or medium
synonymy differ relatively little in overlap.”. The annotator
agreement for 15 people was ρp = 0.82 (ρp denotes Pearson
Correlation). To date, the current SoTA for this similarity
dataset between these 65 word pairs is by Camacho et al.
(Camacho-Collados, Pilehvar, and Navigli 2015) who more
recently used a knowledge-based Wiktionary approach using
a method called Align, Disambiguate and Walk, achieving
ρs = 0.92. SimLex-999 is a gold standard resource intro-
duced by Hill et al. (Hill, Reichart, and Korhonen 2016) for
the evaluation of models for conceptual word meaning, in-
stead of relatedness or association. They make a clear and
important distinction between association/relatedness and
true similarity with varying concrete concepts and abstract
concepts on verb, noun and adjective pairs, in comparison
to WordSim353 that does not account for this in the sim-
ilarity scoring guidelines, motivating the need for models
of real similarity. Authors point out that semantic models
performance is significantly lower in comparison to other
gold standard evaluation datasets due to its diversity and in-
stances where similarity and association are distinctly differ-
ent across many PoS, reasoning that Simlex provides a good
platform for testing and evaluating different semantic mod-
els. Additionally, since Simlex is the only dataset that we
deem to truly account for similarity, we focus our TL efforts
on only transferring from relatedness/association domains to
Simlex. Hill et al. (Hill, Reichart, and Korhonen 2016) have
tested the skipgram model (trained on Wikipedia) which
achieves ρs = 0.37, (Mikolov et al. 2013) only trained on
running monolingual text ρs = 0.56 (Schwartz, Reichart,
and Rappoport 2015), knowledge-based approach (WordNet,
Framenet etc.), a model that uses rich paraphrase data (Wi-
eting et al. 2015) achieving ρs = 0.68 , features from vari-
ous word embeddings and two lexical databases, ρs = 0.76
(Recski, Iklódi, and Pajkossy 2016).

Siamese Networks
Siamese networks (SN’s) are neural networks that learn rela-
tionships by encoding pairs of objects to separately measure
the distance/similarity between encoded representations of
both networks. SN’s have been applied to learning sen-
tence relatedness scores and textual entailment (Mueller and
Thyagarajan 2016) achieving SoTA results on the SICK se-
mantic textual similarity task. In the computer vision com-
munity, Hoffer et. al (Hoffer and Ailon 2015) have also
trained a triplet network that takes three input images, pro-
vides l2 distance between the output of three separate but
identical CNNs (f(x+, x), (x, x−) where x and x+ are the
same class and x− are not) for digit recognition and an-
imal/vehicle image classification. Chopra et al. (Chopra,
Hadsell, and LeCun 2005) have used a contrastive loss func-
tion to learn parameters for a function so that similar points
are drawn together and dissimilar points repulse. This mo-
tivates the idea of using contrastive loss for learning simi-
larity and relatedness in the classification setting, where the
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emphasis is put on similar or related word pairs to be drawn
closer. Intuitively, encoded representations of paired word
definitions might only have few dimensions of their encoded
sentence representations that are close, but many potentially
distant given the context in which a definition describes a
word. In this sense, we consider the definitions of words to
be more similar if only a few dimensions are very similar
even if the remainder are distant, to account for more subtle
relations and similarities. This requires that the range of an-
notation scores be converted to classes, in our approach bi-
nary classes. In order to choose negative and positive classes
for Trel ∈ Drel and Tsim ∈ Dsim, we analyze the distribu-
tion of normalized annotated scores ([0-1]) and choose the
threshold for classes to be ȳ for each respective dataset. This
hypothesis is compared to MSE for the original regression
task and Negative Log-Likelihood (NLL) in classification.

Transfer Learning

In a large number of problems in machine learning (ML) we
do not have enough labeled data (or poorly labeled) for a
particular task but we have labeled data for a related task
Tr in the same domain Ds in space X ∈ R

d, or a re-
lated domain Dt. Concretely, when P (Y |X) changes be-
tween training and testing, also referred to as model adap-
tation. Humans often learn with little or no knowledge of
unfamiliar observations by applying knowledge of related
and/or similar observations. This kind of learning has al-
luded many modern ML models as a meta learning proce-
dure (when suitable) whilst only relying on large amounts
of data as a cumbersome replacement. Although, in the past
decade there has been increasing interest for learning (Ben-
gio 2012) that makes use of available knowledge that is
transferable. Supervised TL can be broadly split into two
types: Transductive Transfer Learning (TTL) and Inductive
Transfer Learning (ITL). In TTL, we transfer knowledge
across different domains, Ds → Dt where feature spaces
Xs � Xt, proving to be a more difficult transfer learning
scenario given the change in domain. In the ITL setting,
the target task Tt is different from the source task Ts, how-
ever both [Ts, Tt] ∈ D, requiring a mapping function f (θ).
This can be achieved using four approaches: instance trans-
fer where we learn to transfer whole instances Xi that are
related across tasks, transferring features across tasks, trans-
ferring parameters across tasks or knowledge based trans-
fer (e.g using lexical resources like WordNets semantic net-
work to transfer knowledge). We primarily focus on both
parameter transfer and relational-knowledge transfer for our
Siamese Network. However, we also present an alternative
ensemble model that incorporates instance, feature and pa-
rameter transfer in a unified manner. -

Methodology

All eight datasets used in the experiments are those de-
scribed in Section Dataset Description, making up 49, 045
word pairs (predominantly from BLESS and SN). This also
includes a large number of definition sentence pairs retrieved
from Wiktionary which we evaluate the GRU-SN model on.

Non-sequential Regression Models

Lexical graph measures from WordNet such as Leacock &
Chodorow (LCH) similarity , Wu & Palmer (WUP) simi-
larity and path similarity are used. LCH similarity computes
the shortest path length (SPL) for a word pair and normalizes
the value by the WordNet hierarchy maximum path length
(SPL) (computed using the WUP similarity). LCH is then
the inverse of the SPL between the words. We also use pre-
trained GoogleNews Word2Vec embeddings by comparing
the cosine similarity between word pair embeddings, using
this value as a feature for predicting scores. The combina-
tion of both semantic knowledge based measures and co-
occurrence based predict vectors (i.e skipgram vectors) is
motivated by previous literature in cognitive science. Repre-
senting words and their context words without any external
influence or knowledge can be problematic, also known as
the symbol grounding problem. Hence, we attempt to mit-
igate the lack of external knowledge when only using co-
occurrence based measures, particularly for similarity tasks
like Simlex.

Baseline Model Configurations A number of well
founded models are considered for regression as an initial
baseline, the first of which is the Least Absolute Shrink-
age and Selection Operator (LASSO) regression model.
The LASSO model uses an MSE loss with a regulariza-
tion term α|θ|l1 to penalize large coefficients. ElasticNet
is also considered, by optimizing both L1 and L2 norms.
The Huber regression model optimizes MSE for samples
where |(y − XT θ)/σ| � ε � |(y − XT θ)/σ| where σ en-
sures that the loss is scale invariant to y. All linear regres-
sion models are transferred using a weighted average θs ∀
Ts ∈ Ds → Tt ∈ Dt where T1:s � Tt are assigned based on
the euclidean distance to Wt for Tt by first computing the
Pointwise Mutual Information (PMI) between coefficients
θs of source models Ms and coefficients θt of target model,
Mt. The Support Vector Machine (SVM) uses a 2nd degree
RBF with γ = 0.001, ε = 0.1 and C = 1.0 and shrink-
age. The Gradient Boosted Tree Regression (GBTR) model
uses a learning rate α = 0.001, 10 decision trees, a tuned
depth of max(dG) = 5 and uses a least squares (LS) loss
function. For both Bagging and Random Forest (RF) regres-
sors, 10 C4.5 trees are used with MSE to measure the split
quality with a maximum depth max(dG) = 5. For the k-
nearest neighbor regressor we find best results are obtained
when k = 5 with standard euclidean distance. These models
are considered as a baseline along with the aforementioned
SoTA in the previous section for both single task learning
and few shot transfer learning.

Random Forest Few Shot Transfer Learning To answer
the questions of what, where and how to transfer in both the
ITL (transfer in domains) and TTL (transfer across domains)
setting, a strategy for decision tree transfer from RF’s is de-
scribed. We look to transfer individual trees F ∈ F , for two
situations: Ts ∈ Drel → Tt ∈ Dsim and Ts ∈ Drel →
Tt ∈ Drel . This is a form of feature-based transfer, since
RF’s bootstrap sample for x ∈ X and features f ∈ F ∈ R

N
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and model transfer since we transfer weighted C4.5 trees.
We exploit the decision paths taken for a set of sampled in-
stances Xs ∈ X∀F and then compare lower dimensional
factored representations fh from Ts → Tt. Concretely, the
attributes are indexed (w2v=1,path=2,..) and appear as deci-
sions statements, we represent each instance Xi as a vector
of decisions it is passed through in the decision tree (DT)
where elements are ordered decision values. In this sense,
we are comparing C4.5 trees with labeled leaves with the
same features ∀Xs ∈ Xs in an attempt to identify transfer-
able C4.5 trees. Frameworks for semantic similarity between
DT’s have been explored before (Ntoutsi, Kalousis, and
Theodoridis 2008), although in our case we are also compar-
ing DT’s from different distributions from different domains
Xs ∈ Ds → Xt ∈ Dt. Segev et al. (Segev et al. 2017)
approached this problem by adjusting the target DT using a
combination of expanding/reducing the source tree structure
and replacing the template decision values by inserting the
target DT values. In our approach we too seek to encode and
find similarity in structure between DT’s from Xs and Xt,
although we want to do this for the similarity between la-
tent representations of trees and discard any trees in an RF
that are too distant from the DT trained on a subsample for
Tt. Furthermore, latent representations that account for weak
correlations (e.g subtle correlations between underlying re-
latedness and similarity tasks) are also a desirable character-
istic when comparing decision trees. Therefore, we propose
the use of Correlation Explanation (CorEx) (Ver Steeg and
Galstyan 2014) - an unsupervised method used to find la-
tent factors hf that can discover hierarchical representations
of X , and scales well for high dimensional data, such as
a feature vector of decision values. We choose latent fac-
tors |hf | = 20 and then compute the euclidean norm be-
tween two latent factor vectors that represent trees, one con-
structed from subsamples in an RF for Ts and a single deci-
sion tree learned from a 10 % subsample of Simlex, Tt (also
the case for TTL with GRU-SN). RF is then transferred from
Ts ∈ Ds → Tt ∈ Dt. An element Mij indicates a path j
along the tree that has been visited by instance Xi for all
trees in RF, returning a list of vectors of latent factors for
each decision tree which can be represented in a matrix Mγs

where γ are the latent factors for all trees. Equation 1 shows
the multivariate mutual information (MMI) between a set of
decision paths M (i)

dp ∈ M (i) and latent factors hf . Here we
aim to maximize both for each decision path that is repre-
sented as matrix M ∈ R

N , so to find factors hf that best
explain the correlations in M (i). In Equation 2, α is ran-
domly initialized.

MMI(Mdp;hf ) =
∑

i∈Rn
I(M

(i)
dp : hf )− I(M

(i)
p : hf ) (1)

max
α,hf |Mdp

m∑

j=1

n∑

i=1

αi,jI(hfj : M
(i)
dp )−

m∑

j=1

I(hfj : M
(i)
dp )

(2)

The euclidean norm ∀C4.5 ∈ RF to a target C4.5 tree
trained on few examples on a Tt where the source trees are
weighted by their latent factor euclidean distance to hf rep-

resentation of Tt, for ITL where we identify loosely related
the tasks for transfer, and TTL.

Gated Recurrent Siamese Network

An alternative way to combine word vector and semantic
network based similarities is to extract informative defini-
tions for each word pair to use as input pairs 〈s(i)1 , s

(i)
2 〉 ∈

[N → R] to the GRU-SN. The definitions are retrieved
Wiktionary which also provides a dictionary containing a
range of other properties such as PoS tags, etymologies,
antonyms, synonyms etc. An example of word pairs (impa-
tient, anxious) for Simlex is the following - (“Restless and
intolerant of delays” - “Full of anxiety or disquietude greatly
concerned or solicitous especially respecting something fu-
ture or unknown”) where in classification φ = y � ȳ,
(φ → 1) ∧ (¬φ → 0). These definitions are then in the
form of pretrained GoogleNews word vectors to pass as in-
put to the GRU-SN with labels y as scores provided by each
dataset We consider at most 4 definitions per word in Wik-
tionary. Furthermore, we count the number of definitions for
all word pairs so to average across the results when com-
puting the ρs and ρp, this avoids biased results toward pairs
which have more definition pairings and also makes for a fair
comparison against the non-sequential models. Equations 3,
4, 5 and 6 present the nonlinear functions of the Gated Re-
current Unit (GRU) (Chung et al. 2014), where zt is the up-
date gate, rt denotes the reset gate, candidate hidden layer h̃t

and hidden layer ht, which is an interpolation between ht−1

and h̃t−1. The GRU treats both input and forget gates as a
single function zt and does not contain a separate memory
cell like Long Short-Term Memory (LSTM). It also merges
the cell state and hidden state. Since the GRU do not use
memory cells, hence the content of a cell is fully exposed
to other units, instead, the GRU controls for content coming
from ht−1, whereas the LSTM instead controls the flow of
new information from the current input xt.

zt = σ(Wzxt + Uzht−1) (3)
rt = σ(Wrxt + Urht−1) (4)

h̃t = tanh(Wrrt + rt � (Uht−1)) (5)

ht = (1− zt)� ht−1 + zt � h̃t (6)

In preliminary experiments we found the GRU to outper-
form the LSTM, herein we focus on GRU-SN. In our case,
both networks in the GRU-SN have hidden layers l = 2.

Parameter Settings The GRU-SN consists of a stan-
dard 2-hidden layer GRU network for each input sentence
〈s(i)1 , s

(i)
2 〉 ∀i ∈ N where N is the number of instances in a

dataset X . Orthogonalization weight initialization is used to
produce uncorrelated weights and gradients are clipped for
10−5 ≤ W ≥ 1 − 10−5, although a GRU should circum-
vent exploding or vanishing gradients. These weights are
also tied across both of the 2-hidden layer networks where
both use a dropout rate p = 0.2. The batch size for each X
is chosen in proportion to number of N instances, a mini-
bath between 5% - 10% (e.g SN and BLESS use 5% while
smaller datasets such as Simlex use 10%).
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Figure 1: 2-hidden layer GRU Siamese Network

Loss Functions Apart from using MSE loss for regres-
sion and NLL in classification, we also consider Contrastive
Loss. Contrastive loss attempts to pull weights of neigh-
boring samples together, and push non-neighbors elements
apart. Likewise, close elements of encoded representations
〈h(l1)

T , h
(l2)
T 〉, for word definitions input pairs 〈s(i)1 , s

(i)
2 〉 are

pulled together, where T denotes the max length of a sen-
tence set for both definition pairs (in our experiments T =
30). Equation (7) shows the contrastive loss function pro-
posed by (Hadsell, Chopra, and LeCun 2006), where Dw is
the parameterized distance function of |h(l1)

T −h
(l2)
T | (i.e def-

inition encoding pairs) and θ is all shared network weights.
This requires that we treat the normalized target label ỹ as
p(y|θ, x) instead of a continuous rating. We assume this con-
version is acceptable by making the assumption that human
ratings for Dsim and Drel are approximately close to the
rater correlation scores pp∀T ∈ D, thereby interpreting ȳ as
estimating uncertainty that a given word pair are classified
as related/similar or not.

L(θ) = 1

2
(1− Y )D2

w +
1

2
Y max(0,margin−Dw)

2 (7)

Transfer Learning for Siamese Networks

Previous work (Yosinski et al. 2014) empirically show ear-
lier hidden layer feature representations are more general-
izable to loosely related tasks for images in the computer
vision domain. Likewise, we hypothesize that this is similar
for embedded word representations in the lower level fea-
tures from initial hidden layers, hence we look to transfer
weights of the first hidden layer from a Ts∀Drel to Simlex.
Additionally, we enforce a prior density on target weights
[W

(1)
s , U

(1)
s , b

(1)
s ,W

(2)
s , U

(2)
s , b

(2)
s ] (denoted as θs) obtained

from trained networks in Ts. We take a simple approach to
TTL by initializing the weights Ts with a probability density
estimate p(θs|Xs) from Tt, carried out for each respective
layer, particularly in the few shot learning setting.

The methodology can be summarized as the four follow-
ing steps: (1) evaluate single task regressors on all word
similarity and relatedness datasets and compare to exist-
ing SoTA, (2) apply a TL approach for the best performing
learner across related tasks and domains, (3) evaluate pro-
posed GRU-SN trained on Wiktionary lexical definitions of
word pairs and (4) transfer weights across tasks using source
weight initialization and source weight distribution.

Figure 2: Boxplot of Annotation Scores

Figure 3: Part of Speech Distribution

Experimental Results

Figure 2 shows the distribution of the output space Y for
all datasets. Evidently, the output distribution Y is similar
between Simlex, Simverb and Sim353 which gives an incli-
nation for the subsequent transfer learning. The larger SN
and BLESS datasets show low scores for similarity with
a similar trend of outlying high scores for both datasets.
Also, Rareword and MEN both have similar quartile ranges.
These findings are also reflected in 3. For example, the out-
put space for MEN and Rareword is somewhat reflected by
the PoS frequency distrbution, as both have similar propor-
tions of nouns and adjectives. Similarly, Simlex and SimVerb
also have close annotation score quartile ranges, that is also
reflected by PoS, apart from the strong focus of verbs in
SimVerb which is not included in Simlex. These observations
are used to help motivate our focus for a particular subset of
transfer learning between datasets.

Regression Results With the exception of MEN, ensemble
meta learning models such as Random Forests (RFs) have
achieved the best 10-fold cross-validation (CV) correlations
measures, as shown in Table 1 and 2 (bolded font represents
best performing models), with Gradient Boosting showing
close performance. The learning curve on a 10-fold CV is
shown for each RF classifier in figure 4. BLESS shows no
consistent improvement in accuracy after trained on 50 %
onwards. RG shows high variance in results between training
75 % - 87.50 % which can be explained by the small sample
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Lasso Elastic Bayes Huber

RG65 PC 0.517 0.458 0.477 0.494
SC 0.494 0.441 0.452 0.486

SimVerb PC 0.379 0.396 0.377 0.367
SC 0.358 0.378 0.353 0.349

WordSim353 PC 0.688 0.598 0.611 0.633
SC 0.735 0.629 0.662 0.703

Simlex PC 0.521 0.490 0.539 0.571
SC 0.500 0.511 0.511 0.559

MEN PC 0.761 0.750 0.742 0.772
SC 0.773 0.762 0.759 0.786

Rareword PC 0.477 0.485 0.429 0.467
SC 0.491 0.505 0.440 0.490

BLESS PC 0.612 0.632 0.628 0.630
SC 0.514 0.522 0.527 0.545

SN PC 0.521 0.556 0.553 0.542
SC 0.359 0.375 0.384 0.365

Table 1: Linear Regression 10-fold CV Results
(Spearman = SC, Pearson= PC)

k-NN ANN GBoost RF Bagging SVR

RG65 PC 0.508 0.576 0.659 0.629 0.526 0.583
SC 0.393 0.445 0.526 0.602 0.496 0.557

SimVerb PC 0.272 0.309 0.415 0.418 0.337 0.400
SC 0.251 0.303 0.390 0.395 0.299 0.369

WordSim353 PC 0.568 0.361 0.649 0.661 0.480 0.571
SC 0.567 0.341 0.667 0.672 0.463 0.634

Simlex PC 0.479 0.496 0.514 0.601 0.527 0.479
SC 0.471 0.461 0.499 0.576 0.501 0.464

MEN PC 0.663 0.482 0.787 0.768 0.672 0.548
SC 0.667 0.482 0.772 0.763 0.679 0.605

Rareword PC 0.395 0.396 0.501 0.549 0.285 0.486
SC 0.388 0.388 0.483 0.531 0.277 0.489

BLESS PC 0.600 0.624 0.660 0.647 0.557 0.639
SC 0.506 0.532 0.564 0.567 0.466 0.547

SN PC 0.495 0.554 0.592 0.563 0.516 0.549
SC 0.367 0.360 0.467 0.469 0.383 0.346

Table 2: Nonlinear Regression 10-fold CV Results

of 65 word pairs. Simlex shows a steady incline in perfor-
mance, at 85 % of the training dataset we find a plateau in
10-CV performance, a similar trend also exhibited for MEN.

Table 3 shows models trained in Trel ∈ Ds and tested
on Tsim ∈ Dt, and also D(1)

s → D(2)
s . Transferring weights

from WordSim353 → Simlex for the Huber regression model
has led to ρs = 0.490 which was originally ρs = 0.574
for Simlex. The performance for zero-shot transfer for the
SVR model is also notably similar. The ensemble methods
that performed the best on single tasks have not transfered
as well from Ds → Dt compared to the Huber and SVR
models. In fact, SVR shows almost identical results to that
of the source task performance. This pattern re-occurs for
the other datasets that Transfer Across Different Domains
(TTL). In addition, testing Rareword on WordSim353 pro-
duces the best performance for WordSim353 thus far, this
can be explained by the larger dataset but also Y is similar,
as demonstrated in the 2 boxplot.

Table 4 shows that transferring weighted C4.5 trees from
SimVerb, WordSim353, Rareword & MEN (in bolded font)
shows performance improvements for ρs when ensembled
with a single C4.5 tree trained on 90 Simlex instances. No-
tably, SimVerb has carried over the most knowledge to Sim-
lex, also slightly improving over the zero-shot learning set-
ting. Similarly, when Rareword C4.5 trees are ensembled
with a single Simlex tree there is a 0.051 point increase in
ps.

Figure 4: Random Forest Cross-Validation Learning Curve

In-Domain Transfer Huber GB RF SVR

Rareword → WordSim353 PC
SC

0.690
0.723

0.709
0.727

0.688
0.718

0.728
0.730

MEN → Rareword PC
SC

0.542
0.551

0.542
0.557

0.548
0.556

0.549
0.556

Rareword → MEN PC
SC

0.699
0.700

0.702
0.701

0.683
0.687

0.687
0.737

WordSim353 → RareWord PC
SC

0.604
0.622

0.575
0.570

0.559
0.565

0.609
0.614

SN → BLESS PC
SC

0.633
0.543

0.655
0.565

0.665
0.525

0.608
0.547

Out-Of-Domain Transfer

WordSim353 → Simlex PC
SC

0.490
0.471

0.413
0.422

0.447
0.412

0.487
0.474

SimVerb → Simlex PC
SC

0.476
0.472

0.333
0.261

0.445
0.392

0.544
0.512

SN → Simlex PC
SC

0.491
0.479

0.382
0.405

0.421
0.406

0.474
0.474

MEN → Simlex PC
SC

0.443
0.422

0.431
0.416

0.430
0.389

0.495
0.479

Rareword → Simlex PC
SC

0.432
0.410

0.306
0.307

0.409
0.364

0.479
0.473

BLESS → Simlex PC
SC

0.487
0.470

0.395
0.381

0.319
0.344

0.470
0.447

Simlex→ WordSim353 PC
SC

0.735
0.696

0.724
0.699

0.733
0.702

0.743
0.725

Simlex→SimVerb PC
SC

0.340
0.296

0.353
0.306

0.347
0.302

0.354
0.308

Simlex → SN PC
SC

0.473
0.378

0.469
0.372

0.477
0.376

0.474
0.375

Simlex→MEN PC
SC

0.696
0.695

0.700
0.699

0.700
0.697

0.707
0.705

Simlex→Rareword PC
SC

0.566
0.554

0.566
0.563

0.557
0.547

0.561
0.544

Simlex→BLESS PC
SC

0.665
0.525

0.670
0.526

0.668
0.525

0.666
0.523

Table 3: Zero Shot Parameter Transfer Learning

Siamese Network Results The results from learning
pairwise relationships between Wiktionary definitions has
shown improvements. Table 5 show the number of defi-
nitions pairs for each dataset and Table 6 shows the re-
sults of the GRU-SN for the average 10-fold CV correla-
tion measures, in both classification and regression. We find
that there are significantly less definition pairs for Rareword
due to the complex morphology associated with rare, infre-
quent words. Treating the problem as one of binary classifi-
cation where we interpret scores of relatedness or similarity
as probability estimates P (ŷ|x1, x2) has shown an improve-
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Target Source
Simlex ←� Simlex WordSim353 RG SN
PC 0.567 0.551 0.421 0.581
SC 0.580 0.565 0.349 0.536
Simlex ←� BLESS SimVerb RareWord MEN
PC 0.319 0.581 0.612 0.579
SC 0.344 0.594 0.563 0.560

Table 4: Few Shot Parameter and Instance Decision Tree
Transfer with CE Latent Factor Similarity

Frequency Simlex WordSim353 RG65 SN
Vocabulary 1028 437 48 5901
Definitions 145,992 40,158 3,679 648,845

BLESS SimVerb RareWord MEN
Vocabulary 8,020 826 2,946 639
Definitions 2,076,130 649,898 30,131 125,368

Table 5: Wiktionary Definition Statistics

ment for all datasets.
From Table 6 we see a significant performance increase

on 10-CV results, particularly for Rareword, Simlex and
WordSim353. Simlex has seen a significant improvement
from what was ρs = 0.576 to ρs = 0.691 by exploiting
the larger and more descriptive definitions. Although RG65
has improved performance using 3,679 definition pairs, due
to its small training size it is difficult to perform parameter
transfer, shown by its low correlation scores in Table 7.

Table 7 shows the results of few shot learning transfer us-
ing NLL loss. Hence, these models are trained on Ts and then
tuned using Simlex trained on a 10% subsample. Parameter
transfer is carried out by fixing the 1st hidden layer from
Ts and learning only the 2nd layer features from Simlex, ini-
tialized from kernel density estimation of the second layer
weights in Ts. Similarly to the zero shot learning setting for
the alternative models, SimVerb has provided the best gener-
alization properties on Simlex.

Discussion and Conclusion

We observe that single task learning approaches for all
datasets have performed comparably to prior SoTA as de-
scribed in the dataset description. RF’s with 10 C4.5 trees
have outperformed other regression models on the major-
ity of tasks. Additionally, transferring C4.5 trees constructed
from Trel → Tsim (i.e Simlex) has performed almost as
well as models only trained on Ds. Transferring knowledge
through C4.5 trees within RF’s in the few shot learning set-
ting has led to good performance in comparison to a fully
trained RF on the target task, it is also the first of its kind.
Additionally, the RF transfer learning strategy has the ad-
vantage of being applicable to pairwise tasks that are not
sequential in nature.

Transferring between closely related tasks is more effec-
tive as defined by the similarity between latent represen-
tations in the GRU-SN model, also reinforced by analysis
of the similarity between output distributions Y and PoS
distribution. The GRU-SN for single task learning on Wik-
tionary definitions has produced the best overall results, par-

Wiktionary Definitions Simlex WordSim353 RG65 SN

GRU-SNN w/ Contrastive PC
SC

0.691
0.657

0.784
0.788

0.555
0.503

0.632
0.516

GRU-SNN w/ NLL PC
SC

0.734
0.671

0.809
0.759

0.573
0.557

0.617
0.594

GRU-SNN w/ MSE PC
SC

0.683
0.638

0.743
0.701

0.583
0.549

0.590
0.579

BLESS SimVerb Rareword MEN

GRU-SNN w/ Contrastive PC
SC

0.638
0.541

0.596
0.572

0.672
0.619

0.601
0.722

GRU-SNN w/ NLL PC
SC

0.594
0.517

0.654
0.612

0.708
0.647

0.591
0.719

GRU-SNN w/ MSE PC
SC

0.603
0.528

0.524
0.510

0.369
0.479

0.592
0.645

Table 6: GRU-SN With Contrastive, NLL & MSE Loss

Target Source
Simlex ←� Simlex WordSim353 RG SN
PC 0.691 0.633 0.382 0.596
SC 0.657 0.605 0.357 0.520
Simlex ←� BLESS SimVerb RareWord MEN
PC 0.522 0.651 0.624 0.658
SC 0.449 0.623 0.629 0.614

Table 7: GRU-SN Few Shot Parameter Transfer using NLL

ticularly for classification. Through experimentation of con-
straining the gradients using kernel density estimates for
the 2nd hidden layer we suggest that the standard devia-
tion should be contingent on the distance between tasks i.e
weight constraints are relaxed when tasks/domains are far
apart and vice-versa. The improved average correlation mea-
sures across datasets can be attributed to the use of Wik-
tionary definition pairs, as (1) there is a considerably larger
number of instances for training, (2) a unified approach to
encoding lexically driven pairwise vectors, (3) an empiri-
cal experimentation of various loss function for this specific
task and (4) a TTL strategy for knowledge transfer over iden-
tical network architectures across different domains. This
highlights the commonalities between different domains al-
though the tasks are different.

We have focused on term similarity and term relatedness
as it is fundamental to how humans perceive and understand
relations between concepts in the real world. However, the
GRU-SN can be used in other problems that require learning
relations between two or more sequences. We hope these
findings ultimately lead to less fragmentation when compar-
ing results across different datasets and establish new results
on the transferability between domains and tasks.
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