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Abstract

We present StarSpace, a general-purpose neural embedding
model that can solve a wide variety of problems: labeling
tasks such as text classification, ranking tasks such as in-
formation retrieval/web search, collaborative filtering-based
or content-based recommendation, embedding of multi-
relational graphs, and learning word, sentence or document
level embeddings. In each case the model works by embed-
ding those entities comprised of discrete features and com-
paring them against each other – learning similarities depen-
dent on the task. Empirical results on a number of tasks show
that StarSpace is highly competitive with existing methods,
whilst also being generally applicable to new cases where
those methods are not.

1 Introduction

We introduce StarSpace, a neural embedding model that is
general enough to solve a wide variety of problems:

• Text classification, or other labeling tasks, e.g. sentiment
classification.

• Ranking of sets of entities, e.g. ranking web documents
given a query.

• Collaborative filtering-based recommendation, e.g. rec-
ommending documents, music or videos.

• Content-based recommendation where content is defined
with discrete features, e.g. words of documents.

• Embedding graphs, e.g. multi-relational graphs such as
Freebase.

• Learning word, sentence or document embeddings.

StarSpace can be viewed as a straight-forward and effi-
cient strong baseline for any of these tasks. In experiments
it is shown to be on par with or outperforming several com-
peting methods, whilst being generally applicable to cases
where many of those methods are not.

The method works by learning entity embeddings with
discrete feature representations from relations among collec-
tions of those entities directly for the task of ranking or clas-
sification of interest. In the general case, StarSpace embeds
entities of different types into a vectorial embedding space,
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hence the “star” (“*”, meaning all types) and “space” in the
name, and in that common space compares them against
each other. It learns to rank a set of entities, documents or
objects given a query entity, document or object, where the
query is not necessarily of the same type as the items in the
set.

We evaluate the quality of our approach on six different
tasks, namely text classification, link prediction in knowl-
edge bases, document recommendation, article search, sen-
tence matching and learning general sentence embeddings.
StarSpace is available as an open-source project at https:
//github.com/facebookresearch/Starspace.

2 Related Work

Latent text representations, or embeddings, are vectorial rep-
resentations of words or documents, traditionally learned in
an unsupervised way over large corpora. Work on neural
embeddings in this domain includes (Bengio et al. 2003),
(Collobert et al. 2011), word2vec (Mikolov et al. 2013) and
more recently fastText (Bojanowski et al. 2017). In our ex-
periments we compare to word2vec and fastText as repre-
sentative scalable models for unsupervised embeddings; we
also compare on the SentEval tasks (Conneau et al. 2017)
against a wide range of unsupervised models for sentence
embedding.

In the domain of supervised embeddings, SSI (Bai et al.
2009) and WSABIE (Weston, Bengio, and Usunier 2011)
are early approaches that showed promise in NLP and infor-
mation retrieval tasks ((Weston et al. 2013), (Hermann et al.
2014)). Several more recent works including (Tang, Qin, and
Liu 2015), (Zhang and LeCun 2015), (Conneau et al. 2016),
TagSpace (Weston, Chopra, and Adams 2014) and fastText
(Joulin et al. 2016) have yielded good results on classifica-
tion tasks such as sentiment analysis or hashtag prediction.

In the domain of recommendation, embedding models
have had a large degree of success, starting from SVD
(Goldberg et al. 2001) and its improvements such as SVD++
(Koren and Bell 2015), as well as a host of other tech-
niques, e.g. (Rendle 2010; Lawrence and Urtasun 2009;
Shi et al. 2012). Many of those methods have focused on
the collaborative filtering setup where user IDs and movie
IDs have individual embeddings, such as in the Netflix chal-
lenge setup (see e.g., (Koren and Bell 2015), and so new
users or items cannot naturally be incorporated. We show
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how StarSpace can naturally cater for both that setting and
the content-based setting where users and items are repre-
sented as features, and hence have natural out-of-sample ex-
tensions rather than considering only a fixed set.

Performing link prediction in knowledge bases (KBs)
with embedding-based methods has also shown promising
results in recent years. A series of work has been done in
this direction, such as (Bordes et al. 2013) and (Garcia-
Duran, Bordes, and Usunier 2015). In our work, we show
that StarSpace can be used for this task as well, outperform-
ing several methods, and matching the TransE method pre-
sented in (Bordes et al. 2013).

3 Model
The StarSpace model consists of learning entities, each of
which is described by a set of discrete features (bag-of-
features) coming from a fixed-length dictionary. An entity
such as a document or a sentence can be described by a bag
of words or n-grams, an entity such as a user can be de-
scribed by the bag of documents, movies or items they have
liked, and so forth. Importantly, the StarSpace model is free
to compare entities of different kinds. For example, a user
entity can be compared with an item entity (recommenda-
tion), or a document entity with label entities (text classifi-
cation), and so on. This is done by learning to embed them
in the same space such that comparisons are meaningful –
by optimizing with respect to the metric of interest.

Denoting the dictionary of D features as F which is a D×
d matrix, where Fi indexes the ith feature (row), yielding
its d-dimensional embedding, we embed an entity a with∑

i∈a Fi.
That is, like other embedding models, our model starts by

assigning a d-dimensional vector to each of the discrete fea-
tures in the set that we want to embed directly (which we
call a dictionary, it can contain features like words, etc.).
Entities comprised of features (such as documents) are rep-
resented by a bag-of-features of the features in the dictionary
and their embeddings are learned implicitly. Note an entity
could consist of a single (unique) feature like a single word,
name or user or item ID if desired.

To train our model, we need to learn to compare entities.
Specifically, we want to minimize the following loss func-
tion:∑

(a,b)∈E+

b−∈E−

Lbatch(sim(a, b), sim(a, b−1 ), . . . , sim(a, b−k ))

There are several ingredients to this recipe:
• The generator of positive entity pairs (a, b) coming from

the set E+. This is task dependent and will be described
subsequently.

• The generator of negative entities b−i coming from the set
E−. We utilize a k-negative sampling strategy (Mikolov
et al. 2013) to select k such negative pairs for each batch
update. We select randomly from within the set of entities
that can appear in the second argument of the similarity
function (e.g., for text labeling tasks a are documents and
b are labels, so we sample b− from the set of labels). An
analysis of the impact of k is given in Sec. 4.

• The similarity function sim(·, ·). In our system, we have
implemented both cosine similarity and inner product,
and selected the choice as a hyperparameter. Generally,
they work similarly well for small numbers of label fea-
tures (e.g. for classification), while cosine works better for
larger numbers, e.g. for sentence or document similarity.

• The loss function Lbatch that compares the positive pair
(a, b) with the negative pairs (a, b−i ), i = 1, . . . , k. We
also implement two possibilities: margin ranking loss (i.e.
max(0, μ− sim(a, b), where μ is the margin parameter),
and negative log loss of softmax. All experiments use the
former as it performed on par or better.
We optimize by stochastic gradient descent (SGD), i.e.,

each SGD step is one sample from E+ in the outer sum,
using Adagrad (Duchi, Hazan, and Singer 2011) and hog-
wild (Recht et al. 2011) over multiple CPUs. We also apply
a max norm of the embeddings to restrict the vectors learned
to lie in a ball of radius r in space Rd, as in other works, e.g.
(Weston, Bengio, and Usunier 2011).

At test time, one can use the learned function sim(·, ·) to
measure similarity between entities. For example, for classi-
fication, a label is predicted at test time for a given input a
using maxb̂ sim(a, b̂) over the set of possible labels b̂. Or in
general, for ranking one can sort entities by their similarity.
Alternatively the embedding vectors can be used directly for
some other downstream task, e.g., as is typically done with
word embedding models. However, if sim(·, ·) directly fits
the needs of your application, this is recommended as this is
the objective that StarSpace is trained to be good at.

We now describe how this model can be applied to a wide
variety of tasks, in each case describing how the generators
E+ and E− work for that setting.

Multiclass Classification (e.g. Text Classification) The
positive pair generator comes directly from a training set of
labeled data specifying (a, b) pairs where a are documents
(bags-of-words) and b are labels (singleton features). Nega-
tive entities b− are sampled from the set of possible labels.

Multilabel Classification In this case, each document a
can have multiple positive labels, one of them is sampled as
b at each SGD step to implement multilabel classification.

Collaborative Filtering-based Recommendation The
training data consists of a set of users, where each user is de-
scribed by a bag of items (described as unique features from
the dictionary) that the user likes. The positive pair generator
picks a user, selects a to be the unique singleton feature for
that user ID, and a single item that they like as b. Negative
entities b− are sampled from the set of possible items.

Collaborative Filtering-based Recommendation with
out-of-sample user extension One problem with classi-
cal collaborative filtering is that it does not generalize to new
users, as a separate embedding is learned for each user ID.
Using the same training data as before, one can learn an al-
ternative model using StarSpace. The positive pair generator
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instead picks a user, selects a as all the items they like except
one, and b as the left out item. That is, the model learns to es-
timate if a user would like an item by modeling the user not
as a single embedding based on their ID, but by representing
the user as the sum of embeddings of items they like.

Content-based Recommendation This task consists of a
set of users, where each user is described by a bag of items,
where each item is described by a bag of features from the
dictionary (rather than being a unique feature). For exam-
ple, for document recommendation, each user is described
by the bag-of-documents they like, while each document is
described by the bag-of-words it contains. Now a can be se-
lected as all of the items except one, and b as the left out
item. The system now extends to both new items and new
users as both are featurized.

Multi-Relational Knowledge Graphs (e.g. Link Predic-
tion) Given a graph of (h, r, t) triples, consisting of a head
concept h, a relation r and a tail concept t, e.g. (Beyoncé,
born-in, Houston), one can learn embeddings of that graph.
Instantiations of h, r and t are all defined as unique features
in the dictionary. We select uniformly at random either: (i)
a consists of the bag of features h and r, while b consists
only of t; or (ii) a consists of h, and b consists of r and t.
Negative entities b− are sampled from the set of possible
concepts. The learnt embeddings can then be used to answer
link prediction questions such as (Beyoncé, born-in, ?) or (?,
born-in, Houston) via the learnt function sim(a, b).

Information Retrieval (e.g. Document Search) and Doc-
ument Embeddings Given supervised training data con-
sisting of (search keywords, relevant document) pairs one
can directly train an information retrieval model: a contains
the search keywords, b is a relevant document and b− are
other irrelevant documents. If only unsupervised training
data is available consisting of a set of unlabeled documents,
an alternative is to select a as random keywords from the
document and b as the remaining words. Note that both these
approaches implicitly learn document embeddings which
could be used for other purposes.

Learning Word Embeddings We can also use StarSpace
to learn unsupervised word embeddings using training data
consisting of raw text. We select a as a window of words
(e.g., four words, two either side of a middle word), and b as
the middle word, following (Collobert et al. 2011; Mikolov
et al. 2013; Bojanowski et al. 2017).

Learning Sentence Embeddings Learning word embed-
dings (e.g. as above) and using them to embed sentences
does not seem optimal when you can learn sentence em-
beddings directly. Given a training set of unlabeled docu-
ments, each consisting of sentences, we select a and b as
a pair of sentences both coming from the same document;
b− are sentences coming from other documents. The intu-
ition is that semantic similarity between sentences is shared
within a document (one can also only select sentences within

a certain distance of each other if documents are very long).
Further, the embeddings will automatically be optimized for
sets of words of sentence length, so train time matches test
time, rather than training with short windows as typically
learned with word embeddings – window-based embeddings
can deteriorate when the sum of words in a sentence gets too
large.

Multi-Task Learning Any of these tasks can be com-
bined, and trained at the same time if they share some fea-
tures in the base dictionary F . For example one could com-
bine supervised classification with unsupervised word or
sentence embedding, to give semi-supervised learning.

4 Experiments

Text Classification

We employ StarSpace for the task of text classification and
compare it with a host of competing methods, including
fastText, on three datasets which were all previously used
in (Joulin et al. 2016). To ensure fair comparison, we use
an identical dictionary to fastText and use the same imple-
mentation of n-grams and pruning (those features are im-
plemented in our open-source distribution of StarSpace). In
these experiments we set the dimension of embeddings to be
10, as in (Joulin et al. 2016).

We use three datasets:
• AG news1 is a 4 class text classification task given title

and description fields as input. It consists of 120K training
examples, 7600 test examples, 4 classes, ∼100K words
and 5M tokens in total.

• DBpedia (Lehmann et al. 2015) is a 14 class classification
problem given the title and abstract of Wikipedia articles
as input. It consists of 560K training examples, 70k test
examples, 14 classes, ∼800K words and 32M tokens in
total.

• The Yelp reviews dataset is obtained from the 2015 Yelp
Dataset Challenge2. The task is to predict the full number
of stars the user has given (from 1 to 5). It consists of 1.2M
training examples, 157k test examples, 5 classes, ∼500K
words and 193M tokens in total.
Results are given in Table 2. Baselines are quoted from the

literature (some methods are only reported on AG news and
DBPedia, others only on Yelp15). StarSpace outperforms
a number of methods, and performs similarly to fastText.
We measure the training speed for n-grams > 1 in Table 3.
fastText and StarSpace are both efficient compared to deep
learning approaches, e.g. (Zhang and LeCun 2015) takes 5h
per epoch on DBpedia, 375x slower than StarSpace. Still,
fastText is faster than StarSpace. However, as we will see in
the following sections, StarSpace is a more general system.

Content-based Document Recommendation

We consider the task of recommending new documents to
a user given their past history of liked documents. We fol-
low a very similar process described in (Weston, Chopra,

1
http://www.di.unipi.it/œgulli/AG corpus of news articles.html

2
https://www.yelp.com/dataset challenge
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Metric Hits@1 Hits@10 Hits@20 Mean Rank Training Time
Unsupervised methods
TFIDF 0.97% 3.3% 4.3% 3921.9 -
word2vec 0.5% 1.2% 1.7% 4161.3 -
fastText (public Wikipedia model) 0.5% 1.7% 2.5% 4154.4 -
fastText (our dataset) 0.79% 2.5% 3.7% 3910.9 4h30m
Tagspace† 1.1% 2.7% 4.1% 3455.6 -
Supervised methods
SVM Ranker: BoW features 0.99% 3.3% 4.6% 2440.1 -
SVM Ranker: fastText features (our dataset) 0.92% 3.3% 4.2% 3833.8 -
StarSpace 3.1% 12.6% 17.6% 1704.2 12h18m

Table 1: Test metrics and training time on the Content-based Document Recommendation task. † Tagspace training is supervised
but for another task (hashtag prediction) not our task of interest here.

Model AG news DBpedia Yelp15
BoW* 88.8 96.6 -
ngrams* 92.0 98.6 -
ngrams TFIDF* 92.4 98.7 -
char-CNN* 87.2 98.3 -
char-CRNN� 91.4 98.6 -
VDCNN� 91.3 98.7 -
SVM+TF† - - 62.4
CNN† - - 61.5
Conv-GRNN† - - 66.0
LSTM-GRNN† - - 67.6
fastText (ngrams=1)‡ 91.5 98.1 ∗∗62.2
StarSpace (ngrams=1) 91.6 98.3 62.4
fastText (ngrams=2)‡ 92.5 98.6 -
StarSpace (ngrams=2) 92.7 98.6 -
fastText (ngrams=5)‡ - - 66.6
StarSpace (ngrams=5) - - 65.3

Table 2: Text classification test accuracy. * indicates mod-
els from (Zhang and LeCun 2015); � from (Xiao and Cho
2016); � from (Conneau et al. 2016); † from (Tang, Qin, and
Liu 2015); ‡ from (Joulin et al. 2016); ∗∗ we ran ourselves.

and Adams 2014) in our experiment. The data for this task
is comprised of anonymized two-weeks long interaction his-
tories for a subset of people on a popular social networking
service. For each of the 641,385 people considered, we col-
lected the text of public articles that s/he clicked to read,
giving a total of 3,119,909 articles. Given the person’s trail-
ing (n− 1) clicked articles, we use our model to predict the
n’th article by ranking it against 10,000 other unrelated ar-
ticles, and evaluate using ranking metrics. The score of the
n’th article is obtained by applying StarSpace: the input a is
the previous (n−1) articles, and the output b is the n’th can-
didate article. We measure the results by computing hits@k,
i.e. the proportion of correct entities ranked in the top k for
k = 1, 10, 20, and the mean predicted rank of the clicked
article among the 10,000 articles.

As this is not a classification task (i.e. there are not a fixed
set of labels to classify amongst, but a variable set of never
seen before documents to rank per user) we cannot use su-
pervised classification models directly. Starspace however

Training time ag news dbpedia Yelp15
fastText (ngrams=2) 2s 10s
StarSpace (ngrams=2) 4s 34s
fastText (ngrams=5) 2m01s
StarSpace (ngrams=5) 3m38s

Table 3: Training speed on the text classification tasks.

can deal directly with this task, which is one of its major
benefits. Following (Weston, Chopra, and Adams 2014), we
hence use the following models as baselines:
• Word2vec model. We use the publicly available word2vec

model trained on Google News articles3, and use the word
embeddings to generate article embeddings (by bag-of-
words) and users’ embedding (by bag-of-articles in users’
click history). We then use cosine similarity for ranking.

• Unsupervised fastText model. We try both the previously
trained publicly available model on Wikipedia4, and train
on our own dataset. Unsupervised fastText is an enhance-
ment of word2Vec that also includes subwords.

• Linear SVM ranker, using either bag-of-words features or
fastText embeddings (component-wise multiplication of
a’s and b’s features, which are of the same dimension).

• Tagspace model trained on a hashtag task, and then the
embeddings are used for document recommendation, a re-
production of the setup in (Weston, Chopra, and Adams
2014). In that work, the Tagspace model was shown to
outperform word2vec.

• TFIDF bag-of-words cosine similarity model.
For fair comparison, we set the dimension of all embed-

ding models to be 300. We show the results of our StarSpace
model comparing with the baseline models in Table 1. Train-
ing time for StarSpace and fastText (Bojanowski et al. 2017)
trained on our dataset is also provided.

Tagspace was previously shown to provide superior per-
formance to word2vec, and we observe the same result
here. Unsupervised FastText, which is an enhancement of
word2vec is also slightly inferior to Tagspace, but better than

3
https://code.google.com/archive/p/word2vec/

4
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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Metric Hits@10 r. Mean Rank r. Hits@10 f. Mean Rank f. Train Time
SE* (Bordes et al. 2011) 28.8% 273 39.8% 162 -
SME(LINEAR)* (Bordes et al. 2014) 30.7% 274 40.8% 154 -
SME(BILINEAR)* (Bordes et al. 2014) 31.3% 284 41.3% 158 -
LFM* (Jenatton et al. 2012) 26.0% 283 33.1% 164 -
RESCAL† (Nickel, Tresp, and Kriegel 2011) - - 58.7% -
TransE (dim=50) 47.4% 212.4 71.8% 63.9 1m27m
TransE (dim=100) 51.1% 225.2 82.8% 72.2 1h44m
TransE (dim=200) 51.2% 234.3 83.2% 75.6 2h50m
StarSpace (dim=50) 45.7% 191.2 74.2% 70.0 1h21m
StarSpace (dim=100) 50.8% 209.5 83.8% 62.9 2h35m
StarSpace (dim=200) 52.1% 245.8 83.0% 62.1 2h41m

Table 4: Test metrics on Freebase 15k dataset. * indicates results cited from (Bordes et al. 2013). † indicates results cited from
(Nickel et al. 2016).

K 1 5 10 25 50 100 250 500 1000
Epochs 3260 711 318 130 69 34 13 7 4
hit@10 67.05% 68.08% 68.13% 67.63% 69.05% 66.99% 63.95% 60.32% 54.14%

Table 5: Adapting the number of negative samples k for a 50-dim model for 1 hour of training on Freebase 15k.

word2vec. However, StarSpace, which is naturally more
suited to this task, outperforms all those methods, includ-
ing Tagspace and SVMs by a significant margin. Overall,
from the evaluation one can see that unsupervised methods
of learning word embeddings are inferior to training specifi-
cally for the document recommendation task at hand, which
StarSpace does.

Link Prediction: Embedding Multi-relation
Knowledge Graphs

We show that one can also use StarSpace on tasks of knowl-
edge representation. We use the Freebase 15k dataset from
(Bordes et al. 2013), which consists of a collection of triplets
(head, relation type, tail) extracted from Freebase5. This
data set can be seen as a 3-mode tensor depicting ternary
relationships between synsets. There are 14,951 concepts
(mids) and 1,345 relation types among them. The training
set contains 483,142 triplets, the validation set 50,000 and
the test set 59,071. As described in (Bordes et al. 2013),
evaluation is performed by, for each test triplet, removing the
head and replacing by each of the entities in the dictionary
in turn. Scores for those corrupted triplets are first computed
by the models and then sorted; the rank of the correct en-
tity is finally stored. This whole procedure is repeated while
removing the tail instead of the head. We report the mean
of those predicted ranks and the hits@10. We also conduct
a filtered evaluation that is the same, except all other valid
heads or tails from the train or test set are discarded in the
ranking, following (Bordes et al. 2013).

We compare with a number of methods, including transE
presented in (Bordes et al. 2013). TransE was shown to out-
perform RESCAL (Nickel, Tresp, and Kriegel 2011), RFM
(Jenatton et al. 2012), SE (Bordes et al. 2011) and SME
(Bordes et al. 2014) and is considered a standard bench-

5http://www.freebase.com

mark method. TransE uses an L2 similarity ||head + rela-
tion - tail||2 and SGD updates with single entity corruptions
of head or tail that should have a larger distance. In con-
trast, StarSpace uses a dot product, k-negative sampling, and
two different embeddings to represent the relation entity, de-
pending on whether it appears in a or b.

The results are given in Table 4. Results for SE, SME and
LFM are reported from (Bordes et al. 2013) and optimize
the dimension from the choices 20, 50 and 75 as a hyper-
parameter. RESCAL is reported from (Nickel et al. 2016).
For TransE we ran it ourselves so that we could report the
results for different embedding dimensions, and because we
obtained better results by fine tuning it than previously re-
ported. Comparing TransE and StarSpace for the same em-
bedding dimension, these two methods then give similar per-
formance. Note there are some recent improved results on
this dataset using larger embeddings (Kadlec, Bajgar, and
Kleindienst 2017) or more complex, but less general, meth-
ods (Shen et al. 2017).

Influence of k In this section, we ran experiments on the
Freebase 15k dataset to illustrate the complexity of our
model in terms of the number of negative search exam-
ples. We set dim = 50, and the max training time of
the algorithm to be 1 hour for all experients. We report
the number of epochs the algorithm completes within the
time limit and the best filtered hits@10 result over possi-
ble learning rate choices, for different k (number of nega-
tives searched for each positive training example). We set
k = [1, 5, 10, 25, 50, 100, 250, 500, 1000].

The result is presented in Table 5. We observe that the
number of epochs finished within the 1 hour training time
constraint is close to an inverse linear function of k. In this
particular setup, [1, 100] is a good range of k and the best
result is achieved at K = 50.
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Metric Hits@1 Hits@10 Hits@20 Mean Rank Training Time
Unsupervised methods
TFIDF 56.63% 72.80% 76.16% 578.98 -
fastText (public Wikipedia model) 18.08% 36.36% 42.97% 987.27 -
fastText (our dataset) 16.89% 37.60% 45.25% 786.77 40h
Supervised method
SVM Ranker BoW features 56.73% 69.24% 71.86% 723.47 -
SVM Ranker: fastText features (public) 18.44% 37.80% 45.91% 887.96 -
StarSpace 56.75% 78.14% 83.15% 122.26 89h

Table 6: Test metrics and training time on Wikipedia Article Search (Task 1).

Metric Hits@1 Hits@10 Hits@20 Mean Rank Training Time
Unsupervised methods
TFIDF 24.79% 35.53% 38.25% 2523.68 -
fastText (public Wikipedia model) 5.77% 14.08% 17.79% 2393.38 -
fastText (our dataset) 5.47% 13.54% 17.60% 2363.74 40h
StarSpace (word-level training) 5.89% 16.41% 20.60% 1614.21 45h
Supervised methods
SVM Ranker BoW features 26.36% 36.48% 39.25% 2368.37 -
SVM Ranker: fastText features (public) 5.81% 12.14% 15.20% 1442.05 -
StarSpace (sentence pair training) 30.07% 50.89% 57.60% 422.00 36h
StarSpace (word+sentence training) 25.54% 45.21% 52.08% 484.27 69h

Table 7: Test metrics and training time on Wikipedia Sentence Matching (Task 2).

Wikipedia Article Search & Sentence Matching

In this section, we apply our model on a Wikipedia article
search and a sentence match problem. We use the Wikipedia
dataset introduced by (Chen et al. 2017), which is the 2016-
12-21 dump of English Wikipedia. For each article, only the
plain text is extracted and all structured data sections such as
lists and figures are stripped. It contains a total of 5,075,182
articles with 9,008,962 unique uncased token types. The
dataset is split into 5,035,182 training examples, 10,000 vali-
dation examples and 10,000 test examples. We then consider
the following evaluation tasks:

• Task 1: given a sentence from a Wikipedia article as a
search query, we try to find the Wikipedia article it came
from. We rank the true Wikipedia article (minus the sen-
tence) against 10,000 other Wikipedia articles using rank-
ing evaluation metrics. This mimics a web search like sce-
nario where we would like to search for the most relevant
Wikipedia articles (web documents). Note that we effec-
tively have supervised training data for this task.

• Task 2: pick two random sentences from a Wikipedia ar-
ticle, use one as the search query, and try to find the other
sentence coming from the same original document. We
rank the true sentence against 10,000 other sentences from
different Wikipedia articles. This fits the scenario where
we want to find sentences that are closely semantically re-
lated by topic (but do not necessarily have strong word
overlap). Note also that we effectively have supervised
training data for this task.

We can train our Starspace model in the following way:
each update step selects a Wikipedia article from our train-
ing set. Then, one random sentence is picked from the article

as the input, and for Task 2 another random sentence (differ-
ent from the input) is picked from the article as the label
(otherwise the rest of the article for Task 1). Negative enti-
ties can be selected at random from the training set. In the
case of training for Task 1, for label features we use a fea-
ture dropout probability of 0.8 which both regularizes and
greatly speeds up training. We also try StarSpace word-level
training, and multi-tasking both sentence and word-level for
Task 2.

We compare StarSpace with the publicly released fastText
model, as well as a fastText model trained on the text of
our dataset.6 We also compare to a TFIDF baseline. For fair
comparison, we set the dimension of all embedding models
to be 300. The results for tasks 1 and 2 are summarized in Ta-
ble 6 and 7 respectively. StarSpace outperforms TFIDF and
fastText by a significant margin, this is because StarSpace
can train directly for the tasks of interest whereas it is not
in the declared scope of fastText. Note that StarSpace word-
level training, which is similar to fastText in method, obtains
similar results to fastText. Crucially, it is StarSpace’s ability
to do sentence and document level training that brings the
performance gains.

A comparison of the predictions of StarSpace and fastText
on the article search task (Task 1) on a few random queries
are given in Table 8. While fastText results are semantically
in roughly the right part of the space, they lack finer pre-
cision. For example, the first query is looking for articles
about an olympic skater, which StarSpace correctly under-

6FastText training is unsupervised even on our dataset since
its original design does not support directly using supervised data
here.

5574



Input Query StarSpace result fastText result

She is the 1962 Blue Swords champion and 1960
Winter Universiade silver medalist.

Article: Eva Groajov.
Paragraph: Eva Groajov , later Bergerov-Groajov , is a
former competitive figure skater who represented
Czechoslovakia. She placed 7th at the 1961 European
Championships and 13th at the 1962 World
Championships. She was coached by Hilda Mdra.

Article: Michael Reusch.
Paragraph: Michael Reusch (February 3, 1914April 6 ,
1989) was a Swiss gymnast and Olympic Champion.
He competed at the 1936 Summer Olympics in Berlin,
where he received silver medals in parallel bars and
team combined exercises...

The islands are accessible by a one-hour speedboat
journey from Kuala Abai jetty, Kota Belud, 80 km
north-east of Kota Kinabalu, the capital of Sabah.

Article: Mantanani Islands.
Paragraph: The Mantanani Islands form a small group
of three islands off the north-west coast of the state of
Sabah, Malaysia, opposite the town of Kota Belud, in
northern Borneo. The largest island is Mantanani Besar;
the other two are Mantanani Kecil and Lungisan...

Article: Gum-Gum
Paragraph: Gum-Gum is a township of Sandakan,
Sabah, Malaysia. It is situated about 25km from
Sandakan town along Labuk Road.

Maggie withholds her conversation with Neil from Tom
and goes to the meeting herself, and Neil tells her the
spirit that contacted Tom has asked for something and
will grow upset if it does not get done.

Article: Stir of Echoes
Paragraph: Stir of Echoes is a 1999 American
supernatural horror-thriller released in the United States
on September 10 , 1999 , starring Kevin Bacon and
directed by David Koepp . The film is loosely based on
the novel ”A Stir of Echoes” by Richard Matheson...

Article: The Fabulous Five
Paragraph: The Fabulous Five is an American book
series by Betsy Haynes in the late 1980s . Written
mainly for preteen girls , it is a spin-off of Haynes ’
other series about Taffy Sinclair...

Table 8: StarSpace predictions for some example Wikipedia Article Search (Task 1) queries where StarSpace is correct.

Task MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unigram-TFIDF* 73.7 79.2 90.3 82.4 - 85.0 73.6 / 81.7 - - 0.58 / 0.57
ParagraphVec (DBOW)* 60.2 66.9 76.3 70.7 - 59.4 72.9 / 81.1 - - 0.42 / 0.43
SDAE* 74.6 78.0 90.8 86.9 - 78.4 73.7 / 80.7 - - 0.37 / 0.38
SIF(GloVe+WR)* - - - 82.2 - - - - 84.6 0.69 / -
word2vec* 77.7 79.8 90.9 88.3 79.7 83.6 72.5 / 81.4 0.80 78.7 0.65 / 0.64
GloVe* 78.7 78.5 91.6 87.6 79.8 83.6 72.1 / 80.9 0.80 78.6 0.54 / 0.56
fastText (public Wikipedia model)* 76.5 78.9 91.6 87.4 78.8 81.8 72.4 / 81.2 0.80 77.9 0.63 / 0.62
StarSpace [word] 73.8 77.5 91.53 86.6 77.2 82.2 73.1 / 81.8 0.79 78.8 0.65 / 0.62
StarSpace [sentence] 69.1 75.1 85.4 80.5 72.0 63.0 69.2 / 79.7 0.76 76.2 0.70 / 0.67
StarSpace [word + sentence] 72.1 77.1 89.6 84.1 77.5 79.0 70.2 80.3 0.79 77.8 0.69/0.66
StarSpace [ensemble w+s] 76.6 80.3 91.8 88.0 79.9 85.2 71.8 / 80.6 0.78 82.1 0.69 / 0.65

Table 9: Transfer test results on SentEval. * indicates model results that have been extracted from (Conneau et al. 2017). For
MR, CR, SUBJ, MPQA, SST, TREC, SICK-R we report accuracies; for MRPC, we report accuracy/F1; for SICK-R we report
Pearson correlation with relatedness score; for STS we report Pearson/Spearman correlations between the cosine distance of
two sentences and human-labeled similarity score.

Task STS12 STS13 STS14 STS15 STS16
fastText (public Wikipedia model) 0.60 / 0.59 0.62 / 0.63 0.63 / 0.62 0.68 / 0.69 0.62 / 0.66
StarSpace [word] 0.53 / 0.54 0.60 / 0.60 0.65 / 0.62 0.68 / 0.67 0.64 / 0.65
StarSpace [sentence] 0.58 / 0.58 0.66 / 0.65 0.70 / 0.67 0.74 / 0.73 0.69 / 0.69
StarSpace [word+sentence] 0.58 / 0.59 0.63 / 0.63 0.68 / 0.65 0.72 / 0.72 0.68 / 0.68
StarSpace [ensemble w+s] 0.58 / 0.59 0.64 / 0.64 0.69 / 0.65 0.73 / 0.72 0.69 / 0.69

Table 10: Transfer test results on STS tasks using Pearson/Spearman correlations between sentence similarity and human scores.
.

stands whereas fastText picks an olympic gymnast. Note
that the query does not specifically mention the word skater,
StarSpace can only understand this by understanding related
phrases, e.g. the phrase “Blue Swords” refers to an interna-
tional figure skating competition. The other two examples
given yield similar conclusions.

Learning Sentence Embeddings

In this section, we evaluate sentence embeddings generated
by our model and use SentEval7 which is a tool from (Con-
neau et al. 2017) for measuring the quality of general pur-
pose sentence embeddings. We use a total of 14 transfer

7
https://github.com/facebookresearch/SentEval

tasks including binary classification, multi-class classifica-
tion, entailment, paraphrase detection, semantic relatedness
and semantic textual similarity from SentEval. Detailed de-
scription of these transfer tasks and baseline models can be
found in (Conneau et al. 2017).

We train the following models on the Wikipedia Task 2
from the previous section, and evaluate sentence embed-
dings generated by those models:

• StarSpace trained on word level.

• StarSpace trained on sentence level.

• StarSpace trained (multi-tasked) on both word and sen-
tence level.

• Ensemble of StarSpace models trained on both word and
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sentence level: we train a set of 13 models, multi-tasking
on Wikipedia sentence match and word-level training then
concatenate all embeddings together to generate a 13 ×
300 = 3900 dimension embedding for each word.
We present the results in Table 9 and Table 10. StarSpace

performs well, outperforming many methods on many of
the tasks, although no method wins outright across all tasks.
Particularly on the STS (Semantic Textual Similarity) tasks
Starspace has very strong results. Please refer to (Conneau
et al. 2017) for further results and analysis of these datasets.

5 Discussion and Conclusion

In this paper, we propose StarSpace, a method of embedding
and ranking entities using the relationships between entities,
and show that the method we propose is a general system
capable of working on many tasks:

• Text Classification / Sentiment Analysis: we show that
our method achieves good results, comparable to fastText
(Joulin et al. 2016) on three different datasets.

• Content-based Document recommendation: it can directly
solve these tasks well, whereas applying off-the-shelf
fastText, Tagspace or word2vec gives inferior results.

• Link Prediction in Knowledge Bases: we show that
our method outperforms several methods, and matches
TransE (Bordes et al. 2013) on Freebase 15K.

• Wikipedia Search and Sentence Matching tasks: it out-
performs off-the-shelf embedding models due to directly
training sentence and document-level embeddings.

• Learning Sentence Embeddings: It performs well on the
14 SentEval transfer tasks of (Conneau et al. 2017) com-
pared to a host of embedding methods.

StarSpace should also be highly applicable to other tasks
we did not evaluate here such as other classification, rank-
ing, retrieval or metric learning tasks. Importantly, what is
more general about our method compared to many existing
embedding models is: (i) the flexibility of using features to
represent labels that we want to classify or rank, which en-
ables it to train directly on a downstream prediction/ranking
task; and (ii) different ways of selecting positives and nega-
tives suitable for those tasks. Choosing the wrong generators
E+ and E− gives greatly inferior results, as shown e.g. in
Table 7.

Future work will consider the following enhancements:
going beyond discrete features, e.g. to continuous features,
considering nonlinear representations and experimenting
with other entities such as images. Finally, while our model
is relatively efficient, we could consider hierarchical classifi-
cation schemes as in FastText to try to make it more efficient;
the trick here would be to do this while maintaining the gen-
erality of our model which is what makes it so appealing.
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