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Abstract

This paper is about detecting incorrect arcs in a dependency
parse for sentences that contain grammar mistakes. Pruning
these arcs results in well-formed parse fragments that can
still be useful for downstream applications. We propose two
automatic methods that jointly parse the ungrammatical sen-
tence and prune the incorrect arcs: a parser retrained on a
parallel corpus of ungrammatical sentences with their correc-
tions, and a sequence-to-sequence method. Experimental re-
sults show that the proposed strategies are promising for de-
tecting incorrect syntactic dependencies as well as incorrect
semantic dependencies.

1 Introduction
Many NLP applications benefit from dependency-based syn-
tactic structures. However, the sentences under analysis may
not always be grammatically correct. When a dependency
parser nonetheless produces fully connected, syntactically
well-formed trees for these sentences, the trees may be inap-
propriate and lead to errors. In fact, researchers have raised
valid questions about the merit of annotating dependency
trees for ungrammatical sentences (Ragheb and Dickinson
2012; Cahill 2015). On the other hand, previous work has
found that when those dependency arcs directly connected
to the erroneous words are ignored, the rest of the parses
tend to be well-formed (Hashemi and Hwa 2016a). Thus, for
downstream applications that are sensitive to syntactic rela-
tionships, it might be preferable to have a set of well-formed
parse fragments instead of the entire tree containing errors.

In an earlier work, we have introduced a framework
for extracting fragments from constituency parse trees
(Hashemi and Hwa 2016b). We proposed a practical frag-
mentation method using a feature-based classifier and pro-
vided an oracle upper bound. However, that study has sev-
eral limitations. First, there is a significant performance
gap between the practical method and the oracle. Perhaps
a more sophisticated learning model is necessary. Second,
the framework is a pipeline: fragmentation is performed as a
post-hoc process on the outputs of off-the-shelf parsers. Per-
haps a joint approach that directly builds parse fragments
would result in better outputs overall. Third, we have vali-
dated the framework on only one downstream application,
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sentential grammaticality judgment, which does not directly
test for the validity of the tree fragments themselves.

In this paper, we address the limitations of the previous
work by proposing to jointly parse and fragment ungram-
matical sentences to avoid cascading parser errors on these
sentences. We introduce two methods to prune implausi-
ble dependency arcs of ungrammatical sentences that are
caused by grammar mistakes: a parser retraining method and
a sequence-to-sequence (seq2seq) labeling method. Both are
developed based on a parallel corpus of ungrammatical sen-
tences and their corrections. To better validate our hypoth-
esis that the omission of implausible dependency arcs will
directly help downstream applications, we compare the ef-
fects of full parses and tree fragments of ungrammatical sen-
tences on the task of semantic role labeling. Through our
experiments, we find that both joint methods produce tree
fragment sets that are more similar to those produced by the
oracle method than the previous pipeline method; moreover,
the seq2seq method’s pruning decision has a significantly
higher accuracy. In terms of downstream applications, we
show that dependency arc pruning is helpful for two applica-
tions: sentential grammaticality judgment and semantic role
labeling.

2 Dependency Arc Pruning

Figure 1a shows an example of an ungrammatical sentence
written by an English-as-a-Second Language (ESL) learner
and its dependency parse tree, along with the corrected ver-
sion of the sentence and its parse tree.1 The ungrammatical
sentence has two small mistakes (a missing comma and a
phrase replacement error), but the impact of these mistakes
is significant on the syntactic parse. Even though the parse
tree of the ungrammatical sentence seems well-formed, the
syntactic structure does not closely resemble the analysis
for the corrected sentence: the head of the ungrammatical
sentence is changed to “remember” from “known”, and the
“for ever” phrase is now seen as a preposition relation in-
stead of a time adverb. These errors further impact the se-
mantic interpretation of the sentence. Figure 1b shows the
same ungrammatical sentence along with its semantic de-

1Dependency trees are produced by SyntaxNet parser (Andor et
al. 2016).
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(a) Syntactic dependency tree
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(b) Semantic dependency graph

Figure 1: Example of syntactic and semantic dependencies of an ungrammatical sentence (top) and its corresponding grammat-
ical sentence (bottom). The red dotted relations show incorrect dependencies, and the word blocks show fragments’ boundaries.

pendency graph, as compared to the correct version.2 Be-
cause of the mistakes in the sentence, the semantic graph of
the ungrammatical sentence has some extra semantic depen-
dencies: “remember→I” and “known→for”. Detecting these
incorrect semantic dependencies is crucial for applications
that require a high accuracy. For example, some search en-
gines try to display a concise answer to a user’s query in
addition to retrieving relevant documents; for these systems,
it is better to not display any answer at all than to show in-
correct answers (since they will still retrieve relevant doc-
uments). Therefore, it is important to extract only accurate
semantic dependencies.

Our goal is to identify and prune the syntactic depen-
dency arcs of the ungrammatical sentences that are related
to the grammar mistakes. The result is a set of tree frag-
ments that are linguistically appropriate for the phrases they
cover. Since traditionally extracted features from syntactic
parse trees play an important role in exploiting semantic de-
pendencies (Punyakanok, Roth, and Yih 2008), we hypoth-
esize that arc pruning would also decrease inaccuracies in
semantic role labeling.

In prior work, dependency arc pruning has been explored
primarily in the form of vine parsing (Eisner and Smith
2005; Dreyer, Smith, and Smith 2006), where a hard con-
strain on arc lengths considers only close words as modi-
fiers. Our approach differs from vine parsing in that we do
not have any limit on arc lengths; we identify the incorrect
arcs with regard to grammar mistakes. We also do not try to
correct grammar mistakes (Sakaguchi, Post, and Van Durme
2017), since error detection methods mostly work for ESL
error categories and non-ESL mistakes are not easily fix-
able; we aim to salvage well-formed syntactic structures
form ungrammatical sentences in general for downstream
applications that use syntactic relationships. Our arc prun-
ing task also differs from joint parsing and disfluency de-
tection in spoken utterances, which focuses on removing re-
peated phrases and extra fillers (Rasooli and Tetreault 2014;
Honnibal and Johnson 2014; Yoshikawa, Shindo, and Mat-
sumoto 2016); ungrammatical sentences have a wider range
of error types such as incorrect phrasal ordering and missing
phrases.

2Semantic dependency graphs are produced by the semantic
role labeler of the Mate toolkit (Björkelund, Hafdell, and Nugues
2009).

3 Parse Tree Fragmentation
This work builds on our earlier framework (Hashemi and
Hwa 2016b) that tries to extract well-formed tree fragments
from ungrammatical sentences. Where appropriate, we fol-
low the same training and evaluative methods. However,
while the earlier fragmentation methods worked with con-
stituency parse trees, we want to adapt the framework for
the dependency formalism, whose head-modifier represen-
tation offers a clearer linguistic interpretation when dealing
with ungrammatical sentences and a closer resemblance to
semantic relations. Thus, we need to take some necessary
steps to facilitate the adaptation. Below, we describe how
we construct the gold standard (which also serves as the or-
acle upper bound) and the pipelined feature-based classifier
in a dependency setting.

Pseudo Gold Annotations (Reference) One issue to ad-
dress in developing tree fragmentation methods is acquir-
ing sufficient training data. Previously, we have proposed a
“pseudo gold standard”3 creation procedure that makes use
of a parallel corpus of ungrammatical sentences aligned to
their corrected revisions, resulting in a set of Reference tree
fragments for each sentence pair. We adapt the procedure
for dependency trees: given a parallel corpus of ungram-
matical sentences and their grammatical versions, we first
align the two sentences; then, we parse the grammatical sen-
tence with a state-of-the-art dependency parser, and project
the dependency tree to the ungrammatical sentence using the
alignments, i.e. for each dependency arc of the grammati-
cal sentence if both the head and the modifier are aligned,
we directly project the dependency arc to the ungrammati-
cal sentence. Finally, we apply two restrictive pruning rules
(which might be modified depending on a downstream ap-
plication): 1) prune the dependency arcs to and from the un-
aligned words, 2) find the immediate right and left words of
an unaligned word in the ungrammatical sentence, if there is
an arc to or from the right or left words that passes over the
unaligned word, prune it. Although these rules are restric-
tive, they simplify our argument for the use of arc pruning
and, at the same time, they still help us to validate the use-
fulness of arc pruning in our downstream applications.

3It uses parse trees of fluent sentences to approximate an ex-
plicitly manually created trees; however, since a parser may make
mistakes even on a fluent sentence, it is called “pseudo gold”.
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Post-hoc Arc Pruning (H&H16) Our previous main tree
fragmentation method is a binary classifier that determined
whether each edge of a constituency parse tree should be
pruned based on a set of features that were extracted from
the Reference tree fragments. We adapt this method for de-
pendency arc pruning so that we can compare to it in an
evaluative experiment. Using the Reference tree fragments
as examples, we train a Gradient Boosting classifier (Fried-
man 2001) to predict whether to prune each dependency arc
according to the following set of features:

• Depth and height of the head/parent and the modi-
fier/child when the dependency tree is traversed in depth-
first order.

• Part-of-speech tags of the head, modifier, and the parent
of the head word.

• Word bigrams and trigrams corresponding to the arc. De-
noting wh as the head word and wm as the modifier word,
the bigram feature are calculated for the pairs of whwm

(wmwh if m < h), wm−1wm, and wmwm+1. The trigram
features are calculated for the triples of wm−1wmwm+1,
wm−2wm−1wm, and wmwm+1wm+2. We use both raw
counts and point-wise mutual information of the N -
grams. To compute the N -gram counts, we use Agence
France Press English Service (AFE) section of English
Gigaword (Graff et al. 2003).

The tree fragments obtained in this post-hoc manner are re-
ferred to as H&H16.

4 Joint Arc Pruning Methods

We propose two fully end-to-end data-driven approaches to
automatically generate arc pruned dependency tree of an un-
grammatical sentence. The methods jointly learn to parse
a sentence and prune implausible head-modifier arcs of the
parse tree considering the grammatical errors that might ex-
ist in the sentence. In the first method, we adapt a parser
with ungrammatical inputs by building a treebank of un-
grammatical sentences. In the second one, inspired by the
recent works in neural network-based sequence-to-sequence
learning (Sutskever, Vinyals, and Le 2014; Bahdanau, Cho,
and Bengio 2014), we use a state-of-the-art LSTM-based re-
current neural network to address the problem of arc prun-
ing.

4.1 Parser Retraining Arc Pruning
(RetrainedParser)

One obvious approach to jointly parse and detect error-
related dependency arcs is by adapting parsers for ungram-
matical inputs. Having a treebank of ungrammatical sen-
tences and their pruned arcs, we can train a new special-
ized dependency parser for ungrammatical sentences that
not only gives us a parse for the grammatical part of the
sentence but also can prune error-related dependency arcs.

We first create a treebank of ungrammatical sentences us-
ing the dependency trees that are pruned by the Reference
method. The head of the pruned arcs are set to be the wall
symbol (i.e. root as the heads). For example the CoNLL

based format of dependency tree in Figure 1a with its pruned
arcs is:

1 As IN 3
2 I PRP 3
3 remember VB 0
4 I PRP 6
5 have VB 6
6 known VB 0
7 her PRP 6
8 for IN 0
9 ever RB 0

Using this new ungrammatical treebank that is created by
the Reference method as examples, we can train any statis-
tical state-of-the-art parser that learns to prune dependency
arcs in a similar manner as the Reference. The trained parser
can then jointly parse and prune error-related arcs on the un-
seen input sentences, hence the obtained tree fragments in
this manner are referred to as RetrainedParser.

4.2 Sequence-to-Sequence Arc Pruning (seq2seq)

Many tasks in natural language processing can be cast as
finding an optimal mapping from a source sequence to a tar-
get sequence including machine translation (Bahdanau, Cho,
and Bengio 2014), sentence compression (Filippova et al.
2015), grammar error correction (Schmaltz et al. 2016), and
dialogue systems (Serban et al. 2015). Theoretically, Recur-
rent Neural Networks (RNN) were always a potential tool
to be used for learning a complex and highly non-linear
seq2seq mapping. However, due to the problem of vanish-
ing and exploding gradient, RNNs were far away from being
practical. Recent advancements of deep structure RNNs are
based on using Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber 1997) units, addressing the gradient
vanishing and the gradient exploding problem; therefore
RNNs have rapidly become a versatile tool in natural lan-
guage processing.

We formulate the dependency arc pruning problem as
finding an optimal sequence-to-sequence mapping (hence-
forth referred to as seq2seq), in which the source sequence
is simply the ungrammatical input sentence and the target se-
quence is a linearized one-to-one mapping of the associated
dependency tree with pruned arcs. In the following, for the
sake of completeness, we first briefly describe the idea of
sequence-to-sequence learning with deep neural networks.
Next, we describe how we represent the arc pruned depen-
dency trees in a linear form as the target sequence of the
seq2seq problem.

Seq2Seq Using Deep Neural Nets We follow the domi-
nant approach of training a seq2seq framework, using a con-
ditional language model and a cross-entropy loss function to
maximize the conditional likelihood of a successive target
word in the target sequence given the input sequence and a
history of target words. Following the past practice of the
state-of-the-art seq2seq deep neural network models, in our
network architecture, we use a stack of LSTM recurrent net-
works to encode the input sequence (or to be more accu-
rate, a word embedding of the input sequence) into a latent
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representation that would be useful in finding the target se-
quence. Another stack of LSTM recurrent neural networks
is used to decode the encoded latent representation of the in-
put sequence to the target output sequence. For the training,
in each step, the error signal generated by the cross-entropy
loss function will be back-propagated through the network
for tuning the weights to minimize the corresponding em-
pirical risk on a batch of data (Sutskever, Vinyals, and Le
2014).

Sequence Representation of an Arc Pruned Tree We
treat dependency arc pruning as a seq2seq task by attempt-
ing to map from an input sentence to a linear form of arc
pruned dependency tree. Using the ungrammatical sentences
and their dependency trees that are pruned by the Reference
method, we can train a seq2seq model. The seq2seq models
require an effective representation for the input and the out-
put to yield good performance (Vinyals, Bengio, and Kud-
lur 2015). We therefore follow the representation of (Wise-
man and Rush 2016) to linearize dependency trees, by in-
serting arc-standard reduce actions interleaved with the sen-
tence words as the shift action. As an example, we try to map
the input sentence to the output sequence:

Input: As I remember I have known her for ever
Output: As I remember @L @L I have known @L

@L her @R for ever @RCUT @RCUT @RCUT
We use unlabeled arcs and show the actions with @L as the
left-arc action, and @R as the right-arc action. The pruned
arced are denoted by @LCUT and @RCUT actions whether
it was a left-arc or a right-arc. A trained seq2seq model with
this representation would be able to prune error-related arcs
of an ungrammatical sentence while parsing the remaining
grammatical parts of the sentence.

In order to evaluate the seq2seq method, we then convert
back the output of seq2seq which is in the form of inter-
leaved arc-standard actions to a CoNLL format of depen-
dency tree (similar to the example in the RetrainedParser
approach, Section 4.1).

5 Experimental Setup

5.1 Data

The experiments are conducted over writings of English-as-
a-Second language (ESL) learners dataset that contain un-
grammatical sentences and the corrected version of each
ungrammatical ESL sentence. To retrain a parser and the
seq2seq model, we need a large amount of ungrammati-
cal sentences. Thus, we used three ESL corpora: First Cer-
tificate in English (FCE) dataset (Yannakoudakis, Briscoe,
and Medlock 2011), National University of Singapore Cor-
pus of Learner English (NUCLE) (Dahlmeier, Ng, and Wu
2013), and EF-Cambridge Open Language Database (EF-
CAMDAT) (Geertzen, Alexopoulou, and Korhonen 2013).
From these corpora, we randomly select 606,000 ESL sen-
tences that 566,000 of them have at least one grammatical
error. We then randomly separate 30,000 sentences as the
development set, and the remaining 576,000 sentences as the
training set. To test the models, we obtain the 7000 sentences
of the FCE corpus used in our previous work (Hashemi and

Hwa 2016b) which do not have overlap with our training and
development datasets. The test data contains 2895 sentences
with no error; 2103 with one error; 1092 with two errors;
and 910 with 3+ errors.

5.2 Experimental Tools and Methods

The pre-trained SyntaxNet POS tagger and parser (Andor
et al. 2016)4 is used to generate dependency parses for all
the sentences. To align ungrammatical sentences with their
grammatical versions, we use the monolingual word align-
ment system (Sultan, Bethard, and Sumner 2014) which
aligns related words in the two sentences by exploiting the
semantic and contextual similarities of the words.

RetrainedParser Settings We create a treebank of our
ESL data using the Reference method (as described in §4.1).
We then train the SyntaxNet parser (Andor et al. 2016)
which is a transition-based neural network parser, and use
its globally normalized training with default parameters. We
train the parser on the train set and pick the model with the
best unlabeled attachment score on the development set.

seq2seq Settings To train the sequence-to-sequence
model, we use the OpenNMT5 (Klein et al. 2017) pack-
age, which is a neural machine translation system utilizing
the Torch mathematical toolkit. In our implementation of
seq2seq RNNs, we used 2-layer LSTMs with 750 hidden
units in each layer both for decoding and encoding mod-
ules. We trained the network with a batch size of 48 and
a maximum sequence length of 62 and 123 for the source
and target sequences, respectively. The sequence length is
chosen in a way to cover the 5 standard deviations range
from the mean of the length of the source and target se-
quence. The parameters of the model were uniformly ini-
tialized in [−0.1, 0.1], and the L2-normalized gradients were
constrained to be ≤ 5 to prevent the gradient exploding ef-
fect. In the training phase, the learning rate schedule started
at 1 and halved the learning rate after each epoch beyond
epoch 10, or once the validation set perplexity no longer im-
proved. We trained the network for up to 30 epochs choosing
the model with the lowest perplexity on the validation set as
the final model.

5.3 Intrinsic Evaluation Metrics

One way to evaluate an automatic arc pruning method is to
compare its resulting fragments against the Reference frag-
ments. We use three metrics for this comparison: 1) Unla-
beled Attachment Score (UAS): The standard UAS calcu-
lates the percentage of words that have the correct head in
the dependency tree. It measures the total performance of
an automatic method on jointly parse and prune the error-
related arcs. 2) Accuracy of Pruned Arcs: We also evaluate
the accuracy of the automatic methods only on the pruned
arcs. Precision and recall (and F-score) are calculated as the

4github.com/tensorflow/models/tree/master/syntaxnet/
syntaxnet/models/parsey mcparseface

5github.com/opennmt/opennmt
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percentage of correct pruned dependency arcs in the result-
ing parse tree and the Reference tree respectively. 3) Set-2-
Set F-score: We adapt the set-2-set F-score from our earlier
work for dependency trees (Hashemi and Hwa 2016b). We
first map each fragment of the candidate set to a fragment
of the Reference set with which it has a maximum number
of shared arcs; second, precision and recall (and F-score)
are calculated as the number of shared arcs between all the
mapped fragments divided by the total number of arcs in the
candidate and the Reference fragment sets respectively. We
report macro-averaged precision, recall and F-score across
the test sentences.

6 Evaluation
The experiments aim to measure how well the proposed arc
pruning methods perform. We first perform an intrinsic eval-
uation, comparing all methods on their arc pruning accuracy.
We then perform two extrinsic evaluations – sentential gram-
maticality judgment and semantic role labeling.

6.1 Validating Dependency Arc Pruning

Intrinsic Evaluation Given an ungrammatical sentence,
both the RetrainedParser and seq2seq methods produce a
dependency parse tree for it with some pruned arcs. Table
1 shows the performance of the produced dependency trees
against the Reference trees with the unlabeled attachment
score over the 7000 ESL sentences. The UAS suggests that
the dependency trees produced by the seq2seq method are
more similar to the Reference trees than RetrainedParser, the
parser retraining method, and H&H16, the previous pipeline
method. Evaluating the accuracy of only the pruned arcs also
suggests that the seq2seq method is making reasonable de-
cisions in opting to prune an arc when it is certain.

In the next experiment, we evaluate the arc pruning meth-
ods by how well their resulting tree fragments match the
Reference tree fragments. Table 2 summarizes the compar-
ison of different fragmentation methods in terms of their
average number of fragments, average fragment size, and
set-2-set F-score against Reference fragments. We see that
H&H16 over-prunes the dependency trees; as a result, it
shows less similarity to the Reference. On the other hand,
RetrainedParser is cautious in breaking the trees which re-
sults in fewer fragments. One reason is that the retrained
parser, SyntaxNet, is a transition-based parser which is de-
signed to assign root as the head to the last remaining words
in the stack. Even though we train the parser with a large
treebank of ungrammatical sentences with multiple words
with root as their heads, the parser still tends not to prune
arcs. This result suggests that some adaptations may be nec-
essary for the parser; one possible modification is to add a
new action to the transition-based dependency parser that
marks pruned arcs without removing the modifiers from the
stack (because we need the modifiers to obtain the internal
syntactic structure of fragments).

The set-2-set F-score similarity of seq2seq to Reference is
0.83, which indicates it has learned useful signals from the
Reference method. But, the seq2seq has on average fewer
fragments; which shows it prunes less arcs than the Refer-
ence method. The results of Table 1 and Table 2 highlights

Accuracy of pruned arcs
method UAS P R F1

H&H16 61.36 0.35 0.79 0.48
RetrainedParser 63 0.35 0.53 0.42
seq2seq 82.4 0.71 0.57 0.63

Table 1: Performance of arc pruning methods by comparing
their resulting dependency trees against Reference trees.

method avg. # of
fragments

avg. size of
fragments

set-2-set
P/R/F1

Reference 3.51 8.60 -
H&H16 7.29 2.40 0.90/0.57/0.67
RetrainedParser 1.8 13.62 0.77/0.82/0.77
seq2seq 2.92 9.36 0.85/0.85/0.83

Table 2: Similarity of arc pruning methods with Reference
by comparing produced tree fragment sets.

that the seq2seq is conservative on pruning the error-related
arcs but when it makes decisions on pruning an arc, it is al-
most certain.

Extrinsic Evaluation: Grammaticality Judgment We
also validate the arc pruning utility by replicating our previ-
ous sentential grammatical judgment experiment to predict
grammaticality of a sentence. We consider both a binarized
and an ordinal level of grammaticality for the sentences. In
the binarized case, an ESL sentence is labeled 0 if it has no
errors, and it is labeled 1 when it has three or more errors. In
the ordinal case, the task is to predict the number of errors in
each sentence whether it has 0, 1, 2, 3 or more errors. Four
simple features are extracted from the fragments: 1) Num-
ber of fragments, 2) Average size of fragments, 3) Maximum
size of fragments, and 4) Minimum size of fragments. The
Gradient Boosting Classifier or Regressor (Friedman 2001)
is then used based on 10-fold cross validation on test data.
For the binary task, the accuracy of the classifier is reported,
and for the regression task the Pearsons r correlation be-
tween the predicted and expected values is reported.

Table 3 shows the results of sentence-level grammaticality
experiments on the ESL data. The first block shows the base-
line feature sets using constituency trees. The Post method
(Post 2011) extracts more than 6000 features based on
tree substitution grammar (TSG) derivation counts, and the
Charniak&Johnson method (Charniak and Johnson 2005)
extracts around 60,000 tree reranking features. The second
block of the table shows the dependency arc pruning meth-
ods with their four features extracted from the resulting frag-
mented dependency trees. It is expected that features based
on the Reference method correlate strongly with the gram-
maticality of the sentences, because the Reference method
prunes dependency arcs with an extra source of informa-
tion (i.e. grammatical version of the sentence). The seq2seq
method significantly outperforms other methods in the bi-
nary task (using a two-sided paired t-test with > 95% con-
fidence from the 10 folds). Although the seq2seq method
makes more accurate pruning decisions, it preforms com-
parable with H&H16 in the ordinal task. This is because
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Binary Ordinal

feature set Acc.(%) r

Post 77.3 0.285
Charniak&Johnson 76.3 0.318
Reference 100 0.879
H&H16 79.9 0.377

RetrainedParser 77.6 0.3
seq2seq 81.3 0.377

Table 3: Grammaticality judgment results using binary clas-
sification and regression. Reference as the upper bound is
given in italics, and the best result among automatic meth-
ods is given in bold.

the four extracted features from fragments are very sim-
ple; especially since H&H16 produces more fragments, its
number-of-fragments feature becomes a good indicator in
the ordinal grammatical prediction. As a simpler arc pruning
method, RetrainedParser is not as competitive for grammat-
icality judgment compared to seq2seq and H&H16. But it
is still comparable to the other baseline methods. This sug-
gests that RetrainedParser has still learned some useful sig-
nals from the Reference training examples.

6.2 Extrinsic Evaluation: Semantic Role Labeling

To further verify arc pruning utility, we apply it in another
downstream NLP application which benefits from syntactic
parsing: semantic role labeling (SRL). We hypothesize that
through dependency arc pruning, major syntactic problems
can be identified; thus, tree fragments should be useful to
detect incorrect dependencies of semantic role labeling.

Creating pseudo gold semantic dependencies Typically,
semantic role labelers are evaluated against a gold stan-
dard dataset. However, there is no dataset with annotated se-
mantic dependencies for ungrammatical sentences. Instead,
we take the automatically produced semantic relations of
a grammatical sentence as “gold standard” and compare
the SRL output for the corresponding ungrammatical sen-
tence against it.6 Even if the “gold standard” semantic de-
pendencies are not perfectly correct, they present the norm
from which semantic dependencies of ungrammatical sen-
tences diverge: if two sentences have the same meaning,
their semantic dependencies for these sentences should be as
close as possible. In keeping with this assumption, we create
gold semantic dependencies for an ungrammatical sentence
by projecting the semantic dependencies of its grammatical
sentence to the ungrammatical sentence. We first run the se-
mantic role labeler of the Mate toolkit (Björkelund, Hafdell,
and Nugues 2009) over the grammatical sentences; then,
find word alignments between ungrammatical and grammat-
ical sentences. Finally, using the alignments, we project di-
rectly semantic dependencies of the grammatical sentence to
the ungrammatical sentence, i.e. if a word in the ungrammat-
ical sentence is aligned to a word in the grammatical sen-
tence, we directly project the semantic role of the word in

6Similar idea is used by (Akbik et al. 2015) to construct seman-
tic dependencies for multiple languages.

the grammatical sentence to the word in the ungrammatical
sentence.

Detecting incorrect semantic dependencies In order to
utilize arc pruning methods for detecting incorrect seman-
tic dependencies of ungrammatical sentences, we introduce
a classifier to discriminate between the right and wrong con-
texts for some semantic dependencies. We formulate this
as a binary classification problem: for each semantic de-
pendency generated by an automatic SRL system indicates
whether the dependency is correct or incorrect. We extract
the following features for each semantic dependency:

• A binary feature that denotes whether the semantic depen-
dency crosses between parse tree fragments. For example,
the semantic dependency of “known→for” in Figure 1b
crosses two fragments, while “known→her” does not.

• Label of the semantic dependency (e.g. A0, A1, A2 or
AM-LOC) (Bonial et al. 2010).

The first two features are unique for each arc pruning
method (since their produced tree fragments are different);
while the next set of features is shared between the pruning
methods which considers only the semantic dependency:

• Depth and height, POS tags, word bigrams and trigrams
corresponding to the semantic dependency (similar to the
features discussed in Section 3).

Using pseudo gold semantic dependencies as examples,
we train a Gradient Boosting classifier that learns to de-
tect incorrect semantic dependencies. We perform the bi-
nary classification on a 10-fold cross validation basis on the
test data. Because the number of correct semantic depen-
dencies is greater than the incorrect ones, we make a bal-
anced training set by randomly sampling equal numbers of
the correct and incorrect dependencies. While we make the
train data to be balanced, the test data is not; thus, a base-
line of never detecting incorrect dependencies would result
in a high classification accuracy (84%). In order to take the
skewed class distribution into account, we evaluate classi-
fiers with the AUC measure (the area under the receiver
operating characteristic curve) (Hanley and McNeil 1982).
The AUC estimates how probable it is that a classifier might
give a higher rank to a randomly incorrect dependency com-
pared to a randomly correct one. The AUC of the classifiers
with features extracted from H&H16, RetrainedParser and
seq2seq are 0.68, 0.67 and 0.70 respectively whereas the
AUC of the baseline (detecting all the semantic dependen-
cies as incorrect) is 0.5. The AUC scores suggest that the
classifiers are making reasonable decisions to detect incor-
rect semantic dependencies of ungrammatical sentences. In
the remaining of the section, we further evaluate these clas-
sifiers in detecting incorrect semantic dependencies with a
metric obtained from the standard SRL evaluation schema.

Evaluation metric We use the standard CoNLL-2009
evaluation script7 to compare semantic dependencies of an

7ufal.mff.cuni.cz/conll2009-st/eval09.pl
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Overall 1 error

Method FDR Verb Argument No role
Basic 12.81 12.5 16.5 10.6
Reference 3.65 3.0 9.7 4.1
H&H16 7.40 8.1 15.5 7.16
RetrainedParser 7.88 9.7 18.1 6.7
seq2seq 7.32 6.8 16.7 6.0

Table 4: False Discovery Rate (FDR) of arc pruning meth-
ods in detecting incorrect semantic dependencies. The sec-
ond column presents FDR on test sentences with one error
where the error occurs on a word taking on a verb role, an
argument role, or a word with no semantic role. Reference as
the upper bound is given in italics, and the best result among
automatic arc pruning methods is given in bold.

ungrammatical sentence with its pseudo gold semantic de-
pendencies. The true positives (TP) is defined as correctly
identified semantic dependencies by both automatic system
and the gold standard, and false positives (FP) is defined as
incorrectly identified semantic dependencies by automatic
system when there are not semantic dependencies in the gold
standard (a.k.a false alarm or Type I error). Similarly, a false
negative case occurs when the automatic system is missing a
dependency that exists in the gold standard. In this research,
we are less concerned with the false negatives because we do
not have any control over adding new semantic dependen-
cies – applying arc pruning methods will only cut semantic
dependencies. While the arc pruning methods may cut some
correct semantic dependencies, thus introducing false nega-
tive cases, that is less problematic than leaving in incorrect
semantic dependencies. Detecting incorrect semantic depen-
dencies is crucial for applications that need high accuracy
e.g. by building accurate knowledge bases. Therefore, we
monitor the number of false positives to evaluate the help-
fulness of arc pruning methods when detecting incorrect se-
mantic dependencies. We use a key metric to measure Type I
error: False Discovery Rate (FDR) (Murphy 2012), defined
as FP

FP+TP , i.e., as the ratio of incorrect semantic depen-
dencies out of all the identified semantic dependencies by
an automatic SRL system. The smaller the FDR value, the
better the system preforms in detecting incorrect semantic
dependencies.

Results The experiments aim to address the impact of arc
pruning methods to detect incorrect semantic dependencies
of ungrammatical sentences. The first row of Table 4 is the
baseline method named as Basic. The Basic method com-
pares the automatically produced semantic dependencies on
the ungrammatical sentences with its pseudo gold semantic
dependencies; thus, it shows how the automatic SRL sys-
tem performs on a domain that contains ungrammatical sen-
tences. The first column of the table shows the overall per-
formances of the methods. The overall results demonstrate
that applying arc pruning methods reduces the false discov-
ery rates. This suggests that arc pruning is useful in detect-
ing incorrect semantic dependencies of ungrammatical sen-
tences. The Reference method is outperforming other meth-

Figure 2: Variation in false discovery rates as the number of
errors in the test sentences increases.

ods as it uses extra source of information to identify major
syntactic problems. When applying automatic models, the
seq2seq approach outperforms H&H16 and RetrainedParser.
The small differences of FDRs are because the binary clas-
sifiers that detect incorrect semantic dependencies use mul-
tiple features that are the same for H&H16, RetrainedParser
and seq2seq methods; thereby the classifiers are pretty much
robust. Also note that, the proposed RetrainedParser and
seq2seq methods, not only learn to parse but also learn to
prune dependency arcs in a completely automatic regime.
Whereas the H&H16 pipelined method only learns to prune
dependency arcs using hand-engineered features.

In the next experiment, we examine the impact of seman-
tic role of the error in detecting incorrect semantic depen-
dencies. To remove the impact due to interactivity between
multiple errors, we study a subset of sentences that have only
one error. An error can be either in a verb role, an argu-
ment role, or no semantic role. The second column of Ta-
ble 4 shows that detecting incorrect semantic roles is more
challenging for sentences that have an argument error. It is
because the argument errors might not impact the syntactic
structure of the sentence, but these errors may change the
semantic of the sentence and so make difficulties to detect
incorrect semantic dependencies.

We further analyze the results by separating the test sen-
tences by the number of errors each contains. Our objective
is to observe the speed with which the rates of false discover-
ies increases as the sentences become more error-prone. Fig-
ure 2 presents false discovery rate plot against the number
of errors. We observe that the FDR score is increasing more
rapidly for the Basic method than the arc pruning methods
especially the Reference method. Therefore, the fact of de-
tecting incorrect semantic dependencies becomes more cru-
cial for the noisier sentences.

7 Conclusions

We have presented two end-to-end data-driven approaches to
detect incorrect dependencies of ungrammatical sentences.
The methods jointly learn to parse a sentence and prune the
implausible arcs. We devised an evaluation methodology to
investigate the utility of arc pruning in the semantic role la-
beling of ungrammatical sentences. The experimental results
validate the utility of the proposed methods, and suggest that
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the omission of implausible dependency arcs helps to pre-
vent outputs of semantic role labeling to degrade.8
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