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Abstract

We introduce an architecture, the Tensor Product Recur-
rent Network (TPRN). In our application of TPRN, inter-
nal representations—learned by end-to-end optimization in a
deep neural network performing a textual question-answering
(QA) task—can be interpreted using basic concepts from lin-
guistic theory. No performance penalty need be paid for this
increased interpretability: the proposed model performs com-
parably to a state-of-the-art system on the SQuAD QA task.
The internal representation which is interpreted is a Tensor
Product Representation: for each input word, the model se-
lects a symbol to encode the word, and a role in which to place
the symbol, and binds the two together. The selection is via
soft attention. The overall interpretation is built from interpre-
tations of the symbols, as recruited by the trained model, and
interpretations of the roles as used by the model. We find sup-
port for our initial hypothesis that symbols can be interpreted
as lexical-semantic word meanings, while roles can be inter-
preted as approximations of grammatical roles (or categories)
such as subject, wh-word, determiner, etc. Fine-grained anal-
ysis reveals specific correspondences between the learned
roles and parts of speech as assigned by a standard tagger
(Toutanova et al. 2003), and finds several discrepancies in the
model’s favor. In this sense, the model learns significant as-
pects of grammar, after having been exposed solely to lin-
guistically unannotated text, questions, and answers: no prior
linguistic knowledge is given to the model. What is given is
the means to build representations using symbols and roles,
with an inductive bias favoring use of these in an approxi-
mately discrete manner.

1 Introduction: Minding the gap

The difficulty of explaining the operation of deep neural
networks begins with the difficulty of interpreting the in-
ternal representations learned by these networks. This prob-
lem fundamentally derives from the incommensurability be-
tween, on the one hand, the continuous, numerical repre-
sentations and operations of these networks and, on the
other, meaningful interpretations—which are communica-
ble in natural language through relatively discrete, non-
numerical conceptual categories structured by conceptual
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relations. This gap could in principle be reduced if deep
neural networks were to incorporate internal representations
that are directly interpretable as discrete structures; the cat-
egories and relations of these representations might then be
understandable conceptually.

In the work reported here, we describe how approximately
discrete, structured distributed representations can be em-
bedded within deep networks, their categories and struc-
turing relations being learned end-to-end through perfor-
mance of a task. Applying this approach to a challenging
natural-language question-answering task, we show how the
learned representations can be understood as approximat-
ing syntactic and semantic categories and relations. In this
sense, the model we present learns significant aspects of syn-
tax/semantics, recognizable using the concepts of linguis-
tic theory, after having been exposed solely to linguistically
unannotated text, questions, and answers: no prior linguis-
tic knowledge is given to the model. What is built into the
model is a general capacity for distributed representation of
structures, and an inductive bias favoring discreteness in its
deployment.

Specifically, the task we address is question answering
for the SQuAD dataset (Rajpurkar et al. 2016), in which a
text passage and a question are presented as input, and the
model’s output identifies a stretch within the passage that
contains the answer to the question. In our view, SQuAD
provides a sufficiently demanding QA task that showing in-
terpretability of our proposed type of distributed structural
representation in a QA system that successfully addresses
SQuAD provides meaningful evidence of the potential of
such representations to enhance interpretability of large-
scale QA systems more generally.

The proposed capacity for distributed representation of
structure is provided by Tensor Product Representations,
TPRs, in which a discrete symbol structure is encoded as a
vector systematically built—through vector addition and the
tensor product—from vectors encoding symbols and vectors
encoding the roles each symbol plays in the structure as a
whole (Smolensky 1990; Smolensky and Legendre 2006;
Smolensky, Goldrick, and Mathis 2014). The new model
proposed here is built from the BIDAF model proposed
in (Seo et al. 2016) for question answering. We replace a
bidirectional RNN built from LSTM units (Hochreiter and
Schmidhuber 1997) with one built from TPR units; the ar-
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chitecture is called the Tensor Product Recurrent Network,
TPRN. TPRN learns the vector embeddings of the symbols
and roles, and learns which abstract symbols to deploy in
which abstract roles to represent each of the words in the
text-passage and query inputs.

We show how the structural roles that TPRN learns can
be interpreted through linguistic concepts at multiple lev-
els: morphosyntactic word features, parts of speech, phrase
types, and grammatical roles of phrases such as subject and
object. The match between standard linguistic concepts and
TPRN ’s internal representations is approximate.

The work reported here illustrates how learning to per-
form a typical natural language task can lead a deep learn-
ing system to create representations that are interpretable
as encoding abstract grammatical concepts without ever be-
ing exposed to data labelled with anything like grammatical
structure. It is commonly accepted among language acqui-
sition researchers that it is in this type of setting that chil-
dren typically learn their first language, so the work lends
plausibility to the hypothesis that abstract notions of linguis-
tic theory do describe representations in speakers’ minds—
representations that are learned in the service of performing
tasks such as question-answering which (unlike, say, a pars-
ing task) do not explicitly necessitate any such structure.

The remainder of the paper is structured as follows.
Section 2 provides some background while Section 3 in-
troduces TPR and details how it is used in the general
TPRN architecture we propose here. Experimental results
applying TPRN to SQuAD are presented in Section 4. The
heart of the paper is Section 5 which addresses interpretation
of the representations learned by TPRN. Section 6 discusses
related work and Section 7 concludes.

2 The Model

The proposed TPRN architecture is built in TensorFlow
(Abadi et al. 2015) on the BIDAF model proposed in (Seo et
al. 2016). BIDAF is constructed from 6 layers: a character
embedding layer using CNNs, a word embedding layer us-
ing GloVe vectors (Pennington, Socher, and Manning 2014),
a phrase embedding layer using bidirectional LSTMs for
sentence embedding (Palangi et al. 2016), an attention flow
layer using a special attention mechanism, a modeling layer
using LSTMs, and an output layer that generates pointers to
the start and end of an answer in the paragraph. (See Fig. 1
of (Seo et al. 2016).)

TPRN replaces the LSTM cells forming the bidirectional
RNN in the phrase embedding layer with recurrent TPR
cells, described next: see Fig. 1.

3 TPRN: The Tensor Product Recurrent

Network

This TPRN model enables the phrase-embedding layer of
the model to decide, for each word, how to encode that word
by selecting among nSymbols symbols, each of which it
can choose to deploy in any of nRoles slots in an abstract
structure. The symbols and slots have no meaning prior to
training. We hypothesized that the symbol selected by the

trained model for encoding a given input word will be in-
terpretable in terms of the lexical-semantic content of the
word (e.g., Australia refers to a place) while the slots will
be interpretable as grammatical roles such as subject/agent,
object/patient, question-restrictor phrase. In Section 5, we
will test this hypothesis; we will henceforth refer to “roles”
rather than “slots”. In other words, our hypothesis was that
the particular word tokens for which a given symbol was se-
lected would form a lexical-semantically-related class, and
the particular word tokens for which a given role was se-
lected would form a grammatically-related class.

To function within the network, the symbols and roles
must each be embedded as vectors; assume that we use vec-
tors of dimension dSymbols and dRoles for symbols and
roles respectively. These embedding vectors are designed by
the network, i.e., they are learned during training. The net-
work’s parameters, including these embeddings, are driven
by back-propagation to minimize an objective function rel-
evant to the model’s question-answering task. The objective
function includes a standard cross-entropy error measure,
but also quantization, a kind of regularization function bias-
ing the model towards parameters which yield decisions that
select, for each word, a single symbol in a single role: the
selection of symbols and roles is soft-selection, and we will
say that the model’s encoding assigns, to the tth word w(t),
a symbol-attention vector aS

(t) and a role-attention vector
aR

(t).

The quantization term in the objective function pushes to-
wards attention vectors that are 1-hot. We do not impose
this as a hard constraint because our fundamental hypoth-
esis is that by developing approximately discrete representa-
tions, the model can benefit from the advantages of discrete
combinatorial representations for natural language, without
suffering their disadvantage of rigidity. We note that while
the attention vectors are approximately 1-hot, the actual rep-
resentations deployed are attention-weighted sums of fully
distributed vectors arising from distributed encodings of the
symbols and distributed embeddings of the roles.

In the encoding for w(t), the vector s(t) encoding the
symbol is the attention-weighted sum of the nSymbols

possible symbols: s(t) =
∑nSymbols

j=1 [aS
(t)]jsj = SaS

(t)

where sj is the embedding of the jth symbol in R
dSymbols,

which is the jth column of the symbol matrix S. Sim-
ilarly, the vector encoding the role assigned to w(t) is
r(t) =

∑nRoles
k=1 [aR

(t)]krk = RaR
(t), with rk the embed-

ding of the kth symbol in R
dRoles and the kth column of

the role matrix R. Since the symbol {sj}j=1:nSymbols and
role {rk}k=1:nRoles vectors are unconstrained, they gener-
ally emerge from the learning process as highly distributed;
that is even more true of the overall representations {v(t)},
as we now see.

The activation vector v(t) that encodes a single word w(t)

combines the word’s symbol-embedding vector, s(t), and its
role-embedding vector, r(t), via the outer or tensor product:
v(t) = aS

(t)aR
(t)� = aS

(t) ⊗ aR
(t). We say that v(t) is the

tensor product representation (TPR) of the binding of sym-
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Figure 1: Block diagram of the proposed model.

bol s to the role r. A convenient expression for v(t) is:

v(t) ≡ s(t)(r(t))� =
(
SaS

(t)
)(

RaR
(t)
)�

(1)

= S
(
aS

(t)aR
(t)�

)
R� = SB(t)R�

The matrix B(t) ≡ aS
(t)aR

(t)� is the binding matrix for
word w(t), which encodes the (soft) selection of symbol
and role for w(t). This matrix has dimension nSymbols ×
nRoles; the actual representation sent to deeper layers, v(t),
has dSymbols×dRoles embedding dimensions. (In the par-
ticular model discussed below, the dimensions of B and v(t)

are respectively 100× 20 and 10× 10. )
aS

(t) and aR
(t) in (1) are defined as:

aS
(t) = f(WS

inw
(t) +WS

recvec(v
(t−1)) + bS) (2)

aR
(t) = f(WR

inw
(t) +WR

recvec(v
(t−1)) + bR) (3)

where vec(.) is the vectorization operation, f(.) is the lo-
gistic sigmoid function, w(t) is the tth word and b is a
bias vector. Equation (1) is depicted graphically in the ‘TPR
unit’ insert in Fig. 1. During I → O computation, in the
forward-directed RNN, the representation v(t−1) of the pre-
vious word is used to compute the attention vectors aS

(t),
aR

(t) which in turn are used to compute the representation
v(t) of the current word. (The same equations, with the same
transition weights and biases, apply to the words in both the
passage and the query.) Please note that v(t) is initialized
with zero.

Because each word is represented (approximately) as the
TPR of a single symbol/role binding, we can interpret the
internal representations of TPRN ’s phrase-embedding layer

once we can interpret the symbols and roles it has invented.
Such interpretation is carried out in the Section 5.

The interest in TPR lies not only in its interpretability,
but also in its power. The present TPRN model incorpo-
rates TPR to only a modest degree, but it is a proof-of-
concept system that paves the way for future models that
can import the power of general symbol-structure process-
ing, proven to be within the scope of full-blown TPR archi-
tectures (Smolensky and Legendre 2006; Smolensky 2012).
TPRN is designed to scale up to such architectures; de-
sign decisions such as factoring the encoding as v(t) =
aS

(t)aR
(t)� = aS

(t)⊗aR
(t) are far from arbitrary: they derive

directly from the general TPR architecture.
As the name TPRN suggests, the novel representational

capacity built into TPRN is an RNN built of TPR units: a
forward- and a backward-directed RNN in each of which
the word w(t) generates an encoding which is a TPR: v(t) =
SB(t)R�; the binding matrix B(t) varies across words, but
a single symbol matrix S and single role matrix R apply
for all words {w(t)}. Both the S and R matrices are learned
during training.

It remains only to specify the quantization function Q (4)
which is added (with weight cQ) to the cross-entropy to form
the training objective for TPRN : Q generates a bias favoring
attention vectors aS(t) and aR

(t) that are 1-hot.

Q = Qa(aS
(t)) +Qa(aR

(t)) (4)

Qa(a) = Σi(ai)
2(1− ai)

2 +
(
Σi(ai)

2 − 1
)2

The first term of Qa is minimized when each component
of a satisfies ai ≡ [a]i ∈ {0, 1}; the second term is min-
imized when ‖a‖22 = 1. The sum of these terms is mini-
mized when a is 1-hot (Cho and Smolensky 2016). Q drives
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learning to produce weights in the final network that gen-
erate aS

(t) and aR
(t) vectors that are approximately 1-hot,

but there is no mechanism within the network for enforcing
(even approximately) 1-hot vectors at I → O computation
(inference) time. Please note that the final loss function is
the current loss function of the QA system plus the terms
defined in (4).

4 Experiments

In this section, we describe details of the experiments ap-
plying the proposed TPRN model to the question-answering
task of the Stanford’s SQuAD dataset (Rajpurkar et al.
2016). The results of primary interest are the interpretations
of the learned representations, discussed at length in the next
section.

The goal of this work is not to beat the state-of-the-art
system on SQuAD (at the time of writing this paper, DCN+
from Salesforce Research), but to create a high-performing
question-answering system that is interpretable, by exploit-
ing TPRs.

SQuAD is a reading comprehension dataset for question
answering. It consists of more than 500 Wikipedia articles
and more than 100,000 question-answer pairs about them,
which is significantly larger than previous reading compre-
hension datasets (Rajpurkar et al. 2016). The questions and
answers are human-generated. The answer to each question
is determined by two pointers into the passage, one pointing
to the start of the answer and the other one pointing to its
end. Two metrics that are used to evaluate models on this
dataset are Exact Match (EM) and F1 score.

For the experiments, we used the same settings reported
in (Seo et al. 2016) for all layers of TPRN except the phrase
embedding layer, which is replaced by our proposed recur-
rent TPRN cells. The full setting of the TPRN model for ex-
periments is as follows:
• Questions and paragraphs were tokenized by the PTB to-

kenizer.
• The concatenation of word embedding using GloVe (Pen-

nington, Socher, and Manning 2014) and character em-
bedding using Convolutional Neural Networks (CNNs)
was used to represent each word. The embedding vector
for each character was of length 8 (1-D input to the CNN)
and the output of the CNN’s max-pooling layer over each
word was a vector of length 100. The embedding size of
word embedding using GloVe was also set to 100.

• For the interpretability experiments reported in Section 5,
the hyperparameter values used for the TPRN cell were
nSymbols = 100 symbols and nRoles = 20 roles. Em-
bedding size was dSymbols = 10 = dRoles. We used
vec(v(t)) as the output of our phrase embedding layer.

• The weight of the quantization regularizer in (4) was
cQ = 0.00001. Results were not highly sensitive to this
value.

• The optimizer used was AdaDelta (Zeiler 2012) with 12
epochs.
Performance results of our model compared to the strong

BIDAF model proposed in (Seo et al. 2016) are presented

Table 1: Performance of the proposed TPRN model com-
pared to BIDAF proposed in (Seo et al. 2016)

Single Model EM(dev) F1(dev) EM(test) F1(test)
TPRN 63.8 74.4 66.6 76.3
BIDAF 62.8 73.5 67.1 76.8

in Table 1. We compared the performance of single mod-
els. For the BIDAF baseline, we ran the code published in
(Seo et al. 2016) with the advised hyperparameters. Similar
to the LSTM used in BIDAF, we added a gating mechanism,
identical to that of the LSTM cell, to the output tensor v(t)

in Equation (1). In the TPRN model tested here for perfor-
mance comparison purposes, we set the number of symbols
and roles to 600 and 100 respectively and the embedding
size of symbols and roles to 15 and 10. Each experiment for
the TPRN model took about 13 hours on a single Tesla P100
GPU. From this table we observe that our proposed TPR
based model outperforms (Seo et al. 2016) by 1 point on the
validation set and slightly underperforms (Seo et al. 2016)
on the test set. Overall, the proposed TPRN gives results
comparable to those of the state-of-the-art BIDAF model.
Moreover, as we will elaborate in the following sections,
our model offers considerable interpretability thanks to the
structure built into TPRs.

5 Experimental interpretations of learned

TPRs

We separately discuss interpretation of the symbols and the
roles learned by TPRN .

5.1 Interpreting learned TPR Roles

Here we provide interpretation of the TPR roles aR
(t) as-

signed to the words w(t) of the query input in the forward-
directed TPR-RNN of TPRN . (These are denoted q(t) in
Fig. 1.) Just as good learned neural network models in vi-
sion typically acquire similar early types of representations
of an input image (e.g., (Zeiler et al. 2010)), it is reasonable
to hypothesize that good learned neural network models in
language will typically learn low-level input representations
that are generally similar to one another. Thus we can hope
for some generality of the types of interpretation discussed
here. Convergence on common input representations is ex-
pected because these representations capture the regularities
among the inputs, useful for many tasks that process such
input. The kinds of regularities to be captured in linguistic
input have been studied for years by linguists, so there is
reason to expect convergence between good learned neural
network language-input representations and general linguis-
tic concepts. The following interpretations provide evidence
that such an expectation is merited.

We consider which word tokens w(t) are ‘assigned to’
(or ‘select’) a particular role k, meaning that, for an appro-
priate threshold θk, [âR(t)]k > θk where âR

(t) is the L2-
normalized role-attention vector.

Grammatical role concepts learned by the model
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A grammatical category—Part of Speech: Determiner ∼
Role #9. The network assigns to role #9 these words: a sig-
nificant proportion of the tokens of: the (76%), an (52%), a
(46%), its (36%) and a few tokens of of (8%) and Century
(3%). The dominant words assigned to role #9 (the, an, a,
its) are all determiners. Although not a determiner, of is also
an important function word; the 3% of the tokens of Cen-
tury that activate role #9 can be put aside. Quantitatively,
p(w is a determiner|w activates role #9 to > 0.65) =
0.96. This interpretation does not assert that #9 is the
only role for determiners; e.g., p(w activates role #9|w ∈
{a, an, the}) = 0.70.

A semantic category: Predicate (verbs and adjectives)
∼ Role #17. The words assigned to role #17 are over-
whelmingly predicates, a semantic category correspond-
ing to the syntactic categories of verbs and adjectives
[e.g., under semantic interpretation, J runs → runs(J);
J is tall → tall(J)] . While the English word orders
of these two types of predication are often opposite
(the girl runs vs. the tall girl), the model represents
them as both filling the same role, which can be inter-
preted as semantic rather than syntactic. Quantitatively,
p(w is a verb or adjective|w selects role #17) = 0.82.
Unlike role #9, which concerns only a small (‘closed’) class
of words, the class of predicates is large (‘open’), and role
#17 is assigned to only a rather small fraction of predicate
tokens: e.g., p(w is assigned to role #17|w is a verb) =
0.04.

A grammatical feature: [PLURAL] ∼ Role #10. To ob-
serve the representational difference between the singular
and plural roles we need to fix on particular words. A case
study of area vs. areas revealed a total separation in their
attention to role #10 (which has a midpoint level of 0.25):
100% of tokens of singular area have [âR

(t)]10 < 0.25;
100% of tokens of plural areas have [âR

(t)]10 > 0.25.
This conclusion is corroborated by pronouns, where he;him
each have mean [âR

(t)]10 = 0.1, while they;them have
[âR

(t)]10 = 0.4; 0.6 (there are very few tokens of she;her).

A grammatical phrase-type: wh-operator restrictor
‘phrase’ ∼ Role #1. Role #1 is assigned to sequences of
words including how many teams, what kind of buildings,
what honorary title. We interpret these as approximations to
a wh-restrictor phrase: a wh-word together with a property
that must hold of a valid answer—crucial information for
question-answering. In practice, these ‘phrases’ span from a
wh-word to approximately the first following content word.
Other examples are: what was the American, which logo
was, what famous event in history.

Grammatical functions: Subject/agent vs. object/patient
∼ Role #6. A fundamental abstract distinction in
syntax/semantics separates subjects/agents from ob-
jects/themes. In English the distinction is explicitly marked
by distinct word forms only on pronouns: he loves her vs.

she loves him. In the model, attention to role #6 is greater
for subjects than objects, for both he vs. him and they vs.
them (again, too few tokens of she;her). All but 13 of 124
tokens of he and all 77 tokens of they allocate high attention
to #6, whereas only 1 of the 27 tokens of him and none of
the 34 tokens of them do (relative to baselines appropriate
for the different pairs: 0.52, 0.18).

Correcting the Stanford Tagger’s POS labeling using
learned roles

When Doctor Who is not a name: Role #7. The TV char-
acter Doctor Who (DW) is named many times in the SQuAD
query corpus. Now in . . . DW travels . . . , the phrase DW is
a proper noun (‘NNP’), with unique referent, but in . . . does
the first DW see . . ., the phrase DW must be a common noun
(‘NN’), with open reference. In such cases the Stanford tag-
ger misclassifies Doctor as an NNP in 9 of 18 occurrences:
see Table 2a. In . . . the first DW serial . . ., first modifies se-
rial and DW is a proper noun. The tagger misparses this as
an NN in 37 of 167 cases. Turning to the model, we can in-
terpret it as distinguishing the NN vs. NNP parses of DW
via role #7, which it assigns for the NN, but not the NNP,
case. Of the Stanford tagger’s 9 errors on NNs and 37 errors
on NNPs, the model misassigns role #7 only once for each
error type (shown in parentheses in Table 2a). The model
makes 7 errors total (Table 2b) while the tagger makes 46.
Focussing on the specific NN instances of the form the nth

DW, there are 19 cases: the tagger was incorrect on 11, and
in every such case the model was correct; the tagger was
correct in 8 cases and of these the model was also correct on
6.

When Who is a name: Role #1. In Doctor Who trav-
elled, the word Who should not be parsed as a question word
(‘WP’), but as part of a proper noun (NNP). The Stanford
tagger makes this error in every one of the 167 occurrences
of Who within the NNP Doctor Who. The TPRN model,
however, usually avoids this error. Recalling that role #1
marks the wh-restrictor ‘phrase’, we note that in 81% of
these NNP-Who cases, the model does not assign role #1
to Who (in the remaining cases, it does assign role #1 as
it includes Who within its wh-restrictor ‘phrase’, generated
by a distinct genuine wh-word preceding Who). In all 30 in-
stances of Who as a genuine question word in a sentence
containing DW, the model correctly assigns role #1 to the
question word. For example, in Who is the producer of Doc-
tor Who? [query 7628], the first Who correctly selects role
#1 while the second, correctly, does not. (The model cor-
rectly selects role #1 for non-initial who in many cases.)

When to doctor is not a verb: Role #17. The Stanford
tagger parses Doctor as a verb in 4 of its 5 occurrences in
. . . to Doctor Who . . .. The model does not make this mis-
take on any of these 5 cases: it assigns near-zero activity to
role #17, identified above as the predicate role for verbs and
adjectives.
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Table 2: Doctor Who? Correcting the Stanford Tagger (errors in bold)

smallskip

a. True b. True
NN NNP NN NNP

tagger NN 9 (5) 37 (1) model NN 13 (5) 2 (1)
(& model) NNP 9 (1) 130 (129) (& tagger) NNP 5 (1) 165 (129)

Table 3: Symbol 27
Token Similarity

printmaker 0.9587
composer 0.8992
who 0.8726
mathematician 0.8675
guitarist 0.8622
musician 0.8055
Whose 0.7774
engineer 0.7753
chemist 0.7485
how 0.7335
strict 0.7207

5.2 Interpreting learned TPR symbols

Meaning of learned symbols: Lexical-semantic coher-
ence of symbol assignments. To interpret the lexical-
semantic content of the TPR symbols s(t) learned by the
TPRN network:

1. s(t) = SaS
(t) ∈ R

10 is calculated for all (120,950) word
tokens w(t)in the validation set.

2. The cosine similarity is computed between aS
(t) and the

embedding vector of each symbol.

3. The symbol with maximum (cosine) similarity is assigned
to the corresponding token.

4. For each symbol, all tokens assigned to it are sorted based
on their similarity to it; tokens of the same type are re-
moved, and the top tokens from this list are examined to
assess by inspection the semantic coherence of the sym-
bol assignments (see Tables 3 – 5).

The results provide significant support for our hypothesis
that each symbol corresponds to a particular meaning, as-
signed to a cloud of semantically-related word tokens. For
example, symbol 27 and symbol 6 can be respectively in-
terpreted as meaning ‘occupation’ and ‘geopolitical unit’.
Symbol 11 is assigned to multiple forms of the verb to be,
e.g., was (85.8% of occurrences of tokens in the validation
set), is, (93.2%) being (100%) and be (98%). Symbol 29 is
selected by 10 of the 12 month names (along with other word
types; more details in supplementary materials). Other sym-
bols with semantically coherent token sets are reported in
the supplementary materials. Some symbols, however, lack
identifiable coherence; an example is presented in Table 4.

Polysemy. Each token of the same word, e.g., who, gen-
erates its own symbol/role TPR in TPRN and if our hypoth-
esis is correct, tokens with different meaning should select
different symbols. Indeed we see three general patterns of

Table 4: Symbol 2
Token Similarity

phrase 0.817
wrong 0.8146
mean 0.7972
constitutes 0.7771
call 0.7621
happens 0.752
the 0.7477
God 0.7425
nickname 0.7368
spelled 0.7162
name 0.712
happened 0.6889
as 0.6699
defines 0.647

Table 5: Symbol 6
Token Similarity

abolished 0.8777
west 0.8734
nations 0.8613
Newcastle 0.8588
south 0.8573
Melbourne 0.8558
Australia 0.8544
World 0.8526
Belgium 0.849
donors 0.8476
Asian 0.8404
Greece 0.8402
Europe 0.8397
Thailand 0.8393
Constituency 0.8361

Token Similarity

annexed 0.836
Brisbane 0.8359
European 0.8341
Scotland 0.8321
Cyprus 0.8275
governments 0.8266
Commonwealth 0.8261
Britain 0.8243
flexibility 0.8227
territories 0.8219
Switzerland 0.821
countries 0.8206
freedom 0.819
Germans 0.8178
north 0.8173

symbol selection for who. Who is the producer of Dr. Who?
illustrates the main-question-word meaning and the proper-
name meaning, respectively, in its two uses of who. Third
is the relative pronoun meaning, illustrated by . . . the actor
who . . .. The three symbol-selection patterns associated with
these three meanings are shown in Table 6.

We can interpret the symbols with IDs 25, 52 and 98 as
corresponding, respectively, to the meanings of a relative
pronoun, a main question word, and a proper noun. The to-
kens with boldface counts are then correct, while the other
counts are errors. Of interest are the further facts that all 18
of the non-sentence-initial main-question-word tokens are
correctly identified as such (assigned symbol 52) and that, of
the 27 cases of proper-noun-whos mislabeled with the main-
question symbol 52, half are assigned role #1, placing them
in the wh-restrictor ‘phrase’ (whereas only one of the 126
correctly-identified proper-noun-whos is). The Symbol-97-
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Table 6: Symbols selected by meaning of who
Meaning Symbol ID: 25 52 97 98
main question word 1062
relative pronoun 14 4 1 26
proper noun 27 16 126

meaning of who is at this point unclear.

Predicting output errors from internal mis-
representation. In processing the test query What
type/genre of TV show is Doctor Who? [7632] the model
assigns symbol 52 to Who, which we have interpreted as an
error since symbol 52 is assigned to every one of the 1062
occurrences of Who as a query-initial main question-word.
Although the model strongly tends to give responses of the
correct category, here it replies Time Lord, an appropriate
type of answer to a true who question but not to the actual
question. The model makes 4 errors of this type, of the 9
errors total made when assigning symbol 25; this 44% rate
contrasts with the 9% rate when it correctly assigns the
‘proper-noun symbol’ 98 to Who.

Although such error analysis with TPRN models is in its
infancy, it is already beginning to reveal its potential to make
it possible, we believe for the first time, to attribute overall
output errors of a DNN modeling a language task to iden-
tifiable errors of internal representation. The analysis also
shows how the proposed interpretations can be validated by
supporting explanations for aspects of the model’s behavior.

6 Related work

Architecture. In recent years, a number of DNNs have
achieved notable success by reintroducing elements of sym-
bolic computation as peripheral modules. This includes,
e.g.: (i) the memory bank, a discrete set of addressed
storage registers each holding a neural activation vector
(Henaff et al. 2017; Sukhbaatar et al. 2015; Weston, Chopra,
and Bordes 2014); and (ii) the sequential program, a dis-
crete sequence of steps, each selected from a discrete
set of simple, approximately-discrete primitive operations
(Graves, Wayne, and Danihelka 2014; Neelakantan, Le, and
Sutskever 2016). The discreteness in these peripheral mod-
ules is softened by continuous parameters with which they
interface with the central controlling DNN; these parame-
ters modulate (i) the writing and reading operations with
which information enters and exits a memory bank (‘atten-
tion’ (Chorowski et al. 2015; Xu et al. 2015)); and (ii) the
extent to which inputs are passed to and outputs retrieved
from the set of operations constituting a program (Graves et
al. 2016). The continuity of these parameters is of course
crucial to enabling the overall system to be learnable by
gradient-based optimization.

The present work constitutes a different approach to
reintroducing approximately symbolic representations and
rule-based processing into neural network computation over
continuous distributed representations. In computation with
TPRs, the symbols and rules are internal to the DNN;
there is no separation between a central network controller

and peripheral quasi-discrete modules. Items in memories
are distributed representations that are combined by addi-
tion/superposition rather than by being slotted into external
discrete locations. Computation over TPRs is massively par-
allel (Smolensky and Legendre 2006).

Interpretation. Most methods of interpreting the internal
representations of DNNs do so through the input and out-
put representations of DNNs which are by necessity inter-
pretable: these are where the DNN must interface with our
description of its problem domain. An internal neuron may
be interpreted by looking at the (interpretable) input patterns
that activate it, or the (interpretable) output patterns that it
activates (e.g., (Zeiler and Fergus 2014)).

The method pursued in this paper, by contrast, interprets
internal DNN states not via I → O behavior but via an ab-
stract theory of the system’s problem domain. In the case of
a language processing problem, such theories are provided
by theoretical linguistics and traditional, symbolic computa-
tional linguistics. The elements we have interpreted are TPR
roles, and TPR fillers, which are distributed activation vec-
tors incorporated into network representations via the sum-
mation of their tensor products; we have designed an archi-
tecture in which individual neurons localize the presence
of such roles and fillers (aR(t) and aS

(t)). Our interpreta-
tion rests on the interrelations between activations of the
roles and fillers selected to encode words-in-context with
the lexical-semantic and grammatical properties attributed
to those words-in-context by linguistic theories.

7 Conclusion

We introduce a modification of the BIDAF architecture
for question-answering with the SQuAD dataset. This new
model, TPRN , uses Tensor Product Representations in re-
current networks to encode input words. Through end-to-
end learning the model learns how to deploy a set of sym-
bols into a set of structural roles; the symbols and roles have
no meaning prior to learning. We hypothesized that the sym-
bols would acquire lexical meanings and the roles grammat-
ical meanings. We interpret the learned symbols and roles
by observing which of them the trained model selects for
encoding individual words in context. We observe that the
words assigned to a given symbol tend to be semantically
related, and the words assigned to a given role correlate with
abstract notions of grammatical roles from linguistic the-
ory. Thus the TPRN model illustrates how learning to per-
form a natural language question-answering task can lead a
deep learning system to create representations that are inter-
pretable as encoding abstract grammatical concepts without
ever being exposed to data labelled with anything like gram-
matical structure. It is widely assumed that it is in such a
setting that children learn their first language, so the work
lends plausibility to the hypothesis that abstract notions of
linguistic theory do in fact describe representations in speak-
ers’ minds—representations that are learned in the service of
performing tasks that do not explicitly necessitate any such
structure.
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