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Abstract

Existing neural dependency parsers usually encode each word
in a sentence with bi-directional LSTMs, and estimate the
score of an arc from the LSTM representations of the head
and the modifier, possibly missing relevant context informa-
tion for the arc being considered. In this study, we propose
a neural feature extraction method that learns to extract arc-
specific features. We apply a neural network-based attention
method to collect evidences for and against each possible
head-modifier pair, with which our model computes certainty
scores of belief and disbelief, and determines the final arc
score by subtracting the score of disbelief from the one of be-
lief. By explicitly introducing two kinds of evidences, the arc
candidates can compete against each other based on more rel-
evant information, especially for the cases where they share
the same head or modifier. It makes possible to better dis-
criminate two or more competing arcs by presenting their
rivals (disbelief evidence). Experiments on various datasets
show that our arc-specific feature extraction mechanism sig-
nificantly improves the performance of bi-directional LSTM-
based models by explicitly modeling long-distance depen-
dencies. For both English and Chinese, the proposed model
achieve a higher accuracy on dependency parsing task than
most existing neural attention-based models.

Introduction

Dependency parsing has been proven useful for several natu-
ral language understanding tasks, such as relation extraction
(Fundel, Küffner, and Zimmer 2006) and machine transla-
tion (Carreras and Collins 2009). A dependency parser rep-
resents the syntactic structure of a sentence with a depen-
dency tree, in which each word and its modifier are con-
nected by a labeled edge. There are typically two paradigms
of dependency parsing models: transition-based and graph-
based models. A transition-based model (Yamada and Mat-
sumoto 2003) learns to predict a proper action from current
parsing state and parsing history, and the parsing process
is done by performing the predicted sequence of actions. A
graph-based model defines the score of parse trees by sum-
ming the scores of its subgraphs. Various maximum span-
ning tree algorithms (Chu and Liu 1965; Eisner 1996) are
adopted to find the parse tree with the highest score (Mc-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Donald et al. 2005). In graph-based models, parameters are
learned to assign a correct score to each possible subgraph.

McDonald and Satta (2007) show that when the tree score
is factorized into high-order subgraphs instead of single arcs,
exactly searching the parse tree with the highest score is an
NP-hard problem. For that reason, graph-based parsers typi-
cally factorize the tree score in a first-order way (i.e. the arc
scores are estimated independently), and assign a score to
an arc with a set of local features by a linear model. Limited
by the factorization over single arcs (up to three-order) , the
primary shortcoming of graph-based parsers is that features
are defined over a limited subgraph although the model can
use global learning and inference.

Much effort have been devoted to solving this problem.
Some works (Nivre and McDonald 2008; McDonald and
Nivre 2011) try to integrate transition-based parsers and
graph-based parsers by using the result of one to define fea-
tures for the other. For graph-based parsers as example, the
shortcoming of insufficient on features is partly made up
by transition-based parsers which can take rich parsing his-
tory into account. Another way for improvement is to intro-
duce high-order features such as the modifier’s siblings and
children for each head-modifier pair, and search the optimal
parse tree with an approximation algorithm (McDonald and
Pereira 2006).

Regardless of how to introduce rich feature into the
dependency parsers, these traditional graph-based parsers
heavily rely on handcrafted feature design and selection.
Those features are often manually designed to capture the
syntactic structure, and the design of feature becomes a chal-
lengeable task. In order to avoid such feature engineering,
many recent approaches use deep neural networks to learn
dense features rather than traditional sparse indicator fea-
tures, and the shallow classifiers for predicting the correct
action in transition-based models, or the score functions in
graph-based models are replaced by different kinds of neu-
ral networks such as two-layer neural networks (Chen and
Manning 2014), recurrent neural networks (Kiperwasser and
Goldberg 2016b) and convolutional neural networks (Zheng
2017).

Long-short Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) is widely applied to generate feature
representations with long distance information, which are
thought to be useful for dependency parsing (Kiperwasser
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and Goldberg 2016b; Cheng et al. 2016; Zhang, Cheng, and
Lapata 2016; Dozat and Manning 2017). LSTM-based mod-
els generate features by associating each word with a bi-
directional LSTM vector representation and train the LSTM
jointly with the parser. A weak point of such approaches is
that when a sentence is fed into an LSTM, earlier inputs
usually have less impact on the final cell states or outputs,
preventing the model from estimating reliable probability
of an arc with the help of rich global information. To solve
this problem, attention mechanism, which is first proposed
in sequence-to-sequence models (Bahdanau, Cho, and Ben-
gio 2014), is adopted in dependency parsing in two ways:
feature generation and head selection. Cheng et al. (2016)
construct an attention mechanism allowing the model to
capture high-order parsing history beyond the head and the
modifier. Some works (Kiperwasser and Goldberg 2016b;
Zhang, Cheng, and Lapata 2016) predict the arc scores and
select the headword for each word by neural attention mech-
anism, and Dozat and Manning (2017) replace the MLP at-
tention with a biaffine one.

Previous neural graph-based dependency parsers typically
factorize the score of a parse tree in a first-order strategy, and
they estimate the score of each head-modifier pair only from
their LSTM representations, easily missing relevant con-
text information contained in the rest of the sentence to the
specific pair. Inspired by certainty factor that used to build
MYCIN expert system (Shortliffe 1976), we propose an
attention-based mechanism to extract arc-specific high-order
features to better estimate each arc’s score without substan-
tially increasing the computational complexity, by collecting
evidences for or against the arc. The proposed parser first
encodes each word in a sentence by a bi-directional LSTM.
When scoring a head-modifier pair, model constructs two
representations for the pair by concatenating their LSTM
representations and applying different MLPs on it. Then a
neural attention mechanism is built between the two repre-
sentations and the rest of the sentence, from which we gen-
erate evidence features to compute the belief score and dis-
belief score for the pair. The final score is obtained by sub-
tract the disbelief score from the belief score. By explicitly
introducing two kinds of evidences, the arc candidates can
compete against each other based on more relevant informa-
tion, especially for the cases where they share the same head
or modifier. It makes possible to better discriminate two or
more competing arcs by presenting their rivals (disbelief ev-
idence). Finally we use a maximum directed spanning tree
algorithm on final scores to construct the parse tree.

To the best of our knowledge, the proposed model is the
first one to introduce specific features defined for each par-
ticular arc with a neural attention mechanism. Experimen-
tal results demonstrate that such approach captures features
with global information that are necessary for scoring arcs
in a sentence.

Model
In this section, we first formalize the inference in our ap-
proach as to assign a score to each possible arc with specific
feature representations generated by a bi-directional LSTM
and a neural attention mechanism. Then, we present how

we construct a continuous representation for each word in
the input sentence, and describe the key component of our
model, i.e. the arc-specific feature extraction mechanism.
Lastly we describe the entire parsing process.

Problem Formalization

Given an input sentence x = (w0, w1, ..., wn), dependency
parsers find the parse tree with the highest score, with an
artificial added token w0 as its ROOT, i.e.

y∗ = argmax
y∈Y

s(x, y) (1)

where Y is the set of all possible parse trees. y∗ is the target
parse tree and s(·) is a function that calculates the overall
score of a tree. In practice, s(·) is usually factorized into the
summation of each arc’s score to avoid the NP-hard exhaus-
tive search, i.e.

s(x, y) =
∑

(wh,wm)∈y

score(wh, wm) (2)

where score(·) is a function to compute the score for a single
arc in a parse tree between a headword wh and its modifier
wm. In most traditional models, the arc score is computed
by the dot product of a high-dimension sparse feature vector
and a weighting parameter vector. The model performance
heavily relies on the feature design and selection, and the
design of features becomes the major challenge in model de-
sign. However, feature engineering for a traditional parser is
a labor-intensive task. For example, Zhang and Nivre (2011)
propose a feature set including 20 core components and 72
feature templates. Instead of using handcrafted traditional
feature templates, in our proposed model features are gener-
ated by a bi-directional LSTM and a neural attention mecha-
nism, and the score function is defined with neural networks
which will be described in this section.

Word representations

Following previous research (Chen and Manning 2014;
Dyer et al. 2015; Weiss et al. 2015; Cheng et al. 2016),
we construct two fixed-size lookup tables, Eword ∈ R

p×|V |

and Epos ∈ R
q×|P |to store word and POS tag embeddings,

where V and P stand for the word set and POS tag set, and
p and q are the dimensionality of word and POS tag em-
beddings. For each word wi, we obtain its embedding ei by
concatenating its word and POS tag embedding.

ei = Ewordeword
i ◦ Eposeposi (3)

where eword
i and eposi are one-hot binary index vectors and

◦ means vector concatenation.
The two lookup tables extract information for each single

word, but it has been proven that long-distance information,
such as words’ positional information within the sentence
is important for dependency parsing (McDonald, Crammer,
and Pereira 2005). In order to leverage such information, we
apply a bi-directional LSTM with two layers to generate the
representation of each word in a sentence.

xi = BiLSTM(e[0:n], i) (4)
where n is the sentence length. In this case a bi-directional
LSTM encodes each of the words in the sentence implicitly
taking the whole sentence into account.
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Feature Extraction by Collecting Evidences

In previous head selection models based on LSTM and
neural attention (Kiperwasser and Goldberg 2016b; Zhang,
Cheng, and Lapata 2016), once the LSTM representation of
each word in the sentence is calculated, the model imme-
diately concatenates the representations of each head and
modifier, and feeds the concatenation result to an MLP to
obtain the score of the pair. Although LSTM representa-
tions have access to all the words and POS tags in the sen-
tence, they are produced without guidance from any particu-
lar words or head-modifier pairs, and suffer from the fact that
earlier inputs usually have less impact on the final represen-
tation. In order to involve some features that are specific for
a particular pair, we extend their works by applying a neural
attention mechanism to extract high-order features by col-
lecting evidences from the sentence that are for or against
adding an arc between such a pair.

Figure 1: The structure of our feature extraction component.
This figure illustrates how the evidence feature (either belief
or disbelief) is produced for evaluating head-modifier pair
(w1, w3). An MLP generates a representation of the pair, by
which a neural attention mechanism computes weights for
each other word in the sentence. Evidence feature of the pair
is extracted by computing the weighted sum of the represen-
tations of other words. The softmax layer is omitted in the
figure.

Suppose we intend to evaluate the score for headword wh

and modifier wm, with xh and xm as their bi-directional
LSTM representations. Vanilla bi-directional LSTM-based
models (Kiperwasser and Goldberg 2016b; Zhang, Cheng,
and Lapata 2016) predict the score for arc (wh, wm) inde-
pendently within the scope of xh and xm, missing enough
context information from the rest of the sentence, though
LSTM encodes the rest of the sentence implicitly. To over-
come this shortcoming, when evaluating a head-modifier
pair, with the knowledge about that pair our proposed model
scans the input sentence again to extract specific features

including evidences for belief and disbelief. Figure 1 shows
how the evidence features are produced by our model. When
collecting evidences for belief, the proposed model first pro-
duces a representation of the pair (xh, xm) with a three-layer
MLP denoted by MLP r

b :

repb(h,m) = MLP r
b (xh ◦ xm) (5)

repb plays a role similar to a feature map in convolutional
neural networks, which project xh and xm to another vector
space in order to collect evidences that are supportive for
this pair, by computing the degree of support for each word
wi in the sentence except wh and wm. Similar as (Bahdanau,
Cho, and Bengio 2014), we apply a neural attention on each
xi:

abi (h,m) = xi · repb(h,m) (6)
The attention score abi stands for the importance of wi

in collecting evidence for believing the given head-modifier
pair (wh, wm). We normalize the attention scores by apply-
ing a softmax layer on a = (a0, a1, ..., an),

abi (h,m) ← exp(abi (h,m))∑
j /∈{h,m}

exp(abj(h,m))
(7)

and summarize all the supportive evidences as a feature vec-
tor for this pair by computing a weighted sum over all the
evidences.

fb(h,m) =
∑

i/∈{h,m}
xi · abi (h,m) (8)

fb(h,m) is the summarization of all the supportive evi-
dences all over the input sentence, and it is considered as one
of the features used in predicting the certainty score of be-
lief. Taking fb(h,m) into account, we compute the certainty
score of believing wh and wm with another three-layer MLP
denoted by MLP s

b :

belief(h,m) = MLP s
b (xh ◦ xm ◦ fb(h,m)) (9)

In order to compute the score of disbelief, the proposed
model replaces MLP r

b and MLP s
b with MLP r

d and
MLP s

d , which have a same dimensionality. Another rep-
resentation repd(h,m) is computed by a similar process,
with which the model extracts the evidence feature fd(h,m)
against the given pair with a same attention mechanism, and
computes the certainty score disbelief(h,m) for disbeliev-
ing such pair. Model determines the final score of the arc
between a pair by subtracting its score of disbelief from its
score of belief.

score(h,m) = belief(h,m)− disbelief(h,m) (10)

Parsing Algorithm

The parsing process in the proposed model consists of two
steps: inference and refinement. The inference step predicts
the most probable head for each word in the sentence based
on the score function, and the refinement step augments the
result to produce valid trees. According to the fact that in
a dependency parse tree, each word (except the ROOT) can
only have exactly one head, we formalize the inference step
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as to select the most probable head wj for each word wi

except ROOT. Giving a sentence x = (w0, w1, ..., wn), we
calculate the score of arc (wj , wi) for each wj and estimate
the probability of wj being the head of wi as:

P (wj |wi) =
exp(score(j, i))∑

k �=i

exp(score(k, i))
, i �= 0 (11)

to select the head for word wi,
We train our model by minimizing the negative log-

likelihood of all the correct arcs in the training set, so the
loss function is:

J(θ) = − 1

|T |
∑

x∈T

len(x)∑

i=1

logP (h(wi)|wi) + λ||θ||2 (12)

where T represents all the sentences in the training set, and
h(wi) represents the correct head of word wi in sentence x
in the training set. len(x) is the number of words in sen-
tence x and the coefficient λ governs the importance of the
regularization term.

The inference step described above fails to guarantee that
the final parsing result forms a tree because there may be cy-
cles, and some refinement on the result is needed to keep the
final result being trees. Similar to most graph-based parsers,
we adjust our inference result with a maximum directed
spanning tree algorithm to produce well-formed trees. We
view a sentence as a graph G with all its words including
ROOT as its vertices and all possible arcs as its edges, then
assign P (wi|wj) to the weight of edge (i, j) in the graph.
Now the problem of finding the highest scored parse tree
becomes equivalent to finding a maximum spanning tree in
G with ROOT as its root.

For applying our parser on projective languages (e.g. En-
glish and Chinese), we use Eisner algorithm (Eisner 1996)
to find the maximum spanning tree. This dynamic program-
ming algorithm has a time complexity of O(n3). Although
we have only conducted experiments on projective lan-
guages, our model can be easily extended to non-projective
languages (e.g. Czech) which are difficult for transition-
based parsers, by solving the maximum spanning tree prob-
lem with Chu-Liu-Edmonds algorithm (Chu and Liu 1965;
Edmonds 1967).

So far we have showed how our proposed model do unla-
beled dependency parsing, but it is necessary to extend it to
produce labeled dependency arcs. On this purpose we train
a three-layer MLP with a softmax multi-class classifier de-
noted by MLP l, with which we replace the the scoring layer
in our model, to determine the label for each predicted arc.
The classifier is trained to minimize the cross-entropy be-
tween the classifier output and the gold label. The classifier
shares the first few layers including the bi-directional LSTM
with the inference model and they are trained jointly.

Experiments

We conducted two sets of experiments on both English and
Chinese to evaluate our model. In the following of this sec-
tion, we first describe the datasets we used and the training

Dimensionality of Value
Word Embeddings 50
POS Tag Embeddings 30
LSTM Hidden Units 200
Hidden Layer in MLP r 300
Hidden Layer in MLP s 400
Hidden Layer in MLP l 400

Table 1: Model hyper-parameter configuration.

details of our model. Then, we analyze the comparison re-
sult between the proposed model and a baseline model on
both sentence length factor and linguistic factor to illustrate
the effectiveness of the proposed arc-specific feature extrac-
tion in modeling long-distance dependencies. Finally, we
compare the performance of our model with several recent
parsers.

Experiment Setup

We evaluated the performance of our parser on English and
Chinese with the Penn English Treebank-3 (PTB) and Chi-
nese Treebank as the datasets. For English, we adopted Stan-
ford basic dependencies. Following the standard split of
PTB, we used sections 2-21 for training, section 22 for de-
velopment and 23 for testing. The POS tags were assigned
by the Stanford tagger (Toutanova et al. 2003) with a tagging
accuracy of 97.3%. For Chinese, we used the same setup as
(Zhang and Clark 2008). In more detail, we used sections
001-815 and 1001-1136 for training, sections 886-931 and
1148-1151 for development and sections 816-885 and 1137-
1147 for testing. We converted the original constituency syn-
tactic trees to dependency trees with the Penn2Malt tool1.
Following (Chen and Manning 2014) and (Dyer et al. 2015),
we used the gold word segmentation and POS tags in Chi-
nese.

Training Details

We trained our model on an Nvidia GPU card. Hyper-
parameters were tuned on the development set of PTB, and
their final configuration is listed in table 1.

Previous research demonstrates that initializing the model
parameters with word embeddings trained from large un-
labeled data can lead to better performance on many NLP
tasks on both English (Collobert et al. 2011; Socher et al.
2011) and Chinese (Zheng, Chen, and Xu 2013). Leverag-
ing this strategy, we used pre-trained GloVe (Pennington,
Socher, and Manning 2014) word embeddings to initialize
our word embedding matrix both on English and Chinese.
For experiments on PTB, we pre-trained the embeddings
on Wikipedia corpus. For experiments on CTB, we pre-
trained the embeddings on Chinese Wikipedia corpus seg-
mented with the model proposed by (Zheng, Chen, and Xu
2013). We used Adam (Kingma and Ba 2014) to optimize
our model parameters with hyper-parameters recommended
by the authors (i.e. learning rate = 0.001, β1 = 0.9 and

1https://stp.lingfil.uu.se/∼nivre/research/Penn2Malt.html

5385



β2 = 0.999). Dropout (Srivastava et al. 2014) is applied to
our model by dropping nodes in LSTM layers with proba-
bility 0.5.

Sentence Length and Linguistic Factors

In order to know how well the arc-specific features in-
troduced by our model benefit the performance, we re-
implemented the model of (Zhang, Cheng, and Lapata 2016)
as the baseline, by removing the attention-based feature ex-
traction component from our proposed model, and compared
their performances on sentences with different lengths. In
the baseline model, arc scores are computed from the LSTM
representations of the head and the modifier without any
arc-specific feature. The baseline model achieves an arc-
prediction accuracy of 94.3% on the development set of
PTB and 87.3% on the development set of CTB. Follow-
ing (Zhang, Cheng, and Lapata 2016), we sorted all the sen-
tences in the development set of PTB and CTB by their
length in a non-decreasing order, and divided them equally
into 10 buckets. Then we evaluated the UAS of both models
on sentences in each bucket and the results are showed in
figure 2 and 3.

Figure 2: UAS against the sentence length on the develop-
ment set of PTB. The horizontal axis is the range of the
length of the sentences in each bucket.

Figure 3: UAS against the sentence length on the develop-
ment set of CTB. The horizontal axis is the range of the
length of the sentences in each bucket.

Figure 2 and 3 illustrate that our proposed model with arc-
specific feature extraction component obtains a better per-
formance in almost all buckets of sentences than the base-
line model. Another result of this experiment is that the flat
accuracy curve suggests that our proposed model obtains a
high performance on long sentences. Our proposed model
achieves an accuracy over 94% even on the longest ten per-
cents of sentences in PTB and an accuracy over 86% on the

same bucket in CTB, in spite that dependency parsers of-
ten suffers from long-distance dependencies and have lower
accuracies while processing long sentences. This behav-
ior suggests that our feature extraction mechanism captures
such long-distance relations by scanning the sentence again
with the guidance from a particular pair.

According to the fact that previous research (McDonald
and Nivre 2007) indicate that verbs and conjunctions are
often involved in dependencies closer to the root that span
longer distances, while nouns and pronouns are usually at-
tached to verbs with shorter distance, we computed the UAS
of words with various part-of-speech on the PTB develop-
ment sets to verify the idea that the proposed model captures
long-distance dependencies in a sentence.

Figure 4: The performance of the proposed model and the
baseline model on words with different part-of-speech. The
performances are evaluated on the development set of PTB.

Figure 4 illustrates the accuracy of the proposed model
and the baseline model for different part of speech (verbs,
nouns, pronouns and conjunctives). Result shows that the
proposed model obtains greater progress on verbs and con-
junctions (0.79% and 1.58%), which are considered to in-
volve dependencies that span long distances, than on pro-
nouns and nouns (0.30% and 0.57%). This fact suggests that
the proposed feature extraction component indeed captures
the long-distance dependencies and makes better score eval-
uation for selecting the headwords for verbs and conjunc-
tives.

Results

Table 2 and 3 compares the performance of our model with
several recent parsers on two languages respectively. For
English and Chinese, we report both unlabeled attachment
score (UAS) and labeled attachment scores (LAS). Follow-
ing previous works, punctuations are excluded from the
evaluation.

Experimental results on PTB are shown in table 2. For
comparison, we show the results of several recent studies
with the same evaluation protocol. The first block in table 2
shows the performance of previous transition-based parsers,
and the second block shows the performance of graph-based
parsers.

We focus on the comparison between our proposed model
and approaches from (Kiperwasser and Goldberg 2016b),
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Parser UAS LAS
(Chen and Manning 2014) 92.00 90.70
(Zhou et al. 2015) 93.28 92.35
(Ballesteros et al. 2016) 93.56 91.42
(Kiperwasser and Goldberg 2016b) 93.20 91.20
(Andor et al. 2016) 94.61 92.79
(Kuncoro et al. 2016) 95.80 94.60

(Kiperwasser and Goldberg 2016b) 93.00 90.90
(Zhang, Cheng, and Lapata 2016) 94.10 91.90
(Cheng et al. 2016) 94.10 91.49
(Hashimoto et al. 2016) 94.67 92.90
(Dozat and Manning 2017) 95.74 94.08
Our model 94.96 92.51

Table 2: Results on English dataset (PTB)

Parser UAS LAS
(Ballesteros et al. 2016) 87.65 86.21
(Kiperwasser and Goldberg 2016a) 87.10 85.50
(Kiperwasser and Goldberg 2016b) 87.60 86.10
(Zhang, Cheng, and Lapata 2016) 87.84 86.15
(Cheng et al. 2016) 88.10 85.70
(Dozat and Manning 2017) 89.30 88.23

Our model 88.40 85.74

Table 3: Results on Chinese dataset (CTB)

(Zhang, Cheng, and Lapata 2016), (Cheng et al. 2016) and
(Dozat and Manning 2017), which extract features for parser
by a bi-directional LSTM and apply different neural atten-
tion mechanisms on it. Kiperwasser and Goldberg (2016b)
and Zhang, Cheng and Lapata (2016) adopt neural atten-
tion to select the headwords, and Dozat and Manning (2017)
develop a larger neural network with a biaffine attention.
Cheng et al. (2016) learn to capture the high-order parsing
history with soft headword embeddings computed from a
bi-directional attention model. Different from all the models
above, our proposed model apply neural attention to extract
arc-specific high-order features for the evaluation of each
arc.

Table 2 illustrates that we achieved a significant improve-
ment (at least 0.86% on UAS) on (Kiperwasser and Gold-
berg 2016b), (Zhang, Cheng, and Lapata 2016) and (Cheng
et al. 2016). This experimental result suggests that our fea-
ture extraction mechanism extracts richer features and as-
signs a more accurate score for each arc, comparing to pre-
vious approaches which use attention to implicitly model
the parsing history as high-order features or simply to select
heads. This behavior can be explained as that prior models
implicitly capture the high-order features with an attention
mechanism but miss the important arc-specific features for a
particular score estimation operation. In the proposed model,
such information is extracted by collecting evidences with
guidance from the pair to be evaluated.

Results on CTB also show a similar result. As demon-
strated in table 3, our model outperforms most of our com-

parators on both UAS and LAS. However, our model lags
behind (Dozat and Manning 2017) for these following rea-
sons: First Dozat and Manning (2017) adopt a much larger
neural network with deeper LSTM layers (3 or 4 layers) to
produce feature representations for each word in the sen-
tence and compute the score with a biaffine score function
while we build our attention mechanism on representations
generated from a two-layer LSTM network. Secondly Dozat
and Manning (2017) make choices on a large set of hyper-
parameter configurations including different classifiers, dif-
ferent number and dimensionality of layer, as well as differ-
ent recurrent units to allow their model to outperform others,
whereas we just tried a few different network configurations.

Related Work
In this section we first briefly review previous works on
transition-based and graph-based models, then discuss how
our model is related to previous approaches.

Transition-based parsers transform a sentence into a de-
pendency parse tree by performing a sequence of transition
actions, and the parsing problem can be viewed as predicting
the optimal sequence of actions until the final dependency
tree is obtained. A transition-based model usually includes a
stack to store partial parsing results and a buffer to store the
rest of the sentence. Chen and Manning (2014) first attempt
to introduce deep learning into transition-based dependency
parsing by predicting the transition actions with a neural
network classifier. At each step, a neural network computes
the probability of each action from current state, which in-
cludes words on the top of a stack and a buffer. Some re-
search attempts to augment (Chen and Manning 2014) by
beam search or CRF methods, allowing the parser to keep
the top k sequences rather than using a greedy algorithm,
and to undo previous incorrect actions. (Weiss et al. 2015;
Zhou et al. 2015; Andor et al. 2016). Dyer et al. (2015) and
Kuncoro et al. (2016) use LSTMs to respectively represent
the parsing states including the stack, the buffer and the pars-
ing history and get the state-of-the-art performance.

Graph-based models usually consider the words in a sen-
tence as vertices in a graph, and each of the possible arcs as
the edges (McDonald et al. 2005). Parsers typically learn
to assign a weight to each edge and construct the parse
tree with the highest score by running maximum spanning
tree algorithms on such a directed graph. The Eisner pars-
ing algorithm (Eisner 1996) is sufficient for finding projec-
tive parse trees and the Chu-liu-Edmonds algorithm (Chu
and Liu 1965; Edmonds 1967) is to find non-projective
parse trees. Kiperwasser and Goldberg (2016b) propose a
bi-directional LSTM-based model in which each word is as-
sociated with a bi-directional LSTM vector, representing the
word with information from its context. To predict the score
of an arc, the representations of the head and the modifier
are concatenated as the input of an MLP for scoring this
pair. Analogously, a multi-class MLP outputs the label of an
arc between each word and its predicted headword based on
their LSTM representations.

Kiperwasser and Goldberg (2016a) propose a model
based on hierarchical tree LSTMs, in which the left and right
sequences of modifiers are modeled with RNNs, and the tree
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representations are produced by a greedy bottom-up depen-
dency parser based on an easy-first transition system. In their
joint many-task model, Hashimoto et al. (2016) replace the
MLP-based attention mechanism applied in (Kiperwasser
and Goldberg 2016b) with a bilinear one. Zheng (2017) pro-
pose an increasing neural dependency parser that forms an
initial parse tree by first-order features and defined high-
order features over the initial tree, in order to refine the parse
tree in an iterative way.

The proposed model is most related with other parsers
based on neural attention mechanism (Kiperwasser and
Goldberg 2016b; Zhang, Cheng, and Lapata 2016; Cheng
et al. 2016; Dozat and Manning 2017). Zhang, Cheng and
Lapata (2016) also represent each word in a sentence with
a bi-directional LSTM and assign a score to each pair with
an attention mechanism, but their model locally optimizes a
set of head-modifier predictions in a greedy way, without to
enforce any global consistency during the training process.
Cheng et al. (2016) develop a graph-based neural depen-
dency parser with a bi-directional attention to implicitly cap-
ture the high-order parsing history, circumventing the limi-
tation of other graph-based parsers which are unable to take
previous parse decisions into account. Dozat and Manning
(2017) build a larger but more thoroughly regularized parser
with 3 layers of LSTM networks and replace the traditional
MLP-based attention with a biaffine one to improve the per-
formance. Recently, Attention mechanism is also introduced
to transition-based parsers (Zhang et al. 2017).

Compare to previous works, instead of directly using at-
tention to predict arc scores or to implicitly model parsing
histories, we make use of neural attention mechanism on
extracting arc-specific high-order features by respectively
collecting evidences for evaluating each head-modifier pair.
Our approach supplements rich features for evaluating the
arcs and obtains a better score estimation.

Conclusions

Most previous neural graph-based dependency parsers fail
to make use of rich features beyond a single arc to estimate
the scores. In this study we propose an arc-specific feature
extraction mechanism that models the interaction between
each particular head-modifier pair and the rest of the sen-
tence. We apply a neural attention mechanism between the
representations of the pair and other words, from which our
proposed parser collects evidences for belief and disbelief as
high-order features without substantially increasing its com-
putational complexity, and then estimates the certainty score
of believing and disbelieving each pair. Experimental results
have demonstrated that our attention mechanism success-
fully captures long-distance dependencies, resulting the pro-
posed parser to achieve a significant performance improve-
ment over most of other attention-based parsers. It would be
interesting to see how well our attention-based belief or dis-
belief feature extraction is suited to other NLP tasks in the
future.
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