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Abstract

The next generation of educational applications need to sig-
nificantly improve the way feedback is offered to both teach-
ers and students. Simply determining coarse-grained entail-
ment relations between the teacher’s reference answer as a
whole and a student response will not be sufficient. A finer-
grained analysis is needed to determine which aspects of the
reference answer have been understood and which have not.
To this end, we propose an approach that splits the reference
answer into its constituent propositions and two methods for
detecting entailment relations between each reference answer
proposition and a student response. Both methods, one us-
ing hand-crafted features and an SVM and the other using
word embeddings and deep neural networks, achieve signifi-
cant improvements over a state-of-the-art system and two al-
ternative approaches.

1 Introduction

Recent advancements in machine learning have started to
put their mark on educational technology. Although the
vast majority of the classrooms around the world look es-
sentially the same as they have for several decades, many
teachers and students have started to embrace the advantages
that technology can bring to the learning process. This pa-
per focuses on increasing the learning gains in classrooms
through technology that enhances the analysis between the
teacher’s reference answer, a student’s response, and the
relations between them. We contribute by proposing two
fine-grained approaches that predict entailment relations be-
tween a student’s response and each proposition or clause
from the teacher’s answer. Both methods, one that uses neu-
ral networks with word embeddings and the other an SVM
model with hand-crafted features, reach similar average F1-
scores, significantly outperforming a state-of-the-art system
and two alternative approaches.

Intelligent educational applications haven’t replaced hu-
mans, but they can definitely disrupt the way students have
been acquiring knowledge. Several types of such systems
have been developed in the recent years. Groups of re-
searchers have come up with smart algorithms and appli-
cations that attempt to maximize the effectiveness of the
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learning process by improving the feedback given to stu-
dents (Heffernan and Heffernan 2014), assessing students’
understanding of a concept (Leacock and Chodorow 2003;
Sukkarieh and Stoyanchev 2009), increasing classroom en-
gagement (Paiva et al. 2014), facilitating self-guided learn-
ing and liberating instructors from doing repetitive tasks
such as grading answers (Horbach, Palmer, and Pinkal
2013).

Among the first types of educational technology were
the assessment systems (Mitchell et al. 2002; Leacock
and Chodorow 2003; Nielsen, Ward, and Martin 2009;
Sukkarieh and Stoyanchev 2009). Such systems usually
quantify the similarity between a student response and a ref-
erence answer provided by the teacher or a content matter
expert. The result is a score, or a grade, which is communi-
cated to the student or the instructor.

Intelligent Tutoring Systems (ITSs) focus on the students
by offering them personalized feedback (VanLehn 2011;
D’Mello et al. 2012; Heffernan and Heffernan 2014; Kulik
and Fletcher 2016). ITSs need to be able to analyze stu-
dent responses and, in most cases, compare them against a
correct answer. The feedback given by such systems needs
to be more meaningful than simply saying whether the re-
sponse is correct or not. The drawback of most ITSs is that
they still require a significant amount of human labor for ev-
ery new question added to the system.

Recently, a new type of technology has emerged which
has as its purpose increasing the interaction between teach-
ers and students. Classroom Engagement Systems (CESs)
allow all students to answer free response questions in class-
rooms, thus engaging all students at once. Comprehension
SEEDING was introduced by Paiva et al. (2014) and has
three primary goals: Self Explanation, Enhanced Discussion
and INquiry Generation. These goals all work together to in-
crease student engagement in classrooms. While CESs con-
siders teacher and student feedback an important piece of the
puzzle, the main focus is on the bigger picture of creating an
environment where students are encouraged to participate in
classroom discussions. Nevertheless, the system described
by Paiva et al. (2014) adopts an over-simplified approach
to the problem of formative assessment, using only lexical
information to compare and organize responses before pre-
senting them to the teacher.

Existing educational applications are often weak in at
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Figure 1: Minimum Meaningful Proposition Entailment. The reference answer is broken down into its constituent MMPs.
Entailment relations are established between each MMP and the student’s response.

least one important aspect. Whether it is incomplete feed-
back to the teacher or to the student, or the need to develop
question-dependent logic to assess students’ responses, ex-
isting systems are not complete. This paper takes important
steps towards filling in these gaps and developing educa-
tional applications that will be able to adapt to individual in-
structor needs, offer valuable and effective feedback to both
teachers and students and, at the same time, scale and adapt
to new questions without the need for expert intervention.

One way to significantly improve the next generation of
educational applications is to enhance the feedback offered
to teachers and students following a free-response question.
This will increase the speed at which the instructors can as-
sess the students’ knowledge, make them aware of what con-
cepts need to be covered more thoroughly before continuing
with new material, and perhaps more importantly, facilitate
real-time, organized and insightful feedback, leading to the
generation of interesting classroom discussions that will en-
gage more students. To accomplish this, simply determin-
ing entailment relations between a student’s response and
a reference answer as a whole is not sufficient. We need
to encourage more deep questions that often require longer
responses, and in such cases, the teacher’s reference answer
can easily discuss more than one concept. Student responses
can entail an understanding of all the information in the ref-
erence answer or they can entail an understanding of only
parts of it, leaving some concepts unaddressed. Thus, a
finer-grained analysis of the reference answer, the student’s
response, and the response’s relation to the reference answer
is required.

On this account, we make use of Minimal Meaningful
Propositions (MMPs) (Godea, Bulgarov, and Nielsen 2016).
MMPs have recently been introduced as a decomposition of
text into the set of propositions that individually represent
single minimal claims or arguments that cannot be further
decomposed without losing contextual meaning. By split-
ting the instructor’s reference answer into MMPs, we can
make more meaningful comparisons between the learner’s
answer and the individual claims expressed in the reference
answer.

We take two different approaches to decide the entailment
relations, one by using pre-trained word embeddings as in-
put for a deep neural network, and the other by using hand-
engineered features with an SVM classifier. The methods
achieve similar results while seeing significant improvement
in terms of F1-score over a state-of-the-art system and two
alternative approaches.

Figure 1 exemplifies our approach by showing a real
classroom question, the teacher’s reference answer and a
student response. Our method first breaks down the refer-
ence answer into the three MMPs on the figure’s left, and
then predicts entailment relations between the learner’s re-
sponse and each of these reference answer MMPs. As can be
seen, part of the student’s response is correct, showing that
s/he understood that the eyes need protection and goggles
are a way to achieve this. However, s/he does not address
the fact that wearing gloves is also an important protection
measure while conducting experiments in the lab.

This example shows that instead of having to output a
compromised entailment label for the whole reference an-
swer, we can treat individual claims separately. If we com-
bine this information with all the other students’ responses
similar to Godea, Bulgarov, and Nielsen (2016), the instruc-
tor can use it to generate insightful classroom discussions
and correct most common misconceptions. Such an evalu-
ation of the students’ responses can significantly improve
the feedback offered to teachers and students, reduce the
time required to grade student responses and essays, and
enhance the learning process in the classroom. Outside of
educational applications, an approach like this will have
applications in areas such as machine translation, complex
query matching, summarization, information extraction, re-
lation extraction and others (Dagan, Glickman, and Magnini
2006).

2 Related Work

Recognizing Textual Entailment (RTE) is the task of deter-
mining whether the meaning of a text (called hypothesis)
can be inferred by another (Dagan, Glickman, and Magnini
2006). RTE is an important step in many Natural Language
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Processing (NLP) applications where the diversity of natural
language is of major importance, e.g., question answering,
information extraction, etc. In the context of educational
applications, RTE is the task of determining whether one
sentence (or the student’s response), entails another (or the
instructor’s reference answer). Most of the times, RTE in
education differs because student responses in classrooms
are often ungrammatical and use words or expressions that
are not formal. RTE in classrooms is particularly impor-
tant since many educational applications could benefit from
more accurate algorithms, e.g., answer scoring, generating
feedback, clustering student responses, etc.

Concept Rater (or c-rater) is an automated scoring en-
gine developed by the Educational Testing Service (ETS)
(Leacock and Chodorow 2003). The purpose of c-rater is
to score short responses (up to 100 words) to open ques-
tions. In order to determine the paraphrase relation or the
similarity, the system requires a set of reference answers as
a model, input by an expert. There are four main steps in
c-rater. First, in the Model Building phase, a set of correct
answers are generated. This step is the most time consum-
ing and labor intensive part of the process. The instructors
have to enter separate sentences for each concept they use in
their answer. Then, multiple paraphrases of the same sen-
tence are being created manually, as well as synonyms of
the concepts. To shorten the human effort of this approach
the authors came up with a method that only requires man-
ual concept-based scoring, generating the lexicon automati-
cally (Sukkarieh and Stoyanchev 2009). The results indicate
that the unweighted kappa values for the two approaches
(manual and automatic) are “comparable” in 11 out of 12
scenarios, with the remaining scenario having the highest
number of concepts, i.e., seven. Second, model answers
and students’ responses are processed using Natural Lan-
guage Processing techniques and linguistic features are ex-
tracted. Third, using the features previously extracted, the
Goldmap matching algorithm is used to automatically de-
termine whether a student’s response entails the model an-
swer. Finally, scoring rules are applied to produce a score
and feedback for the student. While c-rater needs human la-
bor for every question added to the system, our proposed ap-
proach uses the same models, learned by machine learning,
to split the reference answer into propositions and generate
entailment labels for each proposition.

Nielsen et al. (2009) also thought about representing the
reference answer as finer-grained constituents. They in-
troduce the term facets, which are semantic components,
roughly derived from typed dependencies. By breaking
down the teacher’s reference answer into facets, the authors
can pinpoint the exact concept that the student understood,
contradicted or didn’t address. However, facets are often too
fine grained to be meaningful on their own, out of the context
of the proposition of which they are a part. Thus, entailing a
semantic facet can be misleading with regard to the context
of the question and the student’s understanding.

SEMILAR is a tool introduced by Rus et al. (2013)
which implements a number of word-to-word, sentence-
to-sentence and document-to-document similarity measures.
For our work, the most relevant are the sentence-to-sentence

similarity measures which, among others, include: a seman-
tic similarity scorer by Corley and Mihalcea (2005) and a
Latent Semantic Analysis (LSA) (Landauer, Foltz, and La-
ham 1998) implementation using all of Wikipedia and the
TASA corpus.

In Horbach et al. (2013), instead of focusing on the target
answers supplied by instructors, the authors consider pro-
cessing the text itself. This is the first use of reading texts
for automatic short answer scoring in the context of foreign
language learning. They show that, for German, simply us-
ing text-based features improves classification over models
that only consider teacher authored responses.

SemEval-2014 included an entailment competition un-
der the Evaluation of Compositional Distributional Seman-
tic Models on Full Sentences through Semantic Relatedness
and Entailment task (Marelli et al. 2014). Here, systems
were presented with pairs of sentences and were evaluated
on their ability to predict human judgments on semantic re-
latedness and entailment. The task attracted 21 teams, most
of which participated in both subtasks. One team notes that
by combining word overlap and antonyms one can detect
83.6% of neutral pairs and 82.6% of entailment pairs. The
top-ranking systems in both tasks used compositional fea-
tures and most of them also used external resources, espe-
cially WordNet. Almost all the participating systems out-
performed the proposed baselines in both tasks.

Even though neural networks have been successful in de-
tecting paraphrase relations (Hu et al. 2014; Yin and Schütze
2015), neural architectures often fail to obtain acceptable
performance scores in RTE tasks due to the lack of large
high-quality datasets. However, recently, Bowman et al.
(2015) published the Stanford Natural Language Inference
(SNLI) dataset, which due to its large size and high quality,
allowed researchers to achieve high accuracy without hand-
crafted features. Using neural networks with long short-term
memory units (LSTM), they reached an accuracy of 77.6%
on this dataset. This was the first generic neural model with-
out hand-crafted features to achieve performance close to
that of a simple classifier using manually-engineered fea-
tures for RTE. They accomplished this by encoding both
sentences as fixed-length vectors and used their concatena-
tion in a multi-layer perceptron for classification. Shortly af-
ter, Rocktaschel et al. (2015) altered Bowman et al.’s method
by proposing an attentive neural network capable of reason-
ing over entailments of pairs of words and phrases by pro-
cessing the hypothesis conditioned on the premise. By doing
so, they achieved a higher accuracy on the SNLI dataset of
83.5%.

Chen et al., (2016) adopt an enhanced sequential infer-
ence model, which outperformed previous, more compli-
cated network architectures. Their model uses bidirectional
LSTMs (BiLSTM) for both local inference modeling and
inference composition. Additional improvement is achieved
by incorporating syntactic parsing information. This model
sets the current highest performance on this dataset – 88.6%.
The same performance is also reached by Wang, Hamza
and Florian (2017), who used a bilateral multi-perspective
matching (BiMPM) model. Given two sentences, their
model first encodes them with a BiLSTM encoder and then
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Ref Ans MMPs Student Responses Entailment Pairs
Questions Total Avg. Avg. Max. Min. Understood Not Understood Total

Train 157 536 3.6 21.6 30 12 3380 (29%) 8305 (71%) 11685

Development 54 215 4 22.7 28 14 1418 (31%) 3204 (69%) 4622

Test 55 214 3.9 21.9 30 16 1573 (35%) 2935 (65%) 4508

Total 266 992 3.7 22.1 30 12 6371 (31%) 14444 (69%) 20815

Table 1: Dataset Statistics (the number of entailment pairs for a given question equals its number of reference answer MMPs
multiplied by the number of student responses to the question)

matches them in both directions. Another BiLSTM layer is
used to aggregate the matching results into a fixed-length
vector. Based on it, a decision is made through a fully
connected layer. Although reaching high accuracies on the
SNLI dataset, these approaches are not appropriate for our
data due to the small dataset size (20,000 vs 570,000 in-
stances) and the nature of student responses (which are often
ungrammatical).

3 Data

We use a modified version of the dataset introduced in
Godea, Bulgarov and Nieslen (2016). The most important
difference is adding the entailment labels. Statistics regard-
ing the dataset can be found in Table 1. The questions in the
dataset come from real middle school science classrooms,
have an average of 22 student responses and come with a
teacher supplied reference answer. The data was split into
train, development and test sets, following the percentages:
60% train, 20% development and 20% test. The data was
split at the question level (i.e., all of the instances of student
responses for one question reside in a single split – the train,
development or test dataset), which is why there are a differ-
ent number of entailment instances for the development and
test splits (i.e., the number of responses and MMPs varies).
Two graduate students from the Education and Linguistics
Department established the proper entailment relations be-
tween each pair of reference answer MMP and student re-
sponse – understood, misunderstood or not understood, with
a third annotator acting as an adjudicator. For the first two
labels, annotators were required to mark associated evidence
in the student response.

An instance in our dataset is derived from a pairing of a
reference answer MMP and a student response. We treated
the misunderstood instances as not understood due to the ex-
tremely low number of instances in this class (around 3%).
There are a total of 20815 instances for this task, with about
30% of them being in the understood class and the remain-
ing 70% being in the not understood class. In the future,
we plan to expand our dataset and include all labels in the
classification.

4 MMP Entailment

Rather than strictly checking whether the student’s response
is a paraphrase of, or entails the teacher’s reference answer
as a whole, we break the target conceptual knowledge into

smaller propositions, or clauses (MMPs). This helps us sep-
arate complex structures in the reference answer and iden-
tify which specific propositions or clauses the student under-
stood. In this section we perform experiments, show results
and discuss the main errors occurred when predicting en-
tailment relations between student responses and reference
answer MMPs.

4.1 Classification

A first approach to this task is to use hand-crafted features.
The features we used are described in Table 2 and are split
into General Features and Facet Features. The 45 general
features describe general relations between the reference an-
swer MMP and the student response, such as the overall sim-
ilarities and dependencies between words, Pointwise Mutual
Information (PMI) scores, overlapping content, BLEU score
(Papineni et al. 2002), etc. For the rest of the features, we
make use of facets as described by Nielsen et al. (2009).
Our decision to use facet information was motivated by their
granularity level, allowing us to pinpoint the main relations
between two texts. Features 46 through 183 encode infor-
mation regarding one facet. They are computed and con-
catenated to the final feature vector 3 times: (1) for the least
likely understood facet; (2) for the most likely understood
facet; and (3), as the averages of all facets. The least and
most likely understood facets are chosen based on the fol-
lowing algorithm: we automatically extract all facets from
the reference answer MMP and compute the PMI similar-
ity between its governors and modifiers and the governors
and modifiers from all facets in the student’s response. The
facets with the lowest and highest average PMI score are
chosen as the least and the most likely understood facets and
are used in the feature extraction process.

Our second approach to this task is using word embed-
dings with a deep neural network. We used GloVe word
embeddings with 50, 100 and 200 dimensions pre-trained
on six billion tokens from Wikipedia 2014 and Gigaword 5
(Pennington, Socher, and Manning 2014). Specifically, we
computed the average embedding vector for each text (ref-
erence answer MMP and student response), and combined
them into a single vector by concatenating the element-
by-element product vector and absolute difference vector
(thus, experiments with 200-dimensional word embeddings
resulted in a 400-dimensional input to the neural network).
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General Features
1 - 10 Number of words, number of overlapping words and BLEU score for n = 1, 2, 3 and 4
11 - 13 Avg, max and min PMI score between reference answer (RA) MMP facets and student response facets
14 - 15 Student response contains animate/inanimate pronoun
16 - 35 Relatedness - overall similarity between words (stemmed and original) in the RA MMP and the student response (e.g.:

fraction of exact matches, of zero co-occurrences and non zero co-occurrences, Maximum Likelihood Estimates (MLE)
for the co-occurrence of the two terms)

36 - 45 Facet Similarities – overall similarity of facets in the RA MMP and the student response (similar to features 16- 35)

Facet Features
46 - 58 Governor detailed features (i.e., similarity features between the gov and its best match in the student response – POS features,

MLE, best match features, etc.)
59 - 71 Modifier detailed features (i.e., similarity features between the mod and its best match in the student response – POS features,

MLE, best match features, etc.)
72 - 73 Product between the similarity of the gov and mod and their best matching nodes in the student’s response
74 - 79 Boolean features indicating whether the student response had any exact matches in the facet (gov/mod, stemmed/original)
80 - 94 Features of the path from the modifier to the governor and its best match, such as: direction, length, negations, comparisons

between the paths, etc.
95 - 114 Features extracted from other facets that include the modifier in the current facet (similar to features 16-35)
115 - 134 Features extracted from other facets that include the governor in the current facet (similar to features 16-35)
135 - 144 Combined scores of all facets in which the gov or the mod occur (similar to features 16-35)
145 - 154 Combined scores of all facets on the path between the mod and the gov (similar to features 16-35)
155 - 157 Features of the best facet match in the student response
158 - 171 Pronoun coreference features
172 - 183 Relatedness scores of facets that express relations between higher-level propositions

Table 2: Feature Descriptions

4.2 Results

In Table 3 we report the precision, recall and F1-score for
each class (understood and not understood), as well as the
weighted average F1-score.

For comparison, we show the results obtained by a ma-
jority baseline, Latent Semantic Analysis (LSA), and Cor-
ley and Mihalcea’s (2005) unsupervised system for mea-
suring the semantic similarity of texts. The two latter ap-
proaches were computed using the SEMILAR toolkit (Rus
et al. 2013). A score was obtained for each pairing of a
reference answer MMP and a student response for the as-
sociated question. All pairs which obtained a score higher
than a threshold t, were marked as understood. We used the
development set to estimate the best value for t (LSA: t =
0.5; Corley and Mihalcea: t = 0.6). A state-of-the-art sys-
tem, proposed by Horbach et al. (2013), was also tested for
a more meaningful comparison. Even though their system
was slightly altered to be applicable to our dataset, the main
features remained unchanged:

• Lemma Overlap: two lemma overlap features. One nor-
malized by the number of learner answer tokens, the other
by the number of tokens in the MMP

• Dependency Triple Overlap: four features. Full match be-
tween dependency triples (modifier, dependency relation,
governor) or a match between the two lemmatized words,
both being normalized by either number of tokens (in the
MMP or in the student answer)

• WordNet Similarity, using the aggregation methods pro-
posed by Mohler and Mihalcea (2009) and Jiang and Con-
rath (1997)

• String Similarity: Levenshtein Distance

• Number of MMPs in the reference answer

Our reported pre-trained word embedding results were
obtained using Keras (Chollet 2015) with TensorFlow
(Abadi et al. 2015). All word embeddings experiments were
enhanced with two additional features, computed by normal-
izing the number of identical lemmatized words by the num-
ber of words in the reference answer MMP and by the num-
ber of words in the student response, respectively. The best
results on the development set were obtained using a feed
forward neural network with two hidden layers, each hav-
ing 64 hidden nodes. The dropout rate was set to 0.5, for
both layers. Only a small number of iterations was needed
to reach the results (between 10 and 20). A binary cross en-
tropy loss function and a RMSprop optimizer were used to
train the model. All parameters were tuned on the devel-
opment set, while the reported results were obtained on the
test set. A second approach uses the aforementioned manual
features, which are fed to an SVM classifier.

As can be seen, the approach using word embeddings with
50 dimensions achieves the highest weighted average F1-
score of 0.76, performing about 13% better than the state-
of-the-art system and the two alternative approaches. The
SVM model using hand crafted features obtained a close
F1-score, of 0.73. However, we can observe important dif-
ferences on the understood class where word embeddings
models achieve a significantly higher F1-score of 0.63. This
is a notable improvement of about 43% over just using La-
tent Semantic Analysis, which only obtained an F1-score of
0.44. In comparison with the state-of-the-art system, our ap-
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Understood Not Understood Weighted Avg.

Model Prec. Recall F1-score Prec. Recall F1-score F1-score

Majority Baseline 0 0 0 0.70 1 0.82 0.58
Latent Semantic Analysis 0.48 0.40 0.44 0.72 0.78 0.75 0.66
Corley and Mihalcea (2005) 0.50 0.37 0.43 0.72 0.81 0.76 0.66
Horbach et al. (2013) 0.61 0.29 0.39 0.75 0.92 0.83 0.67

SVM – manual features 0.73 0.41 0.53 0.76 0.92 0.83 0.73

Word Embeddings – 50 dim. 0.69 0.57 0.63 0.79 0.86 0.83 0.76

Word Embeddings – 100 dim. 0.63 0.58 0.60 0.78 0.82 0.80 0.73
Word Embeddings – 200 dim. 0.63 0.64 0.63 0.81 0.80 0.80 0.74

Table 3: MMP Entailment Results

proach is seeing an increase of 61% on the understood class.
On the not understood class, the difference in results be-
tween the alternative approaches and our proposed methods
is significantly lower, or none in the case of Horbach et al.’s
approach. This is mainly due to the effectiveness of classi-
fying instances in this class utilizing only the word overlap,
which is generally very low for the not understood class.

4.3 Error Analysis

A challenge for our approach is that many of the questions
in our dataset have multiple valid answers:

“Tell me what you know about acids, bases, salts, reac-
tants, products and the neutralization process!”

Questions like this can be answered correctly in more than
one way without making any compromises. One possible
approach would be for teachers to supply multiple correct
responses, similar to the process followed in evaluating ma-
chine translation systems.

Our error analysis suggests that first classifying questions
according to their expected answer type could substantially
improve our ability to determine whether student under-
standing is entailed. Expecting a certain type of student
responses, such as a short response (a noun phrase), free-
response (a paragraph), an opinion, an enumeration, etc.,
could potentially increase our chances of success signifi-
cantly. In such cases, a modified version of the entailment
algorithm can be applied, and educational applications can
treat questions differently, adjusting their feedback accord-
ingly.

Another interesting observation made when looking at the
data was regarding the word overlap between the reference
answer MMPs and the student response. Not understood in-
stances have a very low word overlap, making them easier
to classify by straightforward baselines. On the other hand,
word overlap for the understood instances varies greatly,
reaching an average of only 1.8, when stemmed. While
some understood pairs have a high overlap of over four iden-
tical content words, others may not have any content words
in common. Furthermore, even when the word overlap is

low, both understood and not understood pairs will con-
tain related words, because generally, students will answer
questions by talking about related concepts and ideas. This
makes differentiating between the classes harder.

Moreover, whereas most RTE datasets contain formal
texts, our student responses, and even some of the reference
answers, are often ungrammatical or contain mistakes. For
example, consider the following question (Q) and student
response (SR):

Q: “What are fluids and how they affect motion?”
SR: “i down kow, but snow it makes you go slower than
you normally go, because snow is more conpact. fluids
also effect motion because its harder talk through.fliuds
are like watewr, snow, and rain”

While some spelling mistakes can easily be fixed with an
automatic spell checker, others depend on the context and
they are harder to correct automatically: “effect” instead of
“affect”, “talk” instead of “walk” and “down” instead of
“don’t”. This will change our word embeddings averages
as well as the relations between the words and their sense as
perceived by the classifiers. Such mistakes are often encoun-
tered as students are either unaware of the correct spelling or
not paying enough attention:

SR: “yes because the giviel is weaker than oaw panteit”
SR: “the elecricoll field around chaedthe magnet when a
negitiv charge meets with a positive”
To account for such errors we incorporated an automatic

spell checker in our preprocessing phase. However, instead
of simply correcting the wrong words, we first take into ac-
count all responses from the students, as well as words from
the question and reference answer. Before correcting a mis-
spelled word, we look to see which of its five most probable
corrected forms were used by other students or the teacher.
The stemmed version of words and the Levenshtein distance
are also taken into account when comparing words. By do-
ing so, we mitigate against replacing misspelled words with
real words that have nothing to do with the context of the
question.
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Understood Not Understood Weighted Avg.

No. Model Prec. Rec. F1-score Prec. Rec. F1-score F1-score

1 SVM (WEs) 0.74 0.5 0.6 0.77 0.9 0.83 0.75
2 SVM (WEs + man. ftrs.) 073 0.54 0.61 0.78 0.89 0.83 0.76
3 DNN (man. ftrs.) 0.69 0.40 0.50 0.75 0.91 0.82 0.72
4 DNN (WEs + man. ftrs.) 0.71 0.45 0.55 0.75 0.90 0.82 0.73

5 SVM (man. ftrs. + LSA) 0.73 0.42 0.53 0.76 0.92 0.83 0.73
6 SVM (man. ftrs. + C&M) 0.73 0.42 0.53 0.76 0.92 0.83 0.73
7 SVM (man. ftrs. + LSA + C&M) 0.73 0.42 0.53 0.76 0.92 0.83 0.73
8 DNN (WEs + LSA) 0.61 0.32 0.42 0.71 0.89 0.79 0.66
9 DNN (WEs + C&M) 0.66 0.25 0.36 0.7 0.93 0.8 0.65

10 DNN (WEs + LSA + C&M) 0.6 0.32 0.42 0.71 0.88 0.79 0.66

11 SVM (man. ftrs.) 0.73 0.41 0.53 0.76 0.92 0.83 0.73
12 DNN (WEs) 0.69 0.57 0.63 0.79 0.86 0.83 0.76

Table 4: MMP Entailment Experimental Results (WEs - Word Embeddings 50 dim.; man. ftrs. = manual features; DNN =
Deep Neural Networks; C&M = Corley & Mihalcea)

4.4 Further Experimentation

In our error analysis process, we also checked whether the
learning algorithm or the features were the cause of the
F1-score increase. Moreover, since the manual features
and word embeddings (WEs) are fairly independent of each
other, combining them should, in theory, further improve
the results. In addition, we also experimented with adding
LSA and Corley & Mihalcea’s scores to our existing fea-
ture sets. These results are shown in Table 4. As can be
seen comparing rows 1 and 11, the SVM achieves a substan-
tially higher F1-score on the understood class using WEs
instead of the manual features. In fact, adding WEs to our
best SVM approach (row 2) results in a weighted average
F1-score of 0.76, which is equal to that of the deep neu-
ral network (DNN), (row 12). In contrast, adding the hand-
crafted features to the DNN (row 4), substantially decreases
the results on the understood class. Experiments were also
performed where the weights for WEs and manual features
were separately learned by individual DNNs and merged at
a later stage into a third DNN. These results did not exceed
those obtained in row 12. A conclusion that can be drawn
from these experiments, consistent with what we initially
saw in Table 3, is that WEs are more helpful than manual
features, particularly in identifying the minority understood
class. Moreover, even though they seem independent of each
other, combining manual features and WEs does not offer
much improvement.

Rows 5 through 10 show experiments when either LSA,
Corley & Mihalcea (C&M), or both scores are added to our
best approaches (rows 11 and 12). For SVM, adding these
measures offers no change in the final F1-scores. On the
other hand, the results drop significantly when adding these
features to DNNs. This might happen because the DNN
puts too much weight on these scores, which are more in-
formative than individual WE dimensions, and hence, fails
to properly learn from the WE features.

5 Conclusions and Future Work

We believe that accurately analyzing the students’ responses
and efficiently comparing them against the instructor’s ref-
erence answer is the key to effective real-time and domain-
independent educational applications. Moreover, a thor-
ough, fine-grained comparison of the two answers can open
up a variety of new possibilities to enhance feedback for
both teachers and students.

To this end, this paper makes use of Minimal Meaningful
Propositions in order to break down complex structures and
to perform a fine-grained analysis of student responses. This
is the first work to do so in a fully automatic process. We
presented two different methods for detecting the entailment
relation between a student response and a reference answer
MMP: one that used features focused on semantic facets and
an SVM classifier and the other which used word embed-
dings input to a deep neural network. These approaches ex-
ceeded the performance of the most frequent class baseline
by 31% and a state-of-the-art system and two alternatives by
approximately 15%, achieving a weighted average F1-score
of 0.76.

In the future, we plan to increase the dataset size so that
our classifiers can learn to predict the severely underrepre-
sented misunderstood class. We also plan to develop ques-
tion and reference answer classifiers in order to distinguish
between the types of questions and responses expected by
the instructors. In the longer term, these models will be in-
tegrated into an educational applications in order to improve
the learning process through more meaningful targeted feed-
back.
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