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Abstract

Co-occurrences between two words provide useful insights
into the semantics of those words. Consequently, numer-
ous prior work on word embedding learning has used co-
occurrences between two words as the training signal for
learning word embeddings. However, in natural language
texts it is common for multiple words to be related and co-
occurring in the same context. We extend the notion of co-
occurrences to cover k(≥2)-way co-occurrences among a set
of k-words. Specifically, we prove a theoretical relationship
between the joint probability of k(≥2) words, and the sum
of �2 norms of their embeddings. Next, we propose a learn-
ing objective motivated by our theoretical result that utilises
k-way co-occurrences for learning word embeddings. Our ex-
perimental results show that the derived theoretical relation-
ship does indeed hold empirically, and despite data sparsity,
for some smaller k(≤5) values, k-way embeddings perform
comparably or better than 2-way embeddings in a range of
tasks.

1 Introduction

Word co-occurrence statistics are used extensively in a wide-
range of NLP tasks for semantic modelling (Church and
Hanks 1990). As the popular quote from Firth—you shall
know a word by the company it keeps (Firth 1957), the
words that co-occur with a particular word provide useful
clues about the semantics of the latter word. Co-occurrences
of a target word with other (context) words in some con-
text such as a fixed-sized window, phrase, or a sentence
have been used for creating word representations (Mikolov,
tau Yih, and Zweig 2013; Mikolov, Chen, and Dean 2013;
Pennington, Socher, and Manning 2014). For example, skip-
gram with negative sampling (SGNS) (Mikolov, Chen, and
Dean 2013) considers the co-occurrences of two words
within some local context, whereas global vector prediction
(GloVe) (Pennington, Socher, and Manning 2014) learns
word embeddings that can predict the total number of co-
occurrences in a corpus.

Unfortunately, much prior work in NLP is limited to
the consideration of co-occurrences between two words
due to the ease of modelling and data sparseness. Pair-
wise co-occurrences can be easily represented using a co-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

occurrence matrix, whereas co-occurrences involving more
than two words would require a higher-order tensor (Socher
et al. 2013). Moreover, co-occurrences involving more than
three words tend to be sparse even in large corpora, requir-
ing compositional approaches for representing their seman-
tics (Van de Cruys, Poibeau, and Korhonen 2013). It re-
mains unknown – what statistical properties about words
we can learn from k-way co-occurrences among words. In
this paper, we define the term k-way co-occurrence to denote
the co-occurrence between k distinct words in some context
such as a token-window, sentence, paragraph or a document.

Words do not necessarily appear as pairs in sentences.
By splitting the contexts into pairs of words, we loose
the rich contextual information about the nature of the co-
occurrences. For example, consider the following sentences.
(a) John and Anne are friends.

(b) John and David are friends.

(c) Anne and Mary are friends.

Sentence (a) describes a three-way co-occurrence among
(John, Anne, friend), which if split would result in three
two-way co-occurrences: (John, Anne), (John, friends), and
(Anne, friends). On the other hand, Sentences (b) and
(c) would collectively produce the same two two-way co-
occurrences (John, friend) and (Anne, friend), despite not
mentioning any friendship between John and Anne. There-
fore, by looking at the three two-way co-occurrences pro-
duced by Sentence (a) we cannot unambiguously determine
whether John and Anne are friends. Therefore, we must re-
tain the three-way co-occurrence (John, Anne, friend) to pre-
serve this information.

Although considering k-way co-occurrences is useful for
retaining the contextual information, there are several chal-
lenges one must overcome. First, the number of k-way co-
occurrences tend to be sparse for larger k values. Such sparse
co-occurrence counts might be inadequate for learning re-
liable and accurate semantic representations. Second, the
unique number of k-way co-occurrences grows exponen-
tially with k. This becomes problematic in terms of mem-
ory requirements when storing all k-way co-occurrences. A
word embedding learning method that considers k-way co-
occurrences must overcome those two challenges.

In this paper, we make several contributions towards the
understanding of k-way co-occurrences.
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• We prove a theoretical relationship between the joint
probability of k words, and the squared sum of �2 norms
of their embeddings (§3). For this purpose, we extend the
work by Arora et al. (2016) for two-way co-occurrences
to k(> 2)-way co-occurrences.

• Motivated by our theoretical analysis, we propose an ob-
jective function that considers k-way co-occurrences for
learning word embeddings (§4). We note that our goal in
this paper is not to propose novel word embedding learn-
ing methods, nor we claim that k-way embeddings pro-
duce state-of-the-art results for word embedding learning.
Nevertheless, we can use word embeddings learnt from k-
way co-occurrences to empirically evaluate what type of
information is captured by k-way co-occurrences.

• We evaluate the word embeddings created from k-way co-
occurrences on multiple benchmark datasets for semantic
similarity measurement, analogy detection, relation clas-
sification, and short-text classification (§5.2). Our experi-
mental results show that, despite data sparsity, for smaller
k-values such as 3 or 5, k-way embeddings outperform
2-way embeddings.

2 Related Work

The use of word co-occurrences to learn lexical seman-
tics has a long history in NLP (Turney and Pantel 2010).
Counting-based distributional models of semantics, for ex-
ample, represent a target word by a high dimensional sparse
vector in which the elements correspond to words that co-
occur with the target word in some contextual window. Nu-
merous word association measures such as pointwise mutual
information (PMI) (Church and Hanks 1990), log-likelihood
ratio (LLR) (Dunning 1993), χ2 measure (Gale and Church
1991), etc. have been proposed to evaluate the strength of
the co-occurrences between two words.

On the other hand, prediction-based approaches (Mikolov,
Chen, and Dean 2013; Pennington, Socher, and Manning
2014; Collobert and Weston 2008; Mnih and Hinton 2009;
Huang et al. 2012) learn low-dimensional dense embed-
ding vectors that can be used to accurately predict the co-
occurrences between words in some context. However, most
prior work on co-occurrences have been limited to the con-
sideration of two words, whereas continuous bag-of-words
(CBOW) (Mikolov, Chen, and Dean 2013) model is a no-
table exception because it uses all the words in the con-
text of a target word to predict the occurrence of the target
word. The context can be modelled either as the concatena-
tion or average of the context vectors. Models that preserve
positional information in local contexts have also been pro-
posed (Ling et al. 2015).

Co-occurrences of multiple consecutive words in the form
of lexico-syntactic patterns have been successfully applied
in tasks that require modelling of semantic relations be-
tween two words. For example, Latent Relational Analysis
(LRA) (Turney 2006) represents the relations between word-
pairs by a co-occurrence matrix where rows correspond to
word-pairs and columns correspond to various lexical pat-
terns that co-occur in some context with the word-pairs. The
elements of this matrix are the co-occurrence counts be-

tween the word-pairs and lexical patterns. However, exact
occurrences of n-grams tend to be sparse for large n values,
resulting in a sparse co-occurrence matrix. LRA uses singu-
lar value decomposition (SVD) to reduce the dimensionality,
thereby reducing sparseness.

Despite the extensive applications of word co-occurrences
in NLP, theoretical relationships between co-occurrence
statistics and semantic representations have been less under-
stood. Hashimoto, Alvarez-Melis, and Jaakkola (2016) show
that word embedding learning can be seen as a problem of
metric recovery from log co-occurrences between words in a
large corpus. Arora et al. (2016) show that log joint probabil-
ity between two words is proportional to the squared sum of
the �2 norms of their embeddings. However, both those work
are limited to two-way co-occurrences (i.e. k = 2 case). In
contrast, our work can be seen as extending this analysis to
k > 2 case. In particular, we show that under the same as-
sumptions made by Arora et al. (2016), the log joint proba-
bility of a set of k co-occurring words is proportional to the
squared sum of �2 norms of their embeddings.

Averaging word embeddings to represent sentences
or phrases has found to be a simple yet an accurate
method (Arora, Liang, and Ma 2017; Kenter, Borisov, and
de Rijke 2016) that has reported comparable performances
to more complex models that consider the ordering of
words (Kiros et al. 2015). For example, Arora, Liang, and
Ma (2017) compute sentence embeddings as the linearly
weighted sum of the constituent word embeddings, where
the weights are computed using unigram probabilities. Ken-
ter, Borisov, and de Rijke (2016) learn word embeddings
such that when averaged produce accurate sentence embed-
dings. Such prior work hint at the existence of a relationship
between the summation of the word embeddings, and the se-
mantics of the sentence that contains those words. However,
to the best of our knowledge, a theoretical connection be-
tween k-way co-occurrences and word embeddings has not
been established before.

3 k-way word co-occurrences

Our analysis is based on the random walk model of text gen-
eration proposed by Arora et al. (2016). Let V be the vocab-
ulary of words. Then, the t-th word wt ∈ V is produced
at step t by a random walk driven by a discourse vector
ct ∈ R

d. Here, d is the dimensionality of the embedding
space and coordinates of ct represent what is being talked
about. Moreover, each word w ∈ V is represented by a vec-
tor (embedding) w ∈ R

d. Under this model, the probability
of emitting w ∈ V at time t, given ct given by (1).

Pr[emitting w at time t | ct] ∝ exp
(
ct

�w
)

(1)

Here, a slow random work is assumed where ct+1 can be ob-
tained from ct by adding a small random displacement vec-
tor such that nearby words are generated under similar dis-
courses. More specificaly, we assume that | ct+1 − ct | 2 ≤
ε2/
√
d for some small ε2 > 0. The stationary distribution C

of the random walk is assumed to be uniform over the unit
sphere. For such a random walk, Arora et al. (2016) prove
the following Lemma.
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Lemma 1 (Concentration of Partition functions Lemma
2.1 of (Arora et al. 2016)). If the word embedding vectors
satisfy the Bayesian prior v = sv̂, where v̂ is from the spher-
ical Gaussian distribution, and s is a scalar random vari-
able, which is always bounded by a constant, then the entire
ensemble of word vectors satisfies that

Pr
c∼C

[(1− εz)Z ≤ Zc ≤ (1 + εz)Z] ≥ 1− δ, (2)

for εz = O(1/
√
n), and δ = exp(−Ω(log2 n)), where n ≥

d is the number of words and Zc is the partition function for
c given by

∑
w∈V exp

(
w�c

)
.

Lemma 1 states that the partition function concentrates
around a constant value Z for all c with high probability.

For d dimensional word embeddings, the relationship be-
tween the �2 norm of word embeddings wi, ||wi||2, and the
joint probability of the words, p(w1, . . . , wk) is given by the
following theorem:
Theorem 1. Suppose the word vectors satisfy (2). Then, we
have

log p(w1, . . . , wk) =

∣∣∣∣∣∣∑k
i=1 wi

∣∣∣∣∣∣2
2

2d
− k logZ ± ε. (3)

for ε = O(kεz) + Õ(1/d) +O(k2ε2), where

Z =
∑

(w1,...,wk)∈Vk

∑
c∈C

exp

(
k∑

i=1

w�
i c

)
. (4)

Note that the normalising constant (partitioning function)
Z given by (4) is independent of the co-occurrences.

Proof of Theorem 1 is given in the supplementary mate-
rial in (Bollegala, Yoshida, and ichi Kawarabayashi 2017).
In particular, for k = 1 and 2, Theorem 1 reduces to the re-
lationships proved by Arora et al. (2016). Typically the �2
norm of d dimensional word vectors is in the order of

√
d,

implying that the order of the squared �2 norm of
∑k

i=1 wi

is O(d). Consequently, the noise level O(ε) is significantly
smaller compared to the first term in the left hand side. Later
in § 5.1, we empirically verify the relationship stated in The-
orem 1 and the concentration properties of the partitioning
function for k-way co-occurrences.

4 Learning k-way Word Embeddings

In this Section, we propose a training objective that con-
siders k-way co-occurrences using the relationship given
by Theorem 1. By minimising the proposed objective
we can obtain word embeddings that consider k-way co-
occurrences among words. The word embeddings derived in
this manner serve as a litmus test for empirically evaluating
the validity of Theorem 1.

Let us denote the k-way co-occurrence (w1, . . . , wk) =
wk

1 , and its frequency in a corpus by h(wk
1 ). The joint prob-

ability p(wk
1 ) of such a k-way co-occurrence is given by (3).

Although successive samples from a random walk are not
independent, if we assume the random walk to mix fairly
quickly (i.e. mixing time related to the logarithm of the vo-
cabulary size), then the distribution of h(wk

1 ) can be approx-
imated by a multinomial distribution Mul

(
L̃k, {p(wk

1 )}
)

,

where L̃k =
∑

wk
1∈Gk

h(wk
1 ) and Gk is the set of all k-way

co-occurrences. Under this approximation, Theorem 2 pro-
vides an objective for learning word embeddings from k-
way co-occurrences.
Theorem 2. The set of word embeddings {wi} that min-
imise the objective given by (5) maximises the log-likelihood
of k-way co-occurrences given by (6). Here, C is a constant
independent of the word embeddings.

∑
wk

1∈Gk

h(wk
1 )

⎛
⎝log(h(wk

1 ))−
∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

wi

∣∣∣∣∣
∣∣∣∣∣
2

2

+ C

⎞
⎠

2

(5)

l = log

⎛
⎝ ∏

wk
1∈Gk

p(wk
1 )

h(wk
1 )

⎞
⎠ (6)

The proof of of Theorem 2 is given in the supplementary
of (Bollegala, Yoshida, and ichi Kawarabayashi 2017).

Minimising the objective (5) with respect to wi and C
produces word embeddings that capture the relationships
in k-way co-occurrences of words in a corpus. Down-
weighting very frequent co-occurrences of words has shown
to be effective in prior work. This can be easily incorpo-
rated into the objective function (5) by replacing h(wk

1 ) by
a truncated version such as min(h(wk

1 ), θk), where θ is a
cut-off threshold, where we set θ = 100 following prior
work. We find the word embeddings wi for a set of k-way
co-occurrences Gk and the parameter Ck, by computing the
partial derivative of the objective given by (5) w.r.t. those pa-
rameters, and applying Stochastic Gradient Descent (SGD)
with learning rate updated using AdaGrad. The initial learn-
ing rate is set to 0.01 in all experiments. We refer to the word
embeddings learnt by optimising (5) as k-way embeddings.

5 Experiments

We pre-processed a January 2017 dump of English
Wikipedia using a Perl script1 and used as our corpus (con-
tains ca. 4.6B tokens). We select unigrams occurring at
least 1000 times in this corpus amounting to a vocabulary
of size 73, 954. Although it is possible to apply the con-
cept of k-way co-occurrences to n-grams of any length n,
for the simplicity we limit the analysis to co-occurrences
among unigrams. Extracting k-way co-occurrences from a
large corpus is challenging because of the large number
of unique and sparse k-way co-occurrences. Note that k-
way co-occurrences are however less sparse and less diverse
compared to k-grams because the ordering of words is ig-
nored in a k-way co-occurrence. Following the Apriori al-
gorithm (Agrawal and Srikant 1994) for extracting frequent
itemsets of a particular length with a pre-defined support, we
extract k-way co-occurrences that occur at least 1000 times
in the corpus within a 10 word window.

Specifically, we select all (k−1)-way co-occurrences that
occur at least 1000 times and grow them by appending the
selected unigrams (also occurring at least 1000 times in the
corpus). We then check whether all subsets of length (k−1)

1http://mattmahoney.net/dc/textdata.html
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k no. of k-way co-occurrences

2 257,508,996
3 394,670,208
4 111,119,411
5 14,495,659

Table 1: The number of unique k-way co-occurrence with
support 1000.

of a candidate k-way co-occurrence appear in the set of fre-
quent (k − 1)-way co-occurrences. If this requirement is
satisfied, then it follows from the apriori property that the
generated k-way co-occurrence must have a minimum sup-
port of 1000. Following this procedure we extract k-way co-
occurrences for k = 2, 3, 4, and 5 as shown in Table 1.

5.1 Empirical Verification of the Model

Our proof of Theorem 1 requires the condition used in
Lemma 1, which states that the partition function given
by (4) must concentrate within a small range for any
k. Although such concentration properties for 2-way co-
occurrences have been reported before, it remains unknown
whether this property holds for k(>2)-way co-occurrences.
To test this property empirically, we uniformly randomly
generate 105 vectors c (�2 normalised to unit length) and
compute the histogram of the partition function values as
shown in Figure 1 for d = 300 dimensional embeddings.
We standardise the histogram to zero mean and unit variance
for the ease of comparisons. From Figure 1, we see that the
partition function concentrates around the mean for all k-
values. Interestingly, the concentration is stronger for higher
k(>3) values. Because we compute the sum of the embed-
dings of individual words in (4), from the law of large num-
bers it follows that the summation converges towards the
mean when we have more terms in the k-way co-occurrence.
This result shows that the assumption on which Theorem 1
is based (i.e. concentration of the partition function for arbi-
trary k-way co-occurrences), is empirically justified.

Next, to empirically verify the correctness of Theorem 1,
we learn d = 300 dimensional k-way embeddings for each k
value in range [2, 5] separately , and measure the Spearman

correlation between log p(w1, . . . , wk) and
∣∣∣∣∣∣∑k

i=1 wi

∣∣∣∣∣∣2
2

for a randomly selected 106 k-way co-occurrences. If (3) is
correct, then we would expect a linear relationship (demon-
strated by a high positive correlation) between the two sets
of values for a fixed k.

Figure 2 shows the correlation plots for k = 2, 3, 4, and
5. From Figure 2 we see that there exist such a positive cor-
relation in all four cases. However, the value of the corre-
lation drops when we increase k as a result of the sparse-
ness of k-way co-occurrences for larger k values. Although
due to the limited availability of space we show results
only for d = 300 embeddings, the above-mentioned trends
could be observed across a wide range of dimensionalities
(d ∈ [50, 1000]) in our experiments.

5.2 Evaluation of Word Embeddings

We re-emphasise here that our goal in this paper is not
to propose novel word embedding learning methods but
to extend the notion of 2-way co-occurrences to k-way
co-occurrences. Unfortunately all existing word embedding
learning methods use only 2-way co-occurrence information
for learning. Moreover, direct comparisons against differ-
ent word embedding learning methods that use only 2-way
co-occurrences are meaningless here because the perfor-
mances of those pre-trained embeddings will depend on nu-
merous factors such as the training corpora, co-occurrence
window size, word association measures, objective function
being optimised, and the optimisation methods. Neverthe-
less, by evaluating the k-way embeddings learnt for differ-
ent k values using the same resources, we can empirically
evaluate the amount of information captured by k-way co-
occurrences.

For this purpose, we use four tasks that have been used
previously for evaluating word embeddings.
Semantic similarity measurement: We measure the sim-

ilarity between two words as the cosine similarity be-
tween the corresponding embeddings, and measure the
Spearman correlation coefficient against the human simi-
larity ratings. We use Rubenstein and Goodenough (RG,
65 word-pairs), Miller and Charles’ (MC, 30 word-
pairs), rare words dataset (RW, 2034 word-pairs) (Lu-
ong, Socher, and Manning 2013), Stanford’s contextual
word similarities (SCWS, 2023 word-pairs) (Huang et al.
2012), the MEN dataset (3000 word-pairs) (Bruni et al.
2012), and the SimLex SL dataset2 (999 word-pairs).

Word analogy detection: Using the CosAdd method, we
solve word-analogy questions in the SemEval (SE)
dataset (Jurgens et al. 2012). Specifically, for three given
words a, b and c, we find a fourth word d that correctly
answers the question a to b is c to what? such that the co-
sine similarity between the two vectors (b−a+ c) and d
is maximised.

Relation classification: We use the DIFFVEC DV (Vylo-
mova et al. 2016) dataset containing 12,458 triples of the
form (relation,word1,word2) covering 15 relation types.
We train a 1-nearest neighbour classifier, where for each
target tuple we measure the cosine similarity between the
vector offset for its two word embeddings, and those of
the remaining tuples in the dataset. If the top ranked tuple
has the same relation as the target tuple, then it is con-
sidered to be a correct match. We compute the (micro-
averaged) classification accuracy over the entire dataset
as the evaluation measure.

Short-text classification: We use four binary short-text
classification datasets: Stanford sentiment treebank (TR)3

(903 positive test instances and 903 negative test in-
stances), movie reviews dataset (MR)4 (5331 positive in-
stances and 5331 negative instances), customer reviews
dataset (CR) (Hu and Liu 2004) (925 positive instances
2https://www.cl.cam.ac.uk/∼fh295/simlex.html
3http://nlp.stanford.edu/sentiment/treebank.html
4www.cs.cornell.edu/people/pabo/movie-review-data/
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(a) 2-way co-occurrences (b) 3-way co-occurrences (c) 4-way co-occurrences (d) 5-way co-occurrences

Figure 1: Histogram of the partitioning function for randomly chosen 10, 000 context vectors.

k RG MC WS RW SCWS MEN SL SE DV TR MR CR SUBJ

2 78.63 79.17 59.68 41.53 57.09 70.42 34.76 37.21 75.34 72.43 68.38 79.19 82.20
≤ 3 77.51 79.92 59.61 41.58 56.69 70.92∗ 34.65 37.42 75.96∗ 72.92∗ 68.71 79.52∗ 82.35
≤ 4 75.85 72.66 59.75 41.23 56.74 70.32 34.51 37.01 74.92 72.37 67.87 78.18 82.25
≤ 5 75.19 74.63 60.54∗ 40.84 56.92 70.50 34.67 37.21 74.76 72.21 68.48 77.18 82.60∗

Table 2: The results on word similarity, analogy, relation classification and short-text classification tasks reported by the word
embeddings learnt using k-way co-occurrences for different k values.

and 569 negative instances), and the subjectivity dataset
(SUBJ) (Pang and Lee 2004) (5000 positive instances and
5000 negative instances). Each review is represented as a
bag-of-words and we compute the centroid of the embed-
dings for each bag to represent the review. Next, we train a
binary logistic regression classifier using the train portion
of each dataset, and evaluate the classification accuracy
using the corresponding test portion.

Statistical significance at p < 0.05 level is evaluated for cor-
relation coefficients and classification accuracies using re-
spectively Fisher transformation and Clopper-Pearson con-
fidence intervals.

Learning k-way embeddings from k-way co-occurrences
for a single k value results in poor performance because
of data sparseness. To overcome this issue we use all co-
occurrences equal or below a given k value when comput-
ing k-way embeddings for a given k. Training is done in an
iterative manner where we randomly initialise word embed-
dings when training 2-way embeddings, and subsequently
use (k − 1)-way embeddings as the initial values for train-
ing k-way embeddings. The performances reported by 300
dimensional embeddings are shown in Table 2, where best
performance in each task is shown in bold and statistical sig-
nificance over 2-way embeddings is indicated by an asterisk.

From Table 2, we see that for most of the tasks the best
performance is reported by k(≥ 2)-way embeddings and not
k = 2-way embeddings. In some of the larger datasets, the
performances reported by k ≤ 3 (for MEN, DV, and CR)
and k ≤ 5 way embeddings (for WS and SUBJ) are signifi-
cantly better than that by the 2-way embeddings. This result
supports our claim that k(> 2)-way co-occurrences should
be used in addition to 2-way co-occurrences when learning
word embeddings.

Prior work on relational similarity measurement have
shown that the co-occurrence context between two words
provide useful clues regarding the semantic relations that
exist between those words. For example, the the phrase is a

large in the context Ostrich is a large bird indicates a hyper-
nymic relation between ostrich and bird. The two datasets
SE and DV evaluate word embeddings for their ability to
represent semantic relations between two words. Interest-
ingly, we see that k ≤ 3 embeddings perform best on those
two datasets.

Text classification tasks require us to understand not only
the meaning of individual words but also the overall topic in
the text. For example, in a product review individual words
might have both positive and negative sentiments but for
different aspects of the product. Consequently, we see that
k ≤ 3 embeddings consistently outperform k = 2 embed-
dings on all short-text classification tasks. By consider all
co-occurrences for k ≤ 5 we see that we obtain the best
performance on the SUBJ dataset.

For the word similarity benchmarks, which evaluate
the similarity between two words, we see that 2-way co-
occurrences are sufficient to obtain the best results in most
cases. A notable exception is WS dataset, which has a high
portion of related words than datasets such as MEN or SL.
Because related words can co-occur in broader contextual
window and with various words, considering a k ≤ 5 way
co-occurrences seem to be effective.

5.3 Effect of Data Sparseness

Overall, Table 2 shows that although some information re-
garding word semantics can be captured using k-way co-
occurrences, the approach runs into data sparseness issues
for high k values. Among the different k values, k = 3
appears to be the case that shows some improvement over
k = 2 case at least in a subset of the different evaluation
tasks when initialised with pre-trained 2-way embeddings.
Learning accurate k-way embeddings for larger k values
overcoming the data sparsity problems is a potential future
research direction for us. Increasing the size of the dataset
and decreasing the support for the co-occurrences is a direct
approach to reduce the data sparseness problem, but simul-
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(a) 2-way co-occurrences (b) 3-way co-occurrences

(c) 4-way co-occurrences (d) 5-way co-occurrences

Figure 2: Correlation between the squared �2 norms of the sum of the k-way embeddings and the natural log frequency of the
corresponding k-way co-occurrences are shown for different k values.

taneously increases the computational cost. In this Section,
we empirically study the effect of varying the co-occurrence
support while keeping the corpus size fixed. We limit our
analysis to k = 2 and k = 3 -way embeddings, which ap-
pear to be the most effective according to the experimental
results in the previous section.

Support 500 2000

Vocabulary 114,599 47,533
k = 2 307,042,130 20,382,664
k = 3 424,150,397 359,161,692

Table 3: The number of k-way co-occurrences for k = 2 and
k = 3 settings under two different support thresholds.

We train 2-way and 3-way embeddings for co-
occurrences extracted under two different support levels,
500 and 2000. Specifically, we limit the vocabulary to the
unigrams that occur at least L times in the corpus, and gen-
erate all possible 2-way and 3-way co-occurrences for those
unigrams. The number of extracted k-way co-occurrences
are shown in Table 3. From Table 3, we see that in partic-
ular the number of 3-way co-occurrences increase signifi-
cantly for 3-way co-occurrences, whereas the increase of 2-

way co-occurrences is much less when we lower the support
level. This shows the computational challenges involved in
decreasing the support level L as a solution to overcome the
sparseness in co-occurrences. We then train 2-way and 3-
way embeddings from the extracted co-occurrences. Unlike
in the previous Section, we do not initialise 3-way embed-
dings using pre-trained 2-way embeddings here because do-
ing so would not demonstrate any issues in 3-way embed-
dings due to data sparseness issues, if they exist.

Performance of the 2-way and 3-way embeddings trained
under L = 500 and L = 2000 support levels on differ-
ent benchmark datasets is shown in Table 4. We see that
3-way embeddings perform poorly compared to 2-way em-
beddings when we do not initialise 3-way embeddings using
2-way embeddings. This result justifies our proposal to use
all k-way co-occurrences below a particular k value when
learning k-way embeddings. Moreover, we see that lower-
ing the support threshold usually decreases the improve per-
formance in all semantic similarity benchmark datasets ex-
cept in RG. On the other hand in both relational similarity
datasets SE and DV we see that lowering the support thresh-
old improves the performance of both 2-way and 3-way em-
beddings. For the short-text classification datasets, we see
that in TR and MR datasets, lowering the support thresh-
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RG MC WS RW SCWS MEN SL SE DV TR MR CR SUBJ

Support = 500
k=2 78.75 80.65 52.29 36.48 54.86 65.10 31.75 37.17 78.45 75.50 71.71 75.83 86.15
k=3 45.04 39.89 38.04 13.74 43.29 41.13 19.96 34.57 68.57 70.18 64.49 74.49 80.30

Support = 2000
k=2 76.14 80.38 63.47 41.98 59.01 71.56 35.45 36.79 73.59 75.78 71.01 78.18 85.55
k=3 34.47 41.81 41.40 27.41 46.67 44.57 21.03 33.83 64.12 68.75 64.12 75.17 81.35

Table 4: Performance of 2-way and 3-way embeddings trained using co-occurrences extracted under two different support
levels.

first second 2-way 3-way Human Type

giraffe harbor 0.468 0.117 0.020

un
re

la
te

dcar hawk 0.563 0.304 0.200
competition relation 0.630 0.304 0.200
happy posted 0.658 0.386 0.280
professor cucumber 0.518 0.130 0.082
museum swim 0.516 0.222 0.120

white woman 0.746 0.491 0.050
co

llo
ca

tio
nscomputer expert 0.717 0.523 0.071

heart surgery 0.702 0.447 0.089
salt water 0.745 0.564 0.112
secret weapon 0.708 0.497 0.080
movie star 0.779 0.557 0.190

absence presence 0.881 0.713 0.018

an
to

ny
m

seasy difficult 0.871 0.786 0.037
short long 0.920 0.873 0.104
agree argue 0.843 0.674 0.056
bottom top 0.832 0.704 0.049
accept reject 0.846 0.698 0.063
south north 0.951 0.871 0.206

Table 5: Qualitatively comparing the 2-way and 3-way em-
beddings on the similarity prediction task.

old improves performance of 3-way embeddings, while de-
creases its performance in CR and SUBJ datasets. On the
other hand, the performance of 2-way embeddings improves
with the lower support in MR and SUBJ datasets.

This result shows that for semantic similarity bench-
marks, lowering support threshold does not help, whereas it
significantly helps for the relational similarity/classification
tasks. This trend is particularly prominent for 3-way em-
beddings than for 2-way embeddings. Lowering the support
threshold is not always a good solution to reduce data spare-
ness because it also increases the number of unique k-way
co-occurrences, thereby introducing many low-frequent k-
way co-occurrences to the long-tail of the co-occurrence dis-
tribution making training difficult.

5.4 Qualitative Evaluation

Our quantitative experiments revealed that 3-way embed-
dings are particularly better than 2-way embeddings in mul-
tiple tasks. To qualitatively evaluate the difference between
2-way and 3-way embeddings, we conduct the following ex-
periment.

First, we combine all word pairs in semantic similarity
benchmarks to create a dataset containing 8483 word pairs

with human similarity ratings. We normalise the human sim-
ilarity ratings in each dataset separately to [0, 1] range by
subtracting the minimum rating and dividing by the dif-
ference between maximum and minimum ratings. The pur-
pose of this normalisation is to make the ratings in different
benchmark datasets comparable. Next, we compute the co-
sine similarity between the two words in each word pair us-
ing 2-way and 3-way embeddings separately. We then select
word pairs where the difference between the two predicted
similarity scores are significantly greater than one standard
deviation point. This process yields 911 word pairs, which
we manually inspect and classify into several categories.

Table 5 shows some randomly selected word pairs with
their predicted similarity scores scaled to 0.5 means and 1.0
variance, and human ratings given in the original benchmark
dataset in which the word pair appears. We found that 2-way
embeddings assign high similarity scores for many unrelated
word pairs, whereas by using 3-way embeddings we are able
to reduce the similarity scores assigned to such unrelated
word pairs. Words such as giraffe, car and happy are highly
frequent and co-occur with many different words. Under 2-
way embeddings, any word that co-occur with a target word
will provide a semantic attribute to the target word. There-
fore, unrelated word pairs where at least one word is fre-
quent are likely to obtain relatively higher similarity score
under 2-way embeddings.

We see that the similarity between two words in a collo-
cation are overly estimated by 2-way embeddings. The two
words forming a collocation are not necessarily semanti-
cally similar. For example, movie and star do not share many
attributes in common. 3-way embeddings correctly assigns
lower similarity scores for such words because many other
words co-occur with a particular collocation in different con-
texts.

We observed that 2-way embeddings assign high similar-
ity scores for a large number of antonym pairs. Prior work on
distributional methods of word representations have shown
that it is difficult to discriminate between antonyms and
synonyms using their word distributions (Mohammad et al.
2013). Scheible, Schulte im Walde, and Springorum (2013)
show that by restricting the contexts we use for building
such distributional models, by carefully selecting context
features such as by selecting verbs it is possible to overcome
this problem to an extent. Recall that 3-way co-occurrences
require a third word co-occurring in the contexts that con-
tain the co-occurrence between two words we are interested
in measuring similarity. Therefore, 3-way embeddings by
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definition impose contextual restrictions that seem to be a
promising alternative for pre-selecting contextual features.
We plan to explore the possibility of using 3-way embed-
dings for discriminating antonyms in our future work.

6 Conclusion

We proved a theoretical relationship between the joint prob-
ability of more than two words and their embeddings and
learnt word embeddings using k-way co-occurrences. Our
results validated the derived relationship and show that we
can learn better word embeddings for tasks that require con-
textual information by considering 3-way co-occurrences.
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