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Abstract

Nowadays, it is very common for one person to be in different
social networks. Linking identical users across different so-
cial networks, also known as the User Identity Linkage (UIL)
problem, is fundamental for many applications. There are two
major challenges in the UIL problem. First, it’s extremely
expensive to collect manually linked user pairs as training
data. Second, the user attributes in different networks are usu-
ally defined and formatted very differently which makes at-
tribute alignment very hard. In this paper we propose CoL-
ink, a general unsupervised framework for the UIL prob-
lem. CoLink employs a co-training algorithm, which manipu-
lates two independent models, the attribute-based model and
the relationship-based model, and makes them reinforce each
other iteratively in an unsupervised way. We also propose the
sequence-to-sequence learning as a very effective implemen-
tation of the attribute-based model, which can well handle the
challenge of the attribute alignment by treating it as a machine
translation problem. We apply CoLink to a UIL task of map-
ping the employees in an enterprise network to their LinkedIn
profiles. The experiment results show that CoLink generally
outperforms the state-of-the-art unsupervised approaches by
an F1 increase over 20%.

Introduction

Social network services (SNS) play a very important role in
people’s everyday life. It’s very common that one real-world
person appears in different SNS, including public social net-
works on the web, such as LinkedIn and Facebook, and pri-
vate social networks such as employee networks inside an
enterprise. Linking the user identities among different social
networks, a.k.a the UIL problem, is generally required to get
better and deeper understanding of individual users which
usually results in better business intelligence. For example,
linking different social network users that refer to the same
person can help create an integrated person profile (Zhang et
al. 2015); understand user migration patterns in social media
(Kumar, Zafarani, and Liu 2011); and help social network
websites recommend potential friends more precisely.

Specifically, linking the enterprise users to their public so-
cial network profiles brings huge opportunities for improv-
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ing enterprise effectiveness, as it connects the public knowl-
edge to the enterprise knowledge, which are usually com-
plementary. For example, the relationships and life-related
profiles in one’s public social networks are usually miss-
ing from his/her enterprise profile. Such information may
greatly help different enterprise scenarios including internal
collaboration, talent hiring, and cross-enterprise businesses.

Although machine learning algorithms have been widely
used in the UIL problem, the effort of training data anno-
tation is not trivial. Firstly, finding linked user pairs is ex-
tremely time-consuming since it requires one to search over
the entire networks and carefully evaluate a large amount of
candidate pairs. It also requires the human labellers to have
a wide range of domain knowledge, for example, one has
to know that “SDE” is the acronym for “Software Devel-
opment Engineer” before he/she starts to work on the users
who have software development backgrounds. Secondly, not
all the social network profile data can be exposed to human
labellers for privacy protection reasons, especially when the
profile comes from internal enterprise networks.

Researchers have proposed unsupervised approaches for
the UIL problem which requires no labelled data. Such so-
lutions are either heuristic approaches or machine learn-
ing based approaches with auto-generated training data.
Lacoste-Julien et al. (2013) propose a greedy approach
which updates the relationship similarity iteratively. The at-
tributes are aligned with heuristic string similarity functions.
However, the selected string similarity functions are very
much sensitive to the profile data, which makes them hard
to generalize. Liu et al. (2013) try to automatically collect
a training data set based on the rareness of the user names
from the forum data, and then employ Supported Vector Ma-
chine (SVM) to classify whether two users are linked or not.
The performance very much depends on the quantity and
quality of the auto-generated training data which is sensitive
to the targeted UIL tasks. There is lack of general unsuper-
vised solutions in the literature.

Linking users between two social networks requires to
carefully compare the user attributes in both networks, such
as name, job title, location etc. As a result, aligning the
attribute values is essential to the UIL problem. The at-
tribute alignment is usually handled with string similarity
comparison. For example, Kong, Zhang, and Yu (2013) con-
vert the attribute value text into bag-of-words vectors with
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TF-IDF weights, and then compute the similarity with the
inner product and the cosine similarity. Lacoste-Julien et
al. (2013) use a smoothed weighted Jaccard similarity for
the property scores. Besides, attribute comparison are also
widely studied in the Entity Resolution literature, which
aims to link entries in a database. For example, Soft TF-IDF
similarity (Cohen, Ravikumar, and Fienberg 2003) has been
shown to perform well when comparing name-based enti-
ties. Bilenko and Mooney (2003) proposed a SVM based
similarity which can be learned from bag-of-words vectors
of matched string pairs. However, the traditional string sim-
ilarity functions shares the following two weaknesses.

• No general approach for attribute variations. For the same
attribute field, its values could be very different in dif-
ferent social networks. Taking the job title as an ex-
ample, “SR CONSULTANT PROD” has a correspond-
ing variation “Senior Consultant”; “ESCAL ENG” equals
to “Escalation Engineer”. The variations follow differ-
ent patterns, such as acronyms, abbreviations, synonyms
and translations, in different social networks. Traditional
string similarity functions can only cover some patterns,
but never all. There is no general way to handle alignment
among different variations.

• Unable to find implicit connections. Sometimes catching
the implicit connections between different attributes is re-
quired. For example, the office location “SUNNYVALE-
1020/6221” in one’s enterprise profile has strong correla-
tion to the location attribute “San Francisco Bay Area” in
his/her LinkedIn profile, although there is almost nothing
in common in string-level comparison. Traditional string
similarity functions won’t apply in such scenarios.

In this paper, we propose CoLink, a general unsuper-
vised framework for the UIL problem. The social network
profile data can be naturally split into two independent
views: attributes and relationships, which satisfy the re-
quirement of the co-training algorithm (Blum and Mitchell
1998) perfectly. CoLink employs two independent models,
an attribute-based model and a relationship-based model,
and a co-training algorithm to reinforce them in an iterative
way. Both the attribute-based model and the relationship-
based model are binary classifiers that decide whether two
users are linked or not. They can be grounded with any ma-
chine learning or heuristic algorithms. Therefore, CoLink as
a framework can be applied to any UIL problem as long as
the user profiles contain attributes and relationships.

We further employ the sequence-to-sequence learning al-
gorithm (Sutskever, Vinyals, and Le 2014) (“sequence-to-
sequence” in short) in the implementation of the attribute-
based model of CoLink, which provides a general solution
for aligning attributes among different social networks. In-
stead of treating the attribute alignment as string similarity
comparison, we actually try to “translate” the attribute value
from one “language”, the specific style of one network, to
the other. Acronyms, abbreviations, synonyms and even im-
plicit connections are all regarded as special translations. We
choose sequence-to-sequence as it has demonstrated to be
effective for machine translation (Wu et al. 2016). Specifi-
cally, sequence-to-sequence has two advantages for CoLink.

First, it automatically captures the word-level mapping and
sequence-level mapping with almost no feature engineering;
Second, it only requires positive examples (aligned attribute
pairs) as training data which relaxes the effort of sampling
negative examples.

We apply CoLink to an UIL application where we try
to link the employees in an enterprise network to their
LinkedIn profiles. We enumerate different settings and dif-
ferent model implementations to show the robustness of
CoLink. We further compare CoLink with the state-of-the-
art unsupervised approaches. The experiment results show
that CoLink generally outperforms the state-of-the-art unsu-
pervised approaches by an F1 increase of 20%. We summa-
rize our contributions as follows.

• We are the first to employ the co-training algorithm for the
UIL problem. User attributes and relationships in the so-
cial network profile are naturally separated views, which
makes co-training a perfect and cost-free solution.

• We are the first to model the attribute alignment prob-
lem as machine translation. We ground the attribute-based
model with sequence-to-sequence which can be easily
generalized with almost no feature engineering.

• We conduct extensive experiments to show the effective-
ness of the proposed solution by comparing to the state-
of-the-art unsupervised approaches, enumerating differ-
ent settings and models.

CoLink

We present the details of the CoLink in this section, in-
cluding the co-training algorithm, the seed rules for start-
ing the co-training algorithm and the implementations of the
attribute-based model and the relationship-based model.

Problem Definition

Let G = {V,E,A} denote a social network, where V =
{v1, v2, . . . , vN} is a set of vertices, representing all users
in the network; E ⊆ V × V is a set of edges among the
vertices, representing the relationships among users; A is a
N × d user attribute matrix, where d is the number of the
attribute fields. The UIL problem is defined as follows.
Input: The input includes a source social network
Gs = {V s, Es, As} and a target social network Gt =
{V t, Et, At}
Output: The output is a set of user pairs S ⊆ V s × V t,
representing the linked user pairs from the source network
to the target network.

Here we assume that there is no user duplication in both
the source network and the target network, i.e. there does
not exist any two users inside one network which link to one
real-world person. Therefore, the linked pair set S must obey
the one-to-one linkage constraint, i.e. there are no two pairs
in S share a same vertex.

CoLink Framework

The CoLink framework is based on the co-training algo-
rithm as shown in Algorithm 1. We define two separate mod-
els in the framework: an attribute-based model fatt and a
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relationship-base model frel. Both models make the binary
classification predictions, classifying a given user pair to be
positive (linked) or negative (unlinked). The co-training al-
gorithm reinforce the two models in an iterative way. At
each co-training iteration, both models are retrained with
the linked pair set S. The high-quality linked pairs gener-
ated with both models are then merged into S for the next
iteration until S converges. At the very beginning, an ini-
tial linked pair set, seed set in short, is required to kick off
the co-training process, which can be generated with a set
of seed rules. The training of the attribute-based model and
the relationship-based model may require negative examples
depending on what algorithms they employ. The process of
sampling negative examples is not included in Algorithm 1.

Input: a source social network Gs, a target social
network Gt

Output: a set of user pairs S
1 S ← the set of seed pairs generated with seed rules;
2 repeat
3 /* generate pairs from attribute-based model */
4 Datt ← fatt(S,G

s, Gt) ;
5 /* generate pairs from relationship-based model

*/
6 Drel ← frel(S,G

s, Gt) ;
7 /* join two sets and remove conflicting pairs */
8 D ← merge(Datt, Drel) ;
9 S ← S ∪D ;

10 until D = ∅;
11 return S ;

Algorithm 1: The co-training algorithm in CoLink.

The co-training algorithm won’t revise the linked pairs
generated from the previous iterations. Therefore the errors
brought from early iterations won’t be fixed later. An alter-
native to this algorithm is to do a final revision after the co-
training converges. That is, reconstructing S with the final
models generated from the co-training process. We will dis-
cuss the results with and without the final revision in the
experiment section.

Seed Rules

In order to kick off the co-training algorithm, a small seed
set of linked user pairs are required. A straight-forward way
to get the seed set is to generate it with hand-crafted rules,
which we call seed rules. These seed rules may consider the
following facts from the targeted social networks.

• user name uniqueness; If a source network user and a
target network user have identical user name which are
unique in both networks, the two users are very much
likely to represent the same person.

• attribute value mapping; Although it’s not applicable to
collect all possible attribute mappings across two net-
works, it’s reasonable to find one or two value mappings.

• relationship propagation; If two users are linked, it is
highly probable to find linked user pairs in their related
users.

The choice of seed rules will directly impact CoLink per-
formance. It’s natural that fine-tuned high-quality seed rules
have positive impact while coarse-tuned noisy seed rules
have negative impact. The robustness of CoLink lies on how
sensitive it is to the seed rules, which will be discussed later
in the experiment section.

Attribute-based Model

The attribute-based model predicts the linked user pairs by
only considering the user attributes. It can utilize any clas-
sification algorithm. In this paper, we try two different ma-
chine learning algorithms: sequence-to-sequence and SVM.

Sequence-to-sequence The traditional string similarity
approaches can poorly handle attribute alignment due to
their different variations. We use sequence-to-sequence be-
cause the attribute alignment is similar to a machine transla-
tion problem. Acronyms, abbreviations, synonyms and even
implicit connections are all special cases of translation.

We employ the sequence-to-sequence network structure
that was proposed by Sutskever, Vinyals, and Le (2014).
The network consists of two parts: the sequence encoder
and the sequence decoder. Both encoder and decoder use
a deep Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) architecture. The encoder deep LSTM
reads the input sequence X and generates representation
vectors at each word position. The vectors are further fed
into an attention layer (Bahdanau, Cho, and Bengio 2014)
to output an overall representation of the input sequence
considering the output word position. The hidden states hk

of decoder deep LSTM are further fed into a dense layer
zk = W · hk, where the output zk holds the dimension of
the vocabulary size, to predict the output word yk.

We follow previous work to train the sequence-to-
sequence network with the linked attribute value pairs. How-
ever, instead of predicting the output sequence, in CoLink
we turn the learned sequence-to-sequence network into a bi-
nary classifier. Firstly, we use the network to generate a link-
age likelihood of the user pair. Secondly, we select a linkage
likelihood threshold above which the user pair is considered
as linked.

To calculate the linkage likelihood of two attribute values,
we fix the input and the output sequence of the sequence-to-
sequence network. Then we apply softmax function to de-
coder output zk to approximate the conditional probability
of word yk as follows,

P (yk|y0, . . . , yk−1, X) =
exp(zjk)∑|zk|
j=1 exp(z

j
k)

, (1)

where j is the word index in vocabulary. As we are inter-
ested in making the linkage likelihood of different attribute
pairs comparable, we want it to be independent to the se-
quence length. Therefore, we define the linkage likelihood
of two attribute text strings to be the averaged conditional
probability of each output word.

Likelihood(X,Y ) = {
K∏

k=1

P (yk|y0, . . . , yk−1, X)} 1
K

(2)
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We train a separate sequence-to-sequence network for
each attribute field. The overall linkage likelihood of a user
pair is an average of the linkage likelihood from all attribute
fields. The final linkage decision is made by comparing the
linkage likelihood with a selected threshold. The threshold
is selected empirically by considering the linkage likelihood
of the training pairs. We study the selection of the threshold
in the experiment section.

Support Vector Machine Traditional classification algo-
rithms like SVM can also be employed in the attribute-
based model. Unlike sequence-to-sequence, which only re-
quires positive training examples (linked pairs), SVM re-
quires negative examples. As the user pair space V s × V t

is extremely large, the positive examples are actually very
sparse in the whole space. Given the linked pairs at each
co-training iteration, we pick the same quantity of random
user pairs as negative examples. We follow previous work
(Kong, Zhang, and Yu 2013; Lacoste-Julien et al. 2013;
Cohen, Ravikumar, and Fienberg 2003) to generate SVM
features including bag-of-words similarity, Jaccard similar-
ity and Jaro string distance. We use the Radial Basis Func-
tion (RBF) as the SVM kernel.

Relationship-based Model

The relationship-based model uses only user relationships
to collect linked pairs. Finding identical vertices across two
networks based on only relationships is frequently studied
as the Network Alignment problem (Singh, Xu, and Berger
2008; Bayati et al. 2009; Korula and Lattanzi 2014).

The relationship-based model can use any algorithm for
aligning networks based on relationships. As we focus more
on the co-training algorithm and the sequence-to-sequence
attribute-based model, in this paper, we use a heuristic model
which is based on an assumption that if two users, from dif-
ferent networks, share a lot of mutually related users, which
have been already linked, they are very likely to be linked
too. We define a function RelSim(vs, vt) to measure the
relationship similarity of two users vs, vt from the source
and the target networks respectively. vs, vt must meet cer-
tain constraints, such as having similar user name or iden-
tical user account id etc., otherwise the similarity is set to
zero. The RelSim(vs, vt) equals to the common related
user count.

RelSim(vs, vt) = |{〈v̂s, v̂t〉}| (3)

where {〈v̂s, v̂t〉} ⊆ S, 〈v̂s, vs〉 ∈ Es, 〈v̂t, vt〉 ∈ Et.
Given social networks Gs and Gt and the linked pair set
S, the relationship-based model finds additional linked pairs
where the similarity function RelSim is larger than a pre-set
threshold of 2.

Experiments

We evaluate the effectiveness of CoLink by comparing it to
the state-of-the-art unsupervised approaches. We also study
the seed rules and the selection of the linkage likelihood
threshold to better understand how they may impact on the
linking results.

Data Set

We choose a real-world data set to evaluate CoLink, in
which one social network is LinkedIn, while the other net-
work is an internal enterprise user network. We crawl over
2.4 million public LinkedIn profiles from the web. The
LinkedIn profile webpages are parsed to get attributes like
name, organization, job title, location etc. Since LinkedIn
connections are not public, we parse the “People Also
Viewed” list (maximum 10 profile outlinks) in the profile
page to connect profiles. The enterprise user network con-
tains over 220K users. The relationships between enterprise
users are obtained from the enterprise’s Active Directory.
For example, if two users attend the same meeting, there
will be a relationship between them. In enterprise networks,
the user attributes are name, job title and office location. The
data set summary is listed in table 1.

Table 1: Data set summary.
Enterprise LinkedIn

Network # vertices 221,869 2,480,410
# relationships 4,411,721 16,069,575

Attribute
# names 221,869 2,468,072
# job titles 132,430 2,207,871
# locations/offices 148,471 2,466,961

We randomly select 658 users from the enterprise network
and try to link them to their LinkedIn profiles manually. We
finally collect 594 linked pairs, while 64 users have no linked
LinkedIn profile found. We use precision, recall and F1 mea-
sure of the linked pairs as evaluation metrics.

Candidate Filter

Given the vertex numbers in both networks, enumerating ev-
ery possible user pairs in the space of V s × V t is unrealis-
tic. Instead, we construct a candidate filter which removes a
huge number of user pairs that are very unlikely to be linked.
The candidate filter considers the following attributes.

• user name; The first names and last names in a user pair
must meet certain similarity conditions, such as exact
match, name initial, nickname etc.

• organization; The LinkedIn user’s organization attribute
text must contain the enterprise name.

After filtering, we get 758,046 candidate user pairs which
cover all the linked pairs in the ground-truth set. The candi-
date pairs are grouped by the source network (the enterprise
network in this paper) vertices. Therefore, in each candidate
pair group g(vs) = 〈vs, {vt}candidates〉 there could be only
one correct linked pair according to the one-to-one linkage
constraint.

Sequence-to-sequence

The sequence-to-sequence network in our experiments con-
sists of a deep LSTM encoder with attention network and
a deep LSTM decoder. The encoder deep LSTM and de-
coder deep LSTM both have 2 LSTM stacked, because we
find that a encoder or decoder with more than 2 layers won’t
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Figure 1: Seed rule sets comparison. P/R/F1 trend with co-training iterations startin.

bring performance increase any more for the UIL task. In
each LSTM, the recurrent unit has a size of 512. Every word
is first turned into a 512 embedding vector before being
fed into the encoder and decoder. The training time of the
sequence-to-sequence model depends on the training data
size. On average, it takes about 30 minutes to get the model
trained on 100K attribute pairs with a Tesla K40 GPU.

Seed Rules

In order to test the robustness of CoLink, we try the follow-
ing 3 seed rule sets.

• Coarse-tuned set; There are only two rules in this set.
First, it is the only pair in the candidate pair group g(vs);
second, the title attribute must contain the string “account
manager” in both networks. We collect 81 initial linked
pairs using this rule set.

• Fine-tuned set; There are also two rules in this set. First, it
is the only pair in the candidate pair group g(vs); second,
there are at least 2 users in vs’s related people that share
the same names with 2 users in vt’s related people. We
collect 19,241 initial linked pairs using this rule set.

• Noisy set; Based on the result of the fine-tuned seed rule
set, we replace 20% pairs with randomly selected user
pairs. The result initial linked pair set remains the same
size.

We employ sequence-to-sequence as the attribute-based
model. The likelihood threshold remains the same for all
three seed rule sets. Figure 1 shows the CoLink performance
with different seed rule sets. The coarse-turned seed rule
set generates very few linked pairs with strong sampling
bias which cause the precision drop at the beginning of the
co-training. After more linked pairs been added, the preci-
sion increases as the sampling bias decreases. The fine-tuned
seed rule set gets a initial recall of 10% which brings a large
quantity of training data for the model at the beginning. As
a result, the very first trained sequence-to-sequence model
already gets a pretty good recall. In the rest co-training iter-
ations, only the long-tail linked pairs are added. The noisy
seed rule set is used to test the noise tolerance capability
of CoLink. As shown in Figure 1-c, the co-training process
does not diverge because of the noisy initial linked pair set.

0k

20k

40k

60k

80k

100k

120k

1 3 5 7 9 11 13 15 17 19

Attribute-based model Relationship-based model

Figure 2: Linked pairs growth with co-training iterations
from coarse-tuned seed pairs.

Co-training

We employ co-training by separating the relationship fea-
tures from the attribute features. The attribute-based model
and the relationship-based model both find new pairs at each
iteration, and then reinforce each other. We keep the statis-
tics of the result linked pairs from each model in Figure
2. In this task, the attribute-based model generates more
pairs than the relationship model because we don’t have
full LinkedIn relationship data. We crawl the “People Also
Viewed” list items from the public LinkedIn profiles which
only provide no more than 10 relationships for each user.

Likelihood Threshold

We set a likelihood threshold in the sequence-to-sequence
attribute-based model. The threshold is a percentage which
indicates how many training pairs are above the threshold.
For example, a threshold of 100% means that every train-
ing pair gets a linkage likelihood over the threshold, while a
threshold of 50% means that only 50% of the training pairs
are above the threshold. The absolute threshold value is then
calculated by finding a maximum value that meets the re-
quired percentage.

Figure 3 shows the comparison among different thresh-
old values. Using a stricter threshold (a smaller percentage)
results in a higher precision and a relatively lower recall.
The threshold value can be used to adjust the trade-off be-
tween precision and recall depending on the requirements of
the specific UIL tasks. In our task, we choose a threshold of
95%.
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Figure 3: Sequence-to-sequence linkage likelihood threshold comparison.

Table 2: Performance comparison of different approaches.
Method P R F1

Random-select 49.31 54.21 51.64
SiGMa 91.00 44.28 59.57
Alias-disamb 82.35 58.92 68.69
CoLink (S2S+Coarse-tuned) 86.74 83.67 85.18
CoLink (S2S+Coarse-tuned+Rev) 89.51 86.20 87.82
CoLink (S2S+Fine-tuned) 91.47 86.70 89.02

CoLink (S2S+Fine-tuned+Rev) 89.22 86.36 87.77
CoLink (SVM+Fine-tuned) 84.16 62.63 71.81

Comparison Results

We demonstrate the effectiveness of CoLink by comparing
it to the state-of-the-art unsupervised approaches including
SiGMa and Alias-disamb. We also compare the CoLink re-
sults with different seed rule sets and attribute-based models
to better understand the impact of the different settings. Ta-
ble 2 shows the comparison results of different approaches.
We apply the same candidate filter for all approaches. The
detailed discussion are as follows.

• Random-select: We randomly pick one target network
user vt from the candidate group g(vs) and add 〈vs, vt〉 to
the linked pair set S. This is the baseline of our task. Since
we filter the candidate pairs with name and organization
constrains, the baseline gets an F1 of 51.6%.

• SiGMa: SiGMa (Lacoste-Julien et al. 2013) is a heuris-
tic approach that starts with an initial linked pair set, and
iteratively expands the set with newly found linked pairs
by propagating the linkage similarity in the networks. The
similarity functions in SiGMa are based on Jaccard coef-
ficient. We directly use the initial linked pair set gener-
ated from the fine-turned seed rule set. SiGMa achieves
good precision but low recall because the Jaccard similar-
ity function can only handle a fixed number of attribute
variations.

• Alias-disamb: In Alias-disamb (Liu et al. 2013), the
training data is automatically generated by evaluating the
rareness of user names in both networks. We label the
candidate pairs with top 1% rarest names as positive ex-
amples, and candidate pairs with top 1% most common
name as negative examples, which result in 15,160 train-
ing pairs. We then train a binary SVM classifier using the

generated data. We port most of the features that proposed
in their paper except the ones that rely on the data not
available in our task, such as post content, image etc.

• CoLink (S2S+Coarse-tuned): The coarse-turned seed
rule set generates only 81 linked pairs with strong bias (all
titles must contain “account manager”). Although the pre-
cision drops at the initial iterations, the final F1 only drops
less than 4% compared to the best result. This shows the
robustness of CoLink which can start with a small biased
seed set.

• CoLink (S2S+Coarse-tuned+Rev): As mentioned in the
earlier sections, a revision after convergence could help
fix errors from early iterations. CoLink (S2S+Coarse-
tuned+Rev) adds a revision process after the conver-
gence of CoLink (S2S+Coarse-tuned), which reconstructs
S with the final models of CoLink (S2S+Coarse-tuned).
In CoLink (S2S+Coarse-tuned), the biased initial training
set hurts the precision of the result model very much at the
beginning. The revision process may fix the errors gener-
ated by the early stage models. There is an F1 increase of
over 2% compared to CoLink (S2S+Coarse-tuned).

• CoLink (S2S+Fine-tuned): The fine-tuned seed rule set
generates a high quality seed set, and thus results in
a better overall performance. CoLink (S2S+Fine-tuned)
achieves the best result, which outperforms Alias-disamb
by a F1 increase of over 20%. This shows that the selec-
tion of the seed set does impact the performance of CoL-
ink, although CoLink is less sensitive to the seed set se-
lection.

• CoLink (S2S+Fine-tuned+Rev): As shown in Figure 1-
b, the precision is decreasing along the co-training iter-
ations when using the fine-tuned seed rules. More and
more incorrectly linked user pairs are generated in the
later models. These errors are going to hurt the final model
trained in the revision process. It is observed that there is
1.25% F1 drops compared to CoLink (S2S+Fine-tuned).

• CoLink (SVM+Fine-tuned): We also employ SVM in
the attribute-based model of CoLink. We directly utilize
the SVM features of the Alias-disamb experiment. Com-
paring to the Alias-disamb, CoLink (SVM+Fine-tuned)
achieves over 3% F1 increase as the co-training algo-
rithm constructs the training data set iteratively. How-
ever, the F1 drops over 17% compared with the CoLink
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Table 3: Selected attribute examples and their similarity scores. Cosine Similarity (Kong, Zhang, and Yu 2013), Jaccard Similar-
ity (Lacoste-Julien et al. 2013), Jaro Distance (Cohen, Ravikumar, and Fienberg 2003) and LCS-based Fuzzy-match (Vosecky,
Hong, and Shen 2009) are listed for comparison.

Enterprise LinkedIn
Seq-to-seq
likelihood

Cosine
Similarity

Jaccard
Similarity

Jaro
Distance

LCS-based
Fuzzy-match

SUNNYVALE-1020/6221 San Francisco
Bay Area 0.931 0 0 0.181 0.028

PARIS-ISSY/O3E17F Parijs en omgeving,
Frankrijk 0.703 0 0 0.575 0.250

PFE Premier Field Engineer 0.817 0 0 0.529 0.067

SR SDE Senior Software
Development Engineer 0.733 0 0 0.272 0.087

ESCAL ENG Escalation Engineer 0.843 0 0 0.650 0.500
SR CONSULTANT PROD Senior Consultant 0.722 0.387 0.323 0.618 0.444

(S2S+Fine-tuned) line. This demonstrates the effective-
ness of sequence-to-sequence in the attribute alignment.
We will further discuss the attribute alignment in the fol-
lowing section.

Attribute Alignment

By using sequence-to-sequence, CoLink can handle a large
variety of attribute alignment problems that can hardly be
solved with traditional string similarity functions. Table 3
shows several selected attribute examples, which are sup-
posed to be aligned, and their similarity scores from different
approaches, which all generate scores in [0, 1]. We also list
the similarity measures from four traditional string similar-
ity methods for comparison. Compared to traditional string
similarity functions, sequence-to-sequence linkage likeli-
hood is much more amenable to different attribute align-
ment scenarios including acronyms, abbreviations, semantic
connections like geography correlation and language trans-
lation, etc. It can be easily applied to other UIL tasks with
almost no feature engineering thanks to the representational
capability of sequence-to-sequence.

Related Work

The User Identity Linkage problem was first formalized by
Zafarani and Liu (2009) and became a heated research topic
in recent years. Their solution is a set of specific rules based
on several hypothesis created from empirical observations
on user name patterns in the targeted SNS. These rules do
not generalize to other UIL applications where the user name
patterns do not apply. Liu et al. (2013) automatically gener-
ate training data by evaluating the rareness of the user names
in both networks, and then trained a binary SVM classifier
considering the whole user profiles to find identical users.
Their solution is very sensitive to the quality and the quantity
of the generated training data. Lacoste-Julien et al. (2013)
propose a greedy approach called SiGMa which updates re-
lationship similarity iteratively. However, the selected string
similarity functions are sensitive to the profile data, which
makes them hard to generalize. The existing unsupervised
approaches are all sensitive to the similarity measures for
user profiles, which hurts the generality.

There are many supervised approaches which extract fea-
tures from user profiles and employ a supervised classifier
models to predict linked user pairs. Goga et al. (2013) cre-
ate a logistic regression classifier based on distance-based
similarity features of attributes to do binary classification on
candidate pairs. Liu et al. (2014) use bag-of-words based
and distance-based features and address the UIL problem
as a multi-objective optimization. Zhang et al. employ bag-
of-words based features and basic relationship features, to-
gether with an energy-based model with local and global
consistency (Zhang et al. 2015). Many embedding based
approaches were also proposed recently (Mu et al. 2016;
Man et al. 2016; Tan et al. 2014). However, the supervised
approaches all require expensive data annotation effort.

Entity resolution approaches (Cohen, Ravikumar, and
Fienberg 2003; Bhattacharya and Getoor 2007), which link
entries in a database to real-world entities, may also be
adapted to help in the UIL problem. Specifically, Yu uses
Jaccard and Cosine similarity as textual similarity (Yu
2014); Bilenko and Mooney (2003) propose a learn-able
SVM-based similarity which may be used to align user pro-
files. The above approaches share the weakness of the exist-
ing UIL approaches, which either require expensive anno-
tated training data, or can hardly handle attribute variations
well.

Similarly, network alignment approaches, which aim to
find identical vertices across networks based on relation-
ships, may also help in the UIL problem. Singh, Xu, and
Berger propose IsoRank (Singh, Xu, and Berger 2008)
which propagates pair-wise vertex similarity. More network
propagation based approaches that extended IsoRank were
also proposed in (Liao et al. 2009; Kollias, Mohammadi,
and Grama 2012). Such propagation based approaches may
serve in the CoLink framework as relationship-based mod-
els.

Conclusion

We propose CoLink, a general unsupervised framework for
the User Identity Linkage problem. CoLink separates the
user profile into two independent views: user attributes and
relationships, and creates independent attribute-based and
relationship-based model from them. By using co-training
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algorithm, the two models are reinforced in an iterative
way, and therefore requires no data annotation effort. We
address attribute alignment as a translation problem in-
stead of typical string similarity measurement, and employ
sequence-to-sequence in the attribute-based model. By em-
ploying sequence-to-sequence, CoLink can easily general-
ize as sequence-to-sequence requires almost no feature en-
gineering and positive data samples only. We apply CoLink
to the task of linking enterprise users to their LinkedIn pro-
files. CoLink generally outperforms the state-of-the-art un-
supervised approaches by an F1 increase of 20%.
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