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Abstract

In this work, we investigate word embedding algorithms in
the context of natural language processing. In particular,
we examine the notion of “negative examples”, the unob-
served or insignificant word-context co-occurrences, in spec-
tral methods. we provide a new formulation for the word em-
bedding problem by proposing a new intuitive objective func-
tion that perfectly justifies the use of negative examples. In
fact, our algorithm not only learns from the important word-
context co-occurrences, but also it learns from the abundance
of unobserved or insignificant co-occurrences to improve the
distribution of words in the latent embedded space. We ana-
lyze the algorithm theoretically and provide an optimal solu-
tion for the problem using spectral analysis. We have trained
various word embedding algorithms on articles of Wikipedia
with 2.1 billion tokens and show that negative sampling can
boost the quality of spectral methods. Our algorithm provides
results as good as the state-of-the-art but in a much faster and
efficient way.

Introduction

In recent years there has been an increasing interest in learn-
ing compact representations (i.e embeddings) for a set of in-
put datapoints. In these approaches, input data is mapped to
a low-dimensional latent space with the goal of preserving
the geometrical properties of data with respect to some sim-
ilarity measure in the input space. That is, similar datapoints
in the input space should be mapped to nearby points in the
latent embedded space. In the embedded space, each input
datapoint is described with a dense d-dimensional continu-
ous vector representing the coordinates of the datapoint in
the latent space.

In natural language processing, embedding algorithms are
particularly used to learn a vector space representation for
words aiming to capture semantic similarities and syntactic
relationships between words. The traditional way of treat-
ing individual words as unique symbols and representing
documents by sparse word count vectors, known as Bag-of-
Words (BOW) representation (Salton 1971), has strong lim-
itations since it does not exploit countless semantic and syn-
tactic relations encoded in the corpus. Moreover, it does not
take into account the ordering of the words, therefore, two

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

different sentences can have the same representation as long
as they use the same words. N-gram models (Suen 1979;
Brown et al. 1992; Fürnkranz 1998) tried to overcome these
limitations by counting the occurrences of sequences of
words rather than individual words (1 ≤ n ≤ 5). They
consider the word order in a short context but suffer from
the curse of dimensionality since the number of n-grams in-
creases dramatically as n increases. They also do not capture
the semantics of the words or more formally the similarities
between the words (Le and Mikolov 2014).

In recent years, distributed word representations or word
embedding algorithms have shown to be very effective in
capturing certain aspects of similarity between words. Sta-
tistical language modeling methods take advantage of the
fact that words that are temporally closer in a sentence are
statistically more dependent, and therefore, model the prob-
ability of a word conditioned on the previous words in the
sentence (Bengio et al. 2003). The idea of using a mov-
ing context window and assuming words in the same win-
dow are semantically similar is widely exploited (Mikolov et
al. 2013b; 2013a; Pennington, Socher, and Manning 2014).
GloVe calculates the global co-occurrence statistics first us-
ing a fixed-size context window, and then minimizes its least
squares objective function using stochastic gradient descent
which is essentially factorizing the log co-occurrence ma-
trix (Pennington, Socher, and Manning 2014). Many neural-
network based approaches have been proposed for learn-
ing distributed word representations (Bengio et al. 2006;
Collobert and Weston 2008; Mikolov et al. 2013a; 2013b).
Skip-Gram with Negative Sampling (SGNS) is still the state-
of-the-art word embedding algorithm and is successfully ap-
plied in a variety of linguistic tasks (Mikolov et al. 2013a;
2013b).

Levy et al. in (Levy, Goldberg, and Dagan 2015) have
studied the effect of various hyper-parameters in different
embedding algorithms and showed that many of these pa-
rameters can be transferred to traditional methods (e.g SVD)
to boost their performance. In fact, they showed that ex-
plicit matrix factorization methods can provide competitive
results if used properly and there is no significant advan-
tage over any of the algorithms. Levy and Goldberg in (Levy
and Goldberg 2014) showed that SGNS is implicitly fac-
torizing a Shifted Positive Point-wise Mutual Information
(SPPMI) matrix and they argue that the shift parameter is
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almost equivalent to the negative sampling parameter k in
SGNS. However, their proposed alternative approach using
SVD provides lower quality embedding than SGNS mainly
for two reasons: first, the unweighted L2 optimization in
SVD which gives equal importance to frequent and infre-
quent pairs, and second, the shift cannot capture certain as-
pects of the parameter k in SGNS, that is higher k in SGNS
results in using more data and better estimating the distri-
bution of negative examples (Levy, Goldberg, and Dagan
2015). Therefore, SGNS remains superior to others with a
small margin in most NLP applications.

In this work, we provide a different perspective for look-
ing at the negative samples, word pairs that never co-occur.
Most embedding algorithms only use the word pairs that oc-
cur in the corpus and maximize the similarity of those word
vectors based on how frequent they co-occur. This can result
in concentration effect: word clusters from totally different
topics can be placed somewhat close to each other. There
are lots of possible word pairs that never co-occur in the
corpus or they co-occur insignificantly, which we call them
negative examples. We argue that minimizing the similarity
of negative examples is also crucial in the quality of final
embedding and results in better distribution of words in the
latent space. We show how matrix factorization methods can
benefit from the abundance of information (i.e. negative ex-
amples) which was disregarded previously since they were
considered useless. We incorporate the notion of negative
sampling in standard matrix factorization methods by ran-
domly choosing a tiny fraction of zeros in the PMI matrix
and assigning negative values to them or simply by not ig-
noring all negative PMI values. We formulate the problem
as an optimization task by proposing an intuitive objective
function which perfectly justifies the use of negative values
in the PMI matrix. Our optimization has an optimal closed
form solution and we make a theoretical connection between
our solution and SVD.

Background

Notation

Let’s assume we have a text corpus which is a collec-
tion of words w ∈ VW where VW is the word vo-
cabulary. The context of a word wi is commonly de-
fined as the words surrounding it in a window of size L,
wi−L, . . . , wi−1, wi+1, . . . , wi+L. This results in a set of
context words c ∈ VC with their corresponding context vo-
cabulary VC . The sizes of the vocabularies are typically in
105 − 106 range.

For each word-context pair (w, c), we use #(w, c) to de-
note the number of times they co-occurred in the corpus.
Similarly, we use #(w) =

∑|VC |
i=1 #(w, ci) and #(c) =∑|VW |

i=1 #(wi, c) for denoting the number of times w and c
occurred in the corpus, respectively.

By moving an L-sized context window over the corpus, a
global co-occurrence matrix X of size |VW | × |VC | can be
built where each matrix entry xij = #(wi, cj) denote the
number of times wi and cj co-occurred. The co-occurrence
matrix is a very sparse matrix with lots of zero entries since

most possible word-context pairs never co-occur in the cor-
pus.

Most word embedding algorithms embed all words and
contexts in a d-dimensional space where each word w ∈ VW

and each context c ∈ VC is represented with a vector
�w ∈ Rd and �c ∈ Rd. The set of all word vectors is com-
monly represented by a matrix W of size |VW | × d. Simi-
larly, context vectors are the rows in a |VC | × d matrix C.

Pointwise Mutual Information (PMI)

The co-occurrence matrix contains the global statistics of the
corpus and is the primary source of information for most al-
gorithms. However, not all co-occurrences are meaningful.
Pointwise Mutual Information (PMI) is an information the-
oretic measure that can be used for finding collocations or
associations between words (Church and Hanks 1990) and
can detect significant versus insignificant co-occurrences to
some extent. For any word-context pair (w, c), PMI is de-
fined as the log ratio between their joint probability and
product of their marginal probabilities:

PMI(w, c) = log
P (w, c)

P (w)P (c)
(1)

Based on the formulation, if two words co-occur more of-
ten than being independent then their PMI will be positive,
and if they co-occur less frequent than being independent
then their PMI will be negative. For instance, in the data
we used for the paper, the words “right” and “align” have
a high PMI of 10.381 which indicates a strong collocation,
but words “school” and “species” have a low PMI of -6.88
which means they are not likely to happen in the same con-
text.

Calculating PMI values for all word-context pairs gives us
a |VW | × |VC | PMI matrix which we call it MPMI . Most of
entries in the co-occurrence matrix are zero #(w, c) = 0,
for which PMI(w, c) = log 0 = −∞. A common ap-
proach to handle the situation is to use MPMI

0 in which
PMI(w, c) = 0 whenever #(w, c) = 0. Another com-
monly accepted approach is to use Positive PMI (PPMI) ma-
trix MPPMI by replacing all the negative values with 0.

PPMI(w, c) = max(PMI(w, c), 0) (2)

In fact, a traditional approach to word embedding is to
use explicit PPMI representation in which each word is de-
scribed by its corresponding sparse row vector in the PPMI
matrix MPPMI and it is shown that it outperforms MPMI

0
on semantic similarity tasks (Bullinaria and Levy 2007).

A recognized shortcoming of PMI and consequently
PPMI is their bias towards infrequent events (Turney and
Pantel 2010). This happens when a rare context c co-occurs
with a word w a few times (or even once) and this often
results in a high PMI value since P (c) in PMI’s denomina-
tor is very small. However, explicit PPMI representation is a
well-known approach in distributional-similarity models.

1Base 2 logarithms has been used here as well as all the experi-
ments in the paper.
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Singular Value Decomposition (SVD)

SVD is a matrix factorization technique in linear algebra
which has a broad range of applications. It is widely used for
image compression and also dimensionality reduction. SVD
on the matrix Xn×p gives a factorization of the form X =
UΣVT in which Vp×p = [v1 v2 ... vp] is an orthonormal
basis for the row space of X, Un×n = [u1 u2 ... un] is an
orthonormal basis for the column space of X and Σ is a di-
agonal matrix of singular values σ1, σ2, ..., σp. If n > p then
the corresponding σp+1, ..., σn will be 0. The matrix X can
be seen as a transformation matrix between the two bases
X[v1 v2 ... vp] = [σ1u1 σ2u2 ... σnun] or XV = UΣ.

Using this factorization one can just choose the largest
singular values from Σ and eliminate the vectors in U and
V corresponding to the smallest singular values to compress
the data. In fact, the largest singular values and their cor-
responding columns in U and V can explain most of the
information in the matrix, and hence we can reconstruct
the original matrix even after removing the smallest sin-
gular values. If we just pick the r largest singular values
Xr = Un×rΣr×rV

T
r×p, then Xr will be the best rank r

approximation of X.
SVD can be applied to either co-occurrence matrix or the

PPMI matrix to obtain the embedding. The word embedding
is taken as the first d columns of U usually weighted by the
singular values or the square root of singular values.

Skip-Gram with Negative Sampling (SGNS)

Word2vec is the most popular and state-of-the-art method
for training vector space representations for words. There
are two types of training for the word2vec model: Con-
tinuous Bag-Of-Words (CBOW) and skip-gram. Word2vec
scans the corpus and employs a moving window which de-
fines the context of the words. The intuition of the method
is that co-words that frequently appear in the same window
have high semantic relatedness and hence, they should have
similar word vectors. Both variants use a single layer neu-
ral network but their objective is different. In the CBOW
model, the aim is to predict a word given its context while
in the skip-gram the objective is to predict the context given
the word itself. The error term is defined in such a way that
maximizes the dot product of words and their context words’
vectors. At the end of the optimization, weights of the net-
work are considered as the word vectors.

Word2vec learns the words and context words’ vectors
separately. Updating the weights of the network for con-
text words is computationally expensive and requires iter-
ating over the entire vocabulary for each input instance. For
this reason, they have proposed to use hierarchical Softmax
and negative sampling methods as optimization tricks in or-
der to improve the efficiency (Mikolov et al. 2013b). Neg-
ative sampling works better in practice, in which some of
the words are randomly sampled from the vocabulary (i.e.
negative samples) to be updated.

Global Vectors (GloVe)

The GloVe model scans the corpus to determine the vo-
cabulary and then build the global co-occurrence table by

moving a context window over the text and counting the co-
occurrences of the words. The co-occurrence table contains
the global statistics about words that appear together in a
window and is the primary source of information for unsu-
pervised learning of word vectors. They exploit the infor-
mation encoded in this table and formulate the problem as
a sum of squared error minimization between the dot prod-
uct of word and context word vectors and the log of their
co-occurrences. Another weighting function is also applied
to each error term to make the importance of error terms
proportional to their co-occurrence value. This way, more
frequent co-words will have more weight in updating their
vectors.

Spectral Word Embedding with Negative

Sampling (SENS)

Our approach at a glance builds a symmetric co-occurrence
matrix, calculates the PMI matrix, applies a threshold on
PMI matrix to remove only some of the negative PMI values,
and finally factorizes the resulting matrix to find the embed-
ding.

In the first step, we use a fixed-size context window and
scan through the corpus to build the global co-occurrence
statistics matrix just like many other methods such as GloVe.
One of the key differences of our algorithm to others such as
SGNS, is that we use a symmetric context in which we up-
date Xij and Xji symmetrically whenever two words wi and
wj appear in the same window. This will provide nice prop-
erties for the matrix in our optimization. Please note that
from now on, we do not refer to context words as c since
there is no distinction between words and contexts. Conse-
quently, in our approach |VW | = |VC | = n and hence, both
X and MPMI are symmetric matrices of dimension n× n.

After calculating the global co-occurrence matrix X , we
apply PMI on it to obtain MPMI . Here, instead of using
MPPMI , we propose to apply a threshold α on the PMI ta-
ble to obtain Mα where each entry in the matrix is calculated
as follows:

mα
ij =

{
PMI(wi, wj) PMI(wi, wj) > α

0 otherwise
(3)

We refer to the word pairs with mα
ij > 0 as positive exam-

ples and word pairs with mα
ij < 0 as negative examples. Mα

is the final matrix that we factorize and the negative values
in this matrix correspond to the negative examples that we
employ in our model. Please note that by setting α = 0 we
get MPPMI which does not exploit the negative examples.
However, by choosing a negative threshold α < 0, we keep
a portion of negative values while disregarding the extreme
cases. In fact, by adjusting this parameter α, we control the
amount of negative examples to be used in the model.

It is noteworthy to mention that this thresholded PMI ma-
trix, Mα, is different from what is being used in Levy and
Goldberg’s work (Levy and Goldberg 2014). In the shifted
PPMI approach proposed in (Levy and Goldberg 2014), the
PMI values are shifted by − log k and then all the negative
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values are removed. This way, not only all the originally neg-
ative PMI values are removed, but also some of the small
positive PMI values (which are less than log k) are elimi-
nated as well. On the contrary, our method does the oppo-
site operation by encouraging to keep the negative values. In
the following, we will see how this negative threshold α can
provide a better approximation to the true PMI matrix.

Let us define our intuitive objective function that justifies
the use of negative examples in the matrix.

J (W ) =

n∑
i=1

n∑
j=1

mα
ij( �wi. �wj) (4)

where �wi and �wj are the d-dimensional embedded word vec-
tors for wi and wj in the vocabulary, and W is the n × d
matrix of all word vectors. Here, we formulated the problem
as a maximization task where J (W ) has to be maximized.

In this maximization formulation, the algorithm will max-
imize the similarity of word vectors, �wi. �wj , whenever
mα

ij > 0 (i.e. positive examples), and it will minimize the
similarity of word vectors whenever mα

ij < 0 (i.e. nega-
tive examples). In other words, word pairs with a strong de-
gree of association will be placed close to each other while
the negative examples will be placed far apart in the latent
embedded space. The use of negative examples is ignored
in most embedding algorithm since zero or negative PMI
values in MPMI are typically ignored and considered use-
less as in the explicit PPMI (Bullinaria and Levy 2007) and
factorizations methods on PPMI (Levy and Goldberg 2014).
Here, we show that the appropriate use of negative examples
can be beneficial to the spectral algorithms and factorization
based embedding methods.

Please note that most of the entries in Mα are zero, and
word pairs with mα

ij = 0 have no effect on our optimiza-
tion. It is also noteworthy to mention that positive examples
are indeed more informative than negative examples. This
means that excessive use of negative examples can have de-
structive effects on the quality of final embedding since the
algorithm will mostly focus on making negative examples
far apart rather than making word vectors with strong asso-
ciation closer to each other. However, we show that appro-
priate use of negative examples improves the distribution of
words in the embedded space and prevents the concentration
effect.

Considering equation 4, we can rewrite our objective
function as a trace optimization:

J (W ) =
n∑

i=1

n∑
j=1

mα
ij( �wi. �wj) =

n∑
i=1

�wi.
( n∑

j=1

mα
ij .( �wj)

)

= Tr[WTMαW ] (5)

Then, our objective function has an optimal closed form
solution as a result of the following two theorems.

Theorem 1 (Courant-Fischer Theorem) Let A be a sym-
metric n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn

and corresponding eigenvectors u1, u2, . . . , un, then:

λ1 = min
‖b‖=1

bTAb = min
b �=0

bTAb

bT b
= uT

1 Au1, (6)

λ2 = min
‖b‖=1
b⊥u1

bTAb = min
b �=0
b⊥u1

bTAb

bT b
= uT

2 Au2, (7)

...

λn = λmax = min
‖b‖=1

b⊥u1⊥···⊥un−1

bTAb = max
‖b‖=1

bTAb (8)

= max
b �=0

bTAb

bT b
= uT

nAun (9)

Proof of the Courant-Fischer theorem can be found in
standard linear algebra textbooks (Dym 2013). The follow-
ing theorem (Parlett 1998) is an immediate consequence of
the Courant-Fischer theorem.

Theorem 2 Given a symmetric matrix An×n, and an arbi-
trary unitary matrix Bn×d, then the trace of BTAB is max-
imized when B is an orthonormal basis for the eigenspace
of A associated with its algebraically largest eigenvalues
(Kokiopoulou, Chen, and Saad 2011). In particular, the
eigenbasis itself is an optimal solution: If U = [u1, . . . , ud]
is the set of eigenvectors associated with d largest eigenval-
ues λ1, . . . , λd, and UTU = I , then:

max
B∈Rn×d

BTB=I

Tr[BTAB] = Tr[UTAU ] = λ1 + · · ·+ λd (10)

Our thresholded PMI matrix, Mα, is symmetric and
therefore, our optimization in equation 5 fits into theorem 2.
Consequently, our optimization has an optimal closed form
solution in which the word vectors matrix W is formed by
the eigenvectors of Mα corresponding to its d algebraically
largest eigenvalues. This formulation is simply a more accu-
rate approximation of the true objective than SVD factoriza-
tion of PPMI or shifted PPMI.

Connection to SVD and an alternative solution
(SVD-NS)

Consider the singular value decomposition of the thresh-
olded PMI matrix, Mα = UΣUT . We know that U is the
set of eigenvectors of MαMαT and V is the set of eigenvec-
tors of MαTMα. In case of symmetric input, MαMαT =
MαTMα, and consequently, U = V and the well-formed
unique factorization of UΣUT can be obtained.

Moreover, it is easy to show that eigenvectors of powers
k of a matrix, Ak, are equivalent to the eigenvectors of the
matrix itself, but, their eigenvalues will be taken to the power
k.

Av = λv (11)

A2v = AAv = A(λv) = λ(Av) = λλv = λ2v (12)
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Therefore, U which is the set of eigenvectors of
MαMαT = Mα2 is equivalent to the eigenvectors of Mα,
and Σ will be the absolute value (i.e. magnitude) of eigen-
values of Mα in decreasing order. As a consequence, one
can apply SVD on the symmetric thresholded PMI matrix
Mα and consider the first d columns of U corresponding
to d largest singular values of the matrix as the final word
embedding.

We should mention that this alternative solution is equiv-
alent to the originally proposed solution only if the d largest
singular values correspond to the d algebraically largest
eigenvalues. More formally, if λ1 ≥ λ2 ≥ · · · ≥ λn are the
eigenvalues in decreasing order, then the condition is satis-
fied if �λk < 0 such that |λk| ≥ λd. This is a guaranteed
case when Mα is Positive Semi-Definite (PSD) since all the
eigenvalues will be positive. Nevertheless, in case of non-
PSD, Mα can be easily converted into a PSD matrix since
it is already symmetric. This can be done by making it a
diagonally dominant matrix in that each diagonal element
is greater than or equal to the sum of all non-diagonal ele-
ments on that row, mα

ii ≥
∑

j,j �=i m
α
ij . In fact, by adjusting

only the diagonal elements of Mα which are the strength
of association of words with themselves, we can make it
a PSD matrix. This process should not have drastic effects
on the quality of embedding since it does not change the
strength of pairwise word relations. However, in our exper-
iments, we have used the alternative SVD solution on the
original Mα without converting it to PSD and still achieved
promising results. We refer to this alternative solution as
SVD-NS. The source code of our algorithm is available at:
https://github.com/behrouzhs/svdns.

Experiments

Data and Vocabulary

For the training of models, we have used English Wikipedia
dump of March 05, 2016. After stripping the HTML tags and
extracting the clean text of Wikipedia articles, we removed
all the special characters and punctuation from the text. Then
we converted the text into lowercase and tokenized it. The
data have 2.1 billion tokens resulting in 8.9 million unique
words as vocabulary. However, most of the vocabulary are
infrequent words or they belong to named entities such as
names of people, places, and organizations.

We have applied a filtering on the vocabulary to target the
words in English dictionary as well as to reduce the size of
vocabulary to a reasonable range. First, we filtered out all
the words that appeared in the data less than 5 times. This is
a common threshold that is used in other algorithms as well
(e.g GloVe). We also removed all the words that contained
non-English alphabet (e.g. names of people). Afterwards, we
used WordNet database to identify words that exist in the
English dictionary. WordNet is an ontology defining the re-
lationship between the words and has an internal categoriza-
tion of words into verbs, nouns, adjectives, and adverbs. We
have used all the words that appeared in WordNet database
as the English vocabulary. We also kept all the words with
more than 3000 occurrences which do not necessarily ex-
ist in the English dictionary. After these filtering steps, the

8.9M unique words in Wikipedia were filtered and resulted
in 163188 words.

In our experiments, all the algorithms were trained on the
exact same preprocessed input text data. We have also used
the exact same vocabulary for all the algorithms. This will
ensure a fair comparison as the size of the training data has
a great influence on the quality of embeddings. The dimen-
sionality of embeddings is 100 in all our experiments.

Evaluation method

For the evaluation of algorithms, we have used two well-
known tasks of word similarity and word analogy. For the
word similarity task, there exist several datasets containing
word pairs with their corresponding human-assigned sim-
ilarity score. These datasets are commonly used to evalu-
ate the quality of word embeddings and to see how good
they have modeled the word similarities in the embedding.
The quantitative values of scores are not important here, but
rather the ranking of different word pairs is the main focus.
Therefore, Pearson’s rank-order correlation is always used
in word similarity task. In this task we have used 8 differ-
ent dataset including WordSim353 (WS-M) (Finkelstein et
al. 2001), WordSim Similarity (WS-S) and WordSim Relat-
edness (WS-R), MEN (Bruni et al. 2012), Mechanical Turk
(MTurk), SimLex (Hill, Reichart, and Korhonen 2016), MC,
and YP (Yang and Powers 2006). For the analogy task, we
have used Google’s analogy dataset (Mikolov et al. 2013a)
which contains 19544 questions of the form “a is to a∗ as b
is to b∗”. Given three of the elements, the algorithm has to
predict the missing element. About half of questions are se-
mantic (e.g. “brother is to sister as son is to daughter”) and
the other half are syntactic questions (e.g. “cold is to colder
as short is to shorter”).

Analysis of the amount of negative examples

Let us first analyze the effect of volume of negative exam-
ples in the model. For this reason, we have run SVD-NS
algorithm with various PMI thresholds ranging in [−10,+2]
and evaluate each case on analogy and word similarity tasks.
Figure 1 illustrates the results of this experiment. Figures 1a
and 1b show the accuracy of our algorithm on word analogy
and word similarity tasks, respectively. Please note that the
special case of α = 0 is equivalent to the SVD factoriza-
tion of PPMI matrix (Levy, Goldberg, and Dagan 2015). As
we can see from both figures, using negative examples can
boost the performance of factorization methods dramatically
and yields a better quality embedding. In both analogy and
word similarity tasks, the peak performance and accuracy
has achieved when α = −2.5 and in that case the number
of positive examples is 1.54 times the number of negative
examples. As we discussed before, excessive use of nega-
tive examples will have harmful effects since it will shift
the focus of the algorithm to less important information. For
instance, as we can observe from the figure 1 and it was pre-
viously shown in (Bullinaria and Levy 2007), using the en-
tire PMI matrix MPMI

0 and factorizing it using SVD yields
worse results than factorizing MPPMI .
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Figure 1: Accuracy of SVD-NS algorithm on (a) word analogy (b) word similarity tasks with respect to the amount of negative
samples.

Comparison with other algorithms

Table 1 compares 12 algorithms on 8 word similarity
datasets. The numbers in the table are Pearson’s correla-
tion between the rankings provided by the algorithms and
the rankings of the human-scoring.

SVD, SVD-L, and SVD-S are the factorizations of co-
occurrence, log co-occurrence, and square root of co-
occurrence matrices, respectively. This type of factorization
is popularized in NLP through Latent Semantic Analysis
(Deerwester et al. 1990). PPMI-SVD-US, PPMI-SVD-Us,
and PPMI-SVD-U are all SVD factorizations on PPMI ma-
trix but they have different singular vector weighting scheme
in that, they weight the singular vectors by singular values,
square root of singular values, and no weighting, respec-
tively. SPPMI-SVD-Us and SPPMI-SVD-U are the SVD
factorizations on shifted PPMI matrix (Levy and Goldberg
2014) where the shift is log 5. GloVe is trained with its rec-
ommended parameter setting (i.e. xmax = 100), CBOW and
SGNS are trained with negative sampling set to 5. Our pro-
posed algorithm, SVD-NS, is trained with α = −2.5.

As we can see from table 1, our algorithm provides the
best results in 6 out of 8 datasets. SGNS is the best on only
WordSim Similarity dataset, and PPMI-SVD-U is the best
on MC dataset and on the rest of the datasets our method
outperforms others by a fair margin. We have to mention
that in analogy task SGNS provides better results than SVD-
NS. However, our main goal is to boost matrix factorization
methods with the use of negative examples. We have paral-
lelized SVD-NS algorithm using OpenMP and it is one order
of magnitude faster than multi-threaded SGNS.

Conclusion

In this paper, we analyzed the use of negative examples in
word embedding context both theoretically and empirically.
We proposed an intuitive objective function for the word

embedding problem and provided an optimal solution for it
using matrix factorization techniques. Our thresholded PMI
matrix is simply a better approximation of the word asso-
ciations. And our objective function is a more accurate ap-
proximation of the true objective than SVD factorization of
PPMI or shifted PPMI. Our algorithm removes the use of
many hyper-parameters in other algorithms such as eigen-
value weighting and dealing with word and context vectors
separately. In fact, our optimal solution is achieved using
the eigenvectors themselves and no additional weighting is
needed. Moreover, it builds, maintains, and exploits sym-
metric co-occurrence and PMI matrices, and consequently,
its word and context vectors happen to be the same in our
algorithm. The only parameter in our method is α which
controls the amount of negative examples to be used in the
algorithm. As a rule of thumb, one should not have negative
examples more than 2

3 of positive ones.
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