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Abstract

Word sense induction is the most prominent unsupervised ap-
proach to lexical disambiguation. It clusters word instances,
typically represented by their bag-of-words contexts. There-
fore, uninformative and ambiguous contexts present a ma-
jor challenge. In this paper, we investigate the use of an al-
ternative instance representation based on lexical substitutes,
i.e., contextually suitable, meaning-preserving replacements.
Using lexical substitutes predicted by a state-of-the-art au-
tomatic system and a simple clustering algorithm, we out-
perform bag-of-words instance representations and compete
with much more complex structured probabilistic models.
Furthermore, we show that an oracle based on manually-
labeled lexical substitutes yields yet substantially higher per-
formance. Taken together, this provides evidence for a com-
plementarity between word sense induction and lexical sub-
stitution that has not been given much consideration before.

1 Introduction

Lexical ambiguity, the phenomenon of words having multi-
ple senses, is pervasive in language. Considerable attention
in natural language processing (NLP) has been devoted to
developing methods for describing lexical ambiguity and re-
solving it. Resolving lexical ambiguity has been argued to
matter for many tasks from information retrieval (Stokoe,
Oakes, and Tait 2003) and information extraction (Ciaramita
and Altun 2006) to sentiment analysis (Wiebe and Mihalcea
2006) and machine translation (Carpuat and Wu 2007).

The most prominent approach to modeling and resolv-
ing lexical ambiguity is word sense disambiguation or WSD
(Navigli 2009), where the task is to assign to each instance of
a word a sense label from a fixed inventory such as WordNet
(Fellbaum 1998). While useful, WSD methods suffer from
two drawbacks. First, WSD typically uses supervised classi-
fication methods or lexical knowledge bases, which require
large amounts of manually labeled data or large-coverage
lexical resources. This makes WSD methods expensive to
develop. Second, the assumption that a complete and ap-
propriate sense inventory is available turns out to be prob-
lematic for various reasons, including resource coverage,
domain-specific usages, or questions of sense granularity
(Edmonds and Kilgarriff 2002; Snyder and Palmer 2004).
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ID Instance (word in context) Cluster Substitutes

1 . . . consistently reading papers with
poor English. . .

1 article,
manuscript

2 . . . while reading an item in the En-
glish paper today . . .

2 newspaper,
periodical

3 . . . papers may use previously pub-
lished material. . .

1 article,
publication

4 . . . the material uses fancy paper. . . 3 pulp,
parchment

Table 1: Example of WSI clusters and lexical substitutions
for four instances of the noun paper.

These problems have motivated research in word sense
induction or WSI (Schütze 1998). WSI aims to induce word
senses from unannotated corpora, typically by performing
clustering. Unlike in WSD, word senses therefore arise dy-
namically from the corpora under consideration and can be
tailored to the requirements of the scenario at hand. In this
manner, WSI avoids the pitfalls of WSD outlined above. As
an example for WSI, consider the (illustrative) clusters for
some instances of paper shown in Table 1. Cluster 1 has the
interpretation “paper as a scholarly article”, cluster 2 cor-
responds to “paper as a newspaper”, while cluster 3 corre-
sponds to “paper as material”, without making finer-grained
distinctions. For comparison, WordNet lists seven senses for
the noun paper, among which one for the scholarly article,
three for the newspaper, and two for the material.

Importantly, the ability of WSI to identify meaningful
word senses hinges on the extent to which the senses corre-
late with distinct contexts, as per the distributional hypoth-
esis (Harris 1954). Thus, a major challenge for WSI is that
many contexts are ambiguous or not discriminative enough,
particularly at a bag-of-words level. This is also illustrated in
Table 1: in terms of context words overlap, instances 1 and
2 as well as instances 3 and 4 are rather similar, rendering it
difficult to cluster them into separate sense clusters.

Our paper specifically addresses the problem of noisy
contexts. We start from the hypothesis that WSI can benefit
from complementing contextual information with a different
description of instance meaning, namely lexical substitutes.
Lexical substitution or LS (McCarthy and Navigli 2007) is
another relatively recent alternative to WSD that completely
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avoids the notion of predefined word senses. Instead, it de-
scribes the meaning of each word instance in terms of a
set of contextually appropriate substitutes (or paraphrases,
comprising a paraset), as illustrated in the right-hand col-
umn of Table 1. We believe that context and lexical substi-
tutes are complementary: context, as used in standard WSI
approaches, provides a syntagmatic view of instance mean-
ing by representing the target instance in terms of its con-
text words. Lexical substitutes, in contrast, provide a syn-
tagmatic as well as a paradigmatic view by representing the
target instance in terms of contextually appropriate replace-
ments that are nonetheless still similar to the target instance.
In particular, we expect that LS can ameliorate the problem
of ambiguous and non-discriminative contexts. This is illus-
trated in Table 1, where instances 1 and 3 share the substi-
tute article (and therefore should end up in the same clus-
ter), while instances 2 and 4 have a disjoint set of substitutes
(and therefore should end up in different clusters). Indeed,
previous analyses have found that lexical substitutes roughly
reproduce word sense groupings while providing additional
information (Kremer et al. 2014).

To the best of our knowledge, no previous study of WSI
has investigated whether lexical substitutes can be lever-
aged for better WSI. This paper gives an affirmative an-
swer to this question by making two contributions: (1) we
demonstrate that WSI based on automatically predicted lexi-
cal substitutes outperforms a competitive context-based WSI
model on the SEMEVAL-2010 benchmark (Manandhar et al.
2010) using a simple clustering approach; (2) we annotate a
subset of that dataset with gold-standard lexical substitutes,
finding even substantially higher performance. Thus, future
improvements in LS modeling should translate to further
improvements for WSI. Taken together, these results show
a previously overlooked connection between WSI and LS
which could translate into more robust joint models for both.

2 Related Work
A number of WSI approaches have been proposed in the
literature. The standard approach is that of context cluster-
ing (Schütze 1998), in which the contexts of word instances
are represented as individual second-order distributional
vectors and then grouped into sense clusters (Jurgens and
Stevens 2010). A related approach is to represent instances
as nodes in a similarity graph which is clustered using graph-
clustering algorithms (Korkontzelos and Manandhar 2010;
Hope and Keller 2013b). The currently best-performing
approaches rely on manually constructed probabilistic la-
tent variable models (Van de Cruys and Apidianaki 2011;
Lau et al. 2012; Bartunov et al. 2016; Komninos and Man-
andhar 2016), which structurally encode the dependencies
between a word’s sense and its context. Başkaya and Jur-
gens (2016) combine some of these models in an ensemble.

The other line of research relevant for our work is lex-
ical substitution. LS was established as a paradigm with
the SEMEVAL-2007 Lexical Substitution shared task (Mc-
Carthy and Navigli 2007). This task also provided the first
LS dataset: a lexical sample dataset containing 200 instances
of 20 words. A sample of this dataset was again used for
the SEMEVAL-2010 Cross-Lingual Lexical Substitution task

(McCarthy, Sinha, and Mihalcea 2013), where the substi-
tutes were manually translated into Spanish. Another, con-
siderably larger lexical sample is that of Biemann (2012),
constructed through an iterative three-step crowdsourcing.
The sample comprises 24,647 contexts for 1,012 frequent
words, but is restricted to nouns only. In contrast to these
two lexical sample datasets, the dataset presented by Kremer
et al. (2014) is a crowdsourced all-words lexical substitution
dataset, which comprises 15,629 words from 2,474 contexts.

The availability of these corpora boosted work on com-
putational models for automatically predicting lexical sub-
stitutes. Nevertheless, apart from a few exceptions (Szarvas,
Biemann, and Gurevych 2013; Hintz and Biemann 2015),
most opted for unsupervised approaches. A common theme
among LS models is to construct a contextualized distribu-
tional representation for a specific instance, e.g., by mod-
ifying the first-order distributional vector for a word so as
to reflect the contribution of the context of the specific in-
stance. The substitutes are then ranked by computing the
similarity between their first-order vectors and the contex-
tualized instance vector (Erk, McCarthy, and Gaylord 2013;
Melamud, Levy, and Dagan 2015; Melamud, Dagan, and
Goldberger 2015; Melamud, Goldberger, and Dagan 2016;
Roller and Erk 2016). Abualhaija et al. (2017) frame lexical
substitution as an optimization problem and solve it using
metaheuristic approaches such as simulated annealing.

Our work combines WSI and LS. The study conceptu-
ally most similar to ours is (Başkaya et al. 2013), who used
a language model to generate substitutes for target words
and then constructed a distributional model over word-
substitute pairs using S-CODE (Maron, Bienenstock, and
James 2010). Those representations were then clustered to
obtain a fixed number of sense clusters. Their work treats
the substitutes merely as an intermediate representation and
does not make the conceptual link to lexical substitutions.
Indeed, being created by a language model, these substituted
are not guaranteed to be paradigmatically related to the tar-
get words. Furthermore, their study is more limited in its ex-
perimental setup, in that they use the same number of senses
for all words and do not evaluate the quality of context-based
and substitute-based representations individually.

Another study that uses similar methods is (Cocos and
Callison-Burch 2016), who induced word senses by clus-
tering paraphrases from the Paraphrase Database PPDB
(Pavlick et al. 2015), constructed using a bilingual pivoting
method. Given two words that are potential paraphrases of
each other (including lexical substitutes), they obtain their
similarity score by either using precomputed paraphrase
similarity score from PPDB (computed using a supervised
regression model) or by comparing their second-order para-
phrase scores (computed as similarity between two vectors
of PPDB scores). Although the study frames its task as WSI,
it does not evaluate on standard WSI datasets nor compares
against state-of-the-art WSI methods. Our approach is also
considerably simpler, requiring much less machinery.

3 Method
As argued in the introduction, our hypothesis is that lexi-
cal substitutes (the parasets) can improve on context-based
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representations for clustering-based WSI. Thus, our method
works by first computing the similarity of word instances
based on parasets or a combination of parasets and contexts,
and then performs clustering using a standard clustering al-
gorithm, in our case affinity propagation.

3.1 Instance Similarity Measures

For each word separately, we construct a similarity matrix
that stores the information about the similarity of each pair
of instances. We experiment with three similarity measures:

CTX: Motivated by the robustness of additive models in
computational semantics (Schütze 1998; Mitchell and La-
pata 2010; Wieting et al. 2016), we construct the context-
based representation of an instance by averaging the word
embeddings for the content words found in the context
(target word included). To ensure reproducibility, we use
word embeddings trained on part of Google News dataset
covering about 100 billion words (Mikolov et al. 2013).1
The similarity of two word instances is then simply cal-
culated as the positive cosine similarity of their instance
embeddings. We use this similarity as the baseline.

AUTOLS: Following our hypothesis, this measure forgoes
context words in favor of averaging the embeddings of the
target word’s lexical substitutes, as predicted by an auto-
matic lexical substitution model (cf. Section 4). In case of
multiword substitutes, we average the constituents’ em-
beddings. We use the same word embeddings as for CTX,
and again rely on positive cosine similarity.

AUTOLS+CTX: We combine the previous two measures
by simply averaging their similarity predictions. This can
be interpreted as “late fusion” (Kiela and Clark 2015).

In Section 6 we consider the setup with gold-standard
(i.e., manually produced) lexical substitutes. For this setup,
we define two additional instance similarity measures,
GOLDLS and GOLDLS+CTX. These measures correspond
to AUTOLS and AUTOLS+CTX, respectively, but use gold-
standard instead of system-produced parasets.

3.2 Instance Clustering

We cluster the word instances using affinity propagation
(Frey and Dueck 2007), an iterative clustering algorithm
based on the concept of “message passing”. The messages
passed between the instances describe two values: evidence
that instance k should be the exemplar for instance i (respon-
sibility r(i, k)) and evidence that instance i should select the
instance k to be its exemplar (availability a(i, k)). Formally,
these quantities are given by:

r(i, k) ← s(i, k)− max
∀k′ �=k

(
a(i, k′) + s(i, k′)

)

a(i, k) ← min
(
0, r(k, k) +

∑

∀i′ /∈{i,k}
r(i′, k)

) (1)

where s(i, k) is a similarity score between instance i and k
(matching the corresponding entry in a given similarity ma-
trix). Specifically, the diagonal entries, s(i, i), represent the

1https://code.google.com/archive/p/word2vec/

input preference, indicating the likelihood of instance i be-
coming an exemplar. The algorithm starts by setting r and s
to 0 for all the instances and then iterating until convergence.
To avoid numerical oscillations, both r(i, k) and a(i, k) are
linearly interpolated with their values from the previous it-
eration, controlled by a damping factor λ. We use the algo-
rithm’s default hyperparameters: factor λ of 0.5 and at most
200 iterations with convergence reached after 15 iterations
with no change in the number of estimated clusters. We use
the affinity propagation implementation of scikit-learn (Pe-
dregosa et al. 2011).

The reason for using affinity propagation as our clustering
algorithm is that it does not require the exact number of clus-
ters to be set up front, a nuisance for many other clustering
algorithms.2 This is particularly important for WSI, where
each word comes with different set of senses and whose
number is difficult to establish automatically. However, in
affinity propagation, the number of clusters is indirectly con-
trolled by the value of the input preference. By adjusting the
input preference, one can steer the algorithm toward pro-
ducing more clusters (high input preference) or less clusters
(low input preference), though eventually the algorithm will
pick the final number of clusters to suit the data.

To investigate the effect of the number of clusters on WSI,
we experiment with two settings for input preference: (1) the
default value, set to the median of the similarity matrix, and
(2) a value fine-tuned for each POS. In the latter case, for
each POS and for each instance similarity measure, we per-
form a line search, minimizing the difference between the
average predicted number of clusters and the average num-
ber of senses in WordNet for that POS. This effectively in-
troduces WordNet priors on the number of clusters. The use
of priors does not reduce the generality of our approach, as
information about the average number of word senses across
POS is typically available.

4 Experimental Setup

We carry out all of our experiments on the standard
SEMEVAL-2010 WSI dataset (Manandhar et al. 2010), used
for the shared task as well as for follow-up research on WSI.
We will first present the results of our method in a “produc-
tion mode”, i.e., using system-produced lexical substitutes
and following the official evaluation setup of the shared task
(cf. Section 4.2). We will then provide a more detailed anal-
ysis on a 20-word dataset sample, giving insight into what
performance gains could be obtained when using human-
produced lexical substitutes (Section 6).

4.1 Data

The SEMEVAL-2010 WSI dataset is split into a training and
test portion, and covers a sample of 50 nouns and 50 verbs.
The training portion (879,807 contexts) was compiled in a
semi-automatic manner, using WordNet 3.1 to automatically
generate Yahoo! search queries, which were then manually
checked by the task organizers. In contrast, the test portion

2There is a number of other algorithms that do not require the
number of clusters to be set up front, such as Markov Clustering
(Van Dongen 2000) and Chinese Whispers (Biemann 2006).
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(8,915 contexts) was sampled from OntoNotes (Hovy et al.
2006), a large linguistic resource which, among other anno-
tations, provides coarse-grained sense annotations of words
in contexts. The average number of senses per word is 3.79.
Since the training portion of the dataset is not sense-tagged
and only serves as an additional source of word contexts, we
use only the test portion in our experiments.

4.2 Evaluation

We follow the official evaluation setup and the official evalu-
ation scripts, which comprises both supervised and unsuper-
vised evaluation. For the supervised (i.e., WSD) evaluation,
the induced sense labels are first converted to WordNet 3.1
labels via a mapping heuristic (Agirre and Soroa 2007) and
then evaluated using (supervised) recall (SR). The mapping
is learned on either 80% or 60% of the test set and amounts
to determining which gold sense label appears most often
with an induced sense label. To account for randomness,
evaluation is repeated using five different mapping-test splits
and averaging the obtained scores. We report results on the
80%-20% split. See (Manandhar et al. 2010) and (Agirre and
Soroa 2007) for more details.

In contrast to the supervised evaluation, no mapping is
performed for the unsupervised evaluation, where induced
and gold sense labels (clusters) are directly compared us-
ing paired F-score (Artiles, Amigó, and Gonzalo 2009) and
V-measure (Rosenberg and Hirschberg 2007). The paired F-
score computes the harmonic mean of precision and recall
by treating as true positives all instance pairs that are clus-
tered together in both induced and gold sense clusters. The
V-measure computes the harmonic mean of cluster homo-
geneity and cluster completeness.

As noted in (Manandhar et al. 2010), both V-measure and
paired F-score exhibit biases regarding the number of clus-
ters: V-measure is biased toward a higher number of clus-
ters, whereas the paired F-score – despite averaging between
pairwise precision and recall – penalizes a higher number
of clusters. In addition, Pedersen (2010) notes that the V-
measure is easily beat by random baselines. To account for
these deficiencies, and following (Wang et al. 2015), for ease
of comparison we also report the geometric mean of the two
unsupervised measures, denoted by UAVG.

The SEMEVAL-2010 task organizers provided three base-
lines: MFS (most frequent sense – labels all test instances
with the most frequent sense according to the mapping func-
tion), 1cl1inst (one cluster per instance – gives each instance
its own label),3 and Random (gives all instances a random
sense label). These baselines are complementary to each
other and very competitive under some of the above metrics.

4.3 Preprocessing

We tokenize and lowercase the contexts using the nltk library
(Bird, Klein, and Loper 2009) and keep only content words.
We also preprocess the substitutes: we lemmatize them and

3This baseline is not mentioned in the original paper, but was
presented in the post-paper evaluation. See https://www.cs.york.ac.
uk/semeval2010 WSI/task 14 ranking.html.

then remove all the symbols except hyphen (-) and apostro-
phe (’). Additionally, we remove all multiword substitutes
that contain the negation tokens (not or n’t), to avoid the
problem of modeling negation in distributional spaces (e.g.,
beautiful should be similar to not ugly).

4.4 Lexical Substitution Model

To obtain system-produced parasets, we use context2vec
(Melamud, Goldberger, and Dagan 2016), one of the cur-
rently best-performing lexical substitution models. This
model was proposed as a way of efficiently learning generic
context embeddings, which could then be used across vari-
ous natural language processing tasks, including lexical sub-
stitution. In a nutshell, context2vec builds upon the architec-
ture of word2vec’s CBOW (Mikolov et al. 2013), but turns to
a more expressive bidirectional LSTM architecture instead
of simply averaging embeddings in a fixed window. For our
experiments, we use a pre-trained model presented in (Mela-
mud, Goldberger, and Dagan 2016) and simply take the top
15 lexical substitutes to serve as a system-produced paraset.

5 Word Sense Induction on SemEval-2010
The first experiment comprises the evaluation of our mod-
els on the complete SEMEVAL-2010 dataset, using official
evaluation scripts provided by the organizers. The results
are reported in Table 2. Within the supervised evaluation
(SR score), our clustering model based on context similarity
alone (CTX) performs very well, outperforming the base-
lines and all other competitor models, even the more com-
plex ones, such as (Lau et al. 2012) and (Başkaya and Jur-
gens 2016). The performance improves further when using
a model based on system-produced parasets (AUTOLS). Fi-
nally, combining the context-based and paraset-based simi-
larity scores (AUTOLS+CTX) yields the overall best results.
Using WordNet polysemy as the prior (+WN PRIOR mod-
els) results in a considerably lower number of clusters, and
also reduces the SR scores.

Unsupervised evaluation gives a less clear picture due to
the aforementioned biases of the V-measure metric and the
paired F-score. Consequently, a baseline that uses one clus-
ter per instance (1cl1inst) tops all other methods in terms of
V-measure, whereas a baseline that labels all instances with
a single sense (MFS) outperforms other methods in terms
of paired F-score. The models of ours that use the default in-
put preference for affinity propagation produce a larger num-
ber of clusters and hence perform much better under the V-
measure, whereas the models with WordNet number of clus-
ters produce a lower number of clusters and hence perform
better under the paired F-score. In terms of the combined
UAVG score, our models outperform all baselines, while the
AUTOLS and AUTOLS+CTX models with WordNet priors
perform on par with the state-state-of-the art model of (Ko-
rkontzelos and Manandhar 2010).

The overall tendency is for AUTOLS and AUTOLS+CTX
models to consistently outperform their CTX counterparts.
This trend also holds for both POS tags in the dataset. These
results support our initial hypothesis that lexical substitutes
complements context-based information, thus ameliorating
problems of possibly noisy contexts.
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SR (80%/20%) V-measure Paired F-score UAVG #C

Model All N V All N V All N V All All

CTX .693 .661 .740 .225 .263 .171 .196 .184 .215 .210 12.50
AUTOLS .722 .668 .801 .268 .296 .227 .219 .209 .233 .242 13.79
AUTOLS+CTX .750 .707 .811 .248 .312 .232 .220 .214 .230 .250 13.38

CTX (+WN prior) .664 .614 .724 .145 .166 .114 .409 .431 .377 .243 2.94
AUTOLS (+WN prior) .694 .644 .765 .195 .225 .151 .399 .413 .377 .279 3.59
AUTOLS+CTX (+WN prior) .693 .641 .769 .191 .206 .168 .423 .443 .393 .284 3.25

HERMIT (Jurgens and Stevens 2010) .583 .536 .653 .162 .167 .156 .267 .244 .301 .208 1.78
UoY (Korkontzelos and Manandhar 2010) .624 .594 .668 .157 .206 .085 .498 .382 .666 .280 11.54
Duluth-WSI-SVD-Gap (Pedersen 2010) .587 .532 .667 .000 .000 .000 .633 .570 .724 .000 1.02
NMFlib (Van de Cruys and Apidianaki 2011) .626 .573 .702 .118 .135 .094 .453 .422 .498 .231 4.80
NMFcon (Van de Cruys and Apidianaki 2011) .603 .545 .688 .039 .039 .039 .602 .546 .684 .153 1.58
HDP+pos.+dep. (Lau et al. 2012) .680 .650 .720 – – – – – – – –
SNNswf (Hope and Keller 2013a) – – – – .328 .246 – .144 .132 – 32.31
Ensemble* (Başkaya and Jurgens 2016) .680 – – – – – – – – – –

Most frequent sense (MFS) .587 .532 .666 .000 .000 .000 .635 .727 .570 .000 1.00
One cluster per instance (1cl1inst) .000 .000 .000 .317 .256 .358 .001 .001 .001 .018 89.15
Random .573 .515 .657 .044 .046 .042 .319 .341 .304 .118 4.00

Table 2: Performance scores on the SEMEVAL-2010 WSI dataset (50 nouns and 50 verbs) of the proposed models (top two
sections), models from the literature (middle section; results that are not publicly available are omitted), and the three baselines
(bottom section). Best results in each group are shown in bold. Column #C shows the average number of obtained clusters. The
model marked with * is not entirely comparable with ours as it uses a different sense mapping function.

6 Upper-Bound Performance

The experiment in Section 5 demonstrates that lexical substi-
tutes obtained by a state-of-the-art LS system can improve
WSI performance. A natural follow-up is to ask what the
upper-bound performance for a lexical substitution-based
WSI approach is, i.e., how much would WSI performance
improve if ground-truth lexical substitutes were available.
We investigate this question by repeating the first experiment
on a sample of the SEMEVAL-2010 test portion for which we
collect human-provided substitutes. We use the models with
WordNet polysemy priors for these experiments.

6.1 Collecting Gold Substitutes

We selected 20 words (10 verbs and 10 nouns) from the
SEMEVAL-2010 dataset and asked four annotators (students
of English)4 to provide substitutes for 50 instances of each
word. The annotation task was set straightforwardly: the an-
notators were presented with a sentence containing a marked
target word and were asked to provide as many substitutes
as they deem appropriate (in any order). If appropriate, they
were allowed to provide multiword substitutes. Conversely,
in cases where the target word was a part of a multiword
expression, the annotators were asked to provide substitutes
for the whole phrase (most common cases are phrasal verbs,
e.g., stick out). We did not require that the substitutes fit
perfectly into the syntactic context, but instead allowed for
small discrepancies due to differences in the use of deter-
miners and prepositions. The annotators were forbidden to

4We ran a small preliminary study with both students of English
and native BE speakers, and observed that students on average tend
to generate more (appropriate) substitutes than the native speakers.

use any kind of lexical resource during the annotation.
To compile the final lexical substitute-annotated sample,

we took the annotators’ paraset union for each of the in-
stances. We considered majority voting as well, but con-
cluded that such approach is not as meaningful on such a
small set of annotators – the best substitutes may be pro-
posed only once and still be entirely reasonable. We make
this dataset publicly available.5

6.2 Results

Table 3 shows the results of our models on this sample. We
observe that the supervised evaluation scores are lower than
that from Table 2. We ascribe this to the quality of mapping:
as the mapping files were given only for a complete test por-
tion of the dataset, we created them anew for our 20-word
sample. Taking into account that our sample is far smaller in
size than the original test portion, we ended up with a lower-
quality mapping and in turn much lower results. In contrast,
the unsupervised evaluation results are in line with those on
a complete test portion.

The comparison between AUTOLS and GOLDLS shows
that human-produced lexical substitutes further improve the
performance of WSI models, as we expected. The gains are
most evident in the terms of paired F-score and UAVG score
even though the average numbers of clusters are similar. In
terms of supervised recall and V-measure, the two model
families perform similarly.

As a more qualitative analysis, consider Figure 1, which
shows a two-dimensional representation of the instance
spaces for the verb commit according to context similarity

5http://takelab.fer.hr/lexsubclu/
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SR (80%/20%) V-measure Paired F-score UAVG #C

Model All N V All N V All N V All All

CTX (+WN prior) .207 .162 .210 .191 .193 .189 .431 .426 .436 .287 3.20
AUTOLS (+WN prior) .221 .176 .218 .261 .249 .274 .475 .438 .511 .352 3.30
AUTOLS+CTX (+WN prior) .199 .162 .206 .318 .334 .303 .445 .442 .448 .376 8.35

GOLDLS (+WN prior) .227 .180 .244 .313 .316 .311 .536 .545 .528 .410 3.15
GOLDLS+CTX (+WN prior) .215 .164 .250 .298 .223 .372 .582 .548 .615 .416 2.40

Table 3: Evaluation on a 20-word sample of SEMEVAL-2010 test portion with system- and human-produced lexical substitutes.
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Figure 1: PCA transformation of context (upper) and paraset
(lower) embedding space for instances of the word commit.
Different senses of the word are denoted with different sym-
bols. Example instances corresponding to the same sense are
closer in the paraset space (2) than in context space (1).

(above) and gold paraset similarity (below). The paraset sim-
ilarity separates the senses more clearly, in particular mov-
ing outliers further towards their sense centers. Two such
instances of the first sense of commit (“perform an act”) are
shown in Table 4: since commit is used here as a light verb
(“commit perjury, commit sin”), the lexical contexts have lit-
tle in common. In contrast, the lexical substitutes bring out
the shared meaning component of executing an action.

6.3 Mixing Predicted and Manual Substitutes

Our final question is how much better lexical substitution
systems (and their substitutes) need to become for their per-
formance to converge towards the ceiling performance we

Instance 1 (commit.v.40)

Well if, if he was using steroids during his testimony or prior to
his testimony, obviously he has committed perjury and has tried to
mislead the Congress in a – in an ongoing investigation.

Gold substitutes: perpetrated, executed, exerted, done, performed,
carried out

Instance 2 (commit.v.57)

Yet some people are advancing a chilling casuistry: that what we
are seeing is somehow the understandable result of the historical
sins committed by the Turks in the 16th century.

Gold substitutes: carried out, conducted, made, done, performed

Table 4: A pair of instances for WordNet sense 1 (“perform
an act”) of the verb commit. These instances correspond to
the ones on Figure 1.

established above. To this end, we performed another evalu-
ation on our 20-word dataset sample. We draw predictions
from the best-performing model from Section 5, i.e., Ta-
ble 2, namely AUTOLS+CTX (+WN prior), and the human-
produced substitutes from Section 6. For each instance, we
start off with an empty set and randomly fill it up with r%
of human-produced substitutes and (100 − r)% of system-
produced ones, with 100% corresponding to the cardinal-
ity of the complete human-produced paraset for that in-
stance. To obtain robust performance estimates, we repeat
this procedure 30 times and average the scores for each ratio
r ∈ {0, 10, 20, . . . , 100}.

The performance curves are shown in Figure 2. We ob-
serve a linear improvement in unsupervised WSI scores with
the increase of human-produced substitute ratio. As the per-
formance curves do not plateau out, we conclude that the
lexical substitution models should improve quite a bit before
we can rely solely on their substitutes for WSI.

7 Discussion and Conclusion

Lexical substitution and word sense induction offer two per-
spective on word senses that can complement each other –
not only conceptually, but, according to our results, also em-
pirically. Still, these perspectives are rarely brought together
in the literature. In this paper, we presented a clustering-
based model for word sense induction that follows this in-
tuition and leverages the information found in lexical sub-
stitutes, even if they are noisy substitutes predicted by
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Figure 2: Model performance for different ratios of human-
provided and automatically predicted lexical substitutes
(1.0 = GOLDLS+CTX (+WN prior)).

automatic methods. In our experiments on the standard
SEMEVAL-2010 dataset, we found that our method can con-
siderably outperform models that consider only the context
of the occurrences to be clustered, using an extremely simple
clustering approach. Further, both kinds of representations
can be combined for even better results. Evidently, compu-
tational models of lexical substitution pick up information
that it not easily accessible in a standard bag-of-words rep-
resentation. Whether this effect is more akin to context fea-
ture selection or to a smoothing effect brought about by the
substitutes remains to be explored.

We also explored the trade-off between automatically pre-
dicted and human-provided substitutes for word sense in-
duction on a small manually annotated dataset, which we
make freely available. We established that the ceiling per-
formance for using manual substitutes is still considerably
higher, which raises the prospect that future improvements
in lexical substitution models could also further improve
word sense induction.

In this study, we have only used lexical substitutes in word
sense induction, but not vice versa. In future work, we will
explore whether the clusters found by word sense induction
can also help lexical substitution systems, for example by
giving them a prior that two instances should or should not
be assigned similar substitutes. Further along these lines, we
would expect that a joint model of word sense induction and
lexical substitution should be able to bring both conceptual
perspectives together and further increase the quality and
precision of word sense modeling, a longstanding desider-
atum in the natural language processing community.

8 Acknowledgements

We would like to thank the four annotators that annotated
our data. We would also like to thank the reviewers for their
insightful comments. This work has been fully supported
by the Croatian Science Foundation under the project UIP-
2014-09-7312. Sebastian Padó acknowledges support by the
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