
Multi-Task Learning for Parsing the
Alexa Meaning Representation Language

Vittorio Perera
Carnegie Mellon

University
vdperera@cs.cmu.edu

Tagyoung Chung
Amazon Inc.

tagyoung@amazon.com

Thomas Kollar
Amazon Inc.

kollart@amazon.com

Emma Strubell
University of

Massachusetts Amherst
strubell@cs.umass.edu

Abstract

The Alexa Meaning Representation Language (AMRL) is a
compositional graph-based semantic representation that in-
cludes fine-grained types, properties, actions, and roles and
can represent a wide variety of spoken language. AMRL in-
creases the ability of virtual assistants to represent more com-
plex requests, including logical and conditional statements
as well as ones with nested clauses. Due to this representa-
tional capacity, the acquisition of large scale data resources
is challenging, which limits the accuracy of resulting models.
This paper has two primary contributions. The first contribu-
tion is a linearization of the AMRL parses that aligns it to a
related task of spoken language understanding (SLU) and a
deep neural network architecture that uses multi-task learning
to predict AMRL fine-grained types, properties and intents.
The second contribution is a deep neural network architecture
that leverages embeddings from the large-scale data resources
that are available for SLU. When combined, these contribu-
tions enable the training of accurate models of AMRL parsing,
even in the presence of data sparsity. The proposed models,
which use the linearized AMRL parse, multi-task learning,
residual connections and embeddings from SLU, decrease the
error rates in the prediction of the full AMRL parse by 3.56%
absolute.

Introduction

As intelligent assistants become more open and connected,
there is a need to expand their capacity to understand task-
oriented language. Expanding this capacity requires a repre-
sentation that can handle many forms of spoken language and
models that can predict this representation. This paper uses a
new representation that can support a wide variety of spoken
language called the Alexa Meaning Representation Language
(AMRL). AMRL is a compositional, graph-based semantic
representation that is backed by a large-scale ontology. An
AMRL parse contains actions, fine-grained types, properties,
and verb roles (as in Figure 1). AMRL provides the represen-
tational capacity to not only understand simple requests to a
virtual assistant, but also complex logical, conditional, and
nested statements.

An alternative representation to AMRL are those used for
spoken language understanding (SLU), which categorize re-
quests into domains, intents and slots (Figure 2). A domain

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

“play ray of light by madonna”

Figure 1: Meaning representation of a sentence using AMRL.

“play ray of light by madonna”

Domain: MusicApp
Intent: ListenMediaIntent
Slots: play [ray of light]Song by [madonna]Singer

Figure 2: Example of the spoken language understanding
(SLU) representation.

is a general category for a request (e.g., music, calendar), an
intent is an action within that domain (e.g., play, search) and
slots are mentions within the utterance (e.g., “ray of light” is
the song to be played). By factoring the problem this way,
each SLU domain may have its own unique set of intents
and slots. In contrast, AMRL provides a common seman-
tic representation for spoken language (Figure 3). There are
three primary benefits to this common representation. The
first benefit is that intents and slots that have the same mean-
ing have the same labels. For example, “order me an echo
dot” and “Alexa, order me a taxi” fall into distinct domains
(e.g., shopping and taxi), resulting in distinct intents for each
domain (e.g., OrderProduct and OrderTaxi). The fact that re-
quests such as these, which have a similar surface form, can
appear in different domains also makes it challenging to add
new features without degrading SLU accuracy. The second
benefit of AMRL is that cross-domain utterances are directly
supported. For example, “find me a restaurant near the shark
game” would belong to both the SLU local search and the

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5390

(a) Cross-domain (b) Sequential (multiple actions)

Figure 3: (a) is the AMRL for “find restaurants near the sharks game.”. (b) is the AMRL for “play charlie brown and turn the
volume up to 10”. There are two actions that AMRL could handle with a sequential operator. These requests are challenging to
handle using the current domain-based SLU representation.

“play ray of light by madonna’

Properties: play [ray of light]object.name by
[madonna]object.byArtist.name

Entities: play [ray of light]name@MusicRecording by
[madonna]name@Musician

Intents: PlaybackAction object@MusicRecording

Figure 4: Linearized annotation for AMRL.

sports domains. The third benefit is that more complex re-
quests can be supported. For example, “play hunger games
and turn the lights down to 3” is not easily supported existing
SLU representation since it involves multiple domains and
must also support sequential actions.

This paper presents models that can predict AMRL given
a natural language utterance. In order to address the limited
availability of AMRL data, a simple linearization scheme
has been developed (Figure 4). The linearized AMRL format
factors into three components: intents, types, and properties,
which are predicted using a deep neural network architecture
that is trained using multi-task learning. Each layer of the
model predicts a component of the linearized AMRL repre-
sentation. By ordering these tasks from coarse to fine, each
subsequent layer is able to reuse representations from previ-
ous layers. The simplest model consists of a word-embedding
layer and three bi-directional LSTM layers, residual connec-
tions, and a custom decoder to improve accuracy (He et al.
2017).

In addition to linearizing the AMRL parse graphs, we also
leverage embeddings trained from the much larger datasets
that are available for SLU. As a comparison, the linearized
AMRL corpus consisted of 300k examples, while the SLU
corpus consisted of around 3 million examples. To leverage
these datasets, new layers for intents and slots were added
to our DNN models, and were trained as new tasks using
multi-task learning. Slot embeddings are found to produce
a 2.6% improvement in IRER (full-parse accuracy), while
domain embeddings improve the accuracy by another 0.1%
IRER. An additional 1% IRER improvement is obtained by
using a custom decoder that leverages span-based IOB and
ontological constraints. Our proposed model even decreases
the full-parse error rate by 1.5% IRER when compared to a

baseline model that has access to additional inputs, such as
gazetteers and general-purpose word embeddings. The rest of
this document is organized as follows, we review the related
work, introduce the AMRL and SLU representations, the
baseline and proposed models, a custom decoder and results.

Related Work

The Alexa ontology is a version of schema.org (Guha, Brick-
ley, and Macbeth 2016) that has been adapted for spoken lan-
guage understanding. The Alexa Ontology is used as a basis
for the Alexa Meaning Representation Language. Some al-
ternative semantic representations include FrameNet (Baker,
Fillmore, and Lowe 1998), which is a semantic representa-
tion that represents an utterance, along with verb roles. Other
approaches have a representation similar to AMRL including
lambda-DCS (Liang 2013) and combinatory categorial gram-
mars (CCG) (Steedman and Baldridge 2011). AMR is a rep-
resentation that has a hierarchical graph-based approach that
is well-suited for longer texts (Banarescu and others 2013;
Kevin Knight 2017). Other approaches focus more on syntax
than semantics, such as universal dependencies (Nivre and
others 2016). Unlike these approaches, AMRL focuses on
directly supporting spoken language understanding and con-
tains fine-grained types along with actions, verb roles, and
properties. An overview of other semantic representations is
covered in (Abend and Rappoport 2017).

DNNs are widely used for sequence labeling. (Shimaoka et
al. 2016) perform fine-grained entity labeling using a neural
attention model. (Dong et al. 2015) use a combination of
NNs to embed words and entities for coarse-grained entity
labeling. More recently, two types of network architectures
have gained popularity. The first one is LSTM-CNNs (Chiu
and Nichols 2015), which use a combination of word-level
and CNN-extracted character-level features to augment the
input to bi-LSTMs. The second one is LSTM-CRFs (Huang,
Xu, and Yu 2015), which apply a CRF constraints to bi-
LSTMs. Recently, (Ma and Hovy 2016) combined the two
approaches to get the state of the art results on standard
CONLL 2003 NER task.

LSTMs (Long Short Term Memory) (Hochreiter and
Schmidhuber 1997) perform well on many NLP tasks in-
cluding sequence tagging, intent classification, and language
modeling due to their inherent ability to model long term
sequential dependencies. Bi-LSTMs (Graves, rahman Mo-

5391

hamed, and Hinton 2013) are layered architectures which
effectively use past and future information via Forward and
Backward LSTM layers. Bi-LSTMs have been successfully
applied to feature generation for tasks like dependency pars-
ing (Kiperwasser and Goldberg 2016) and semantic role la-
beling (Zhou and Xu 2015). All our models adopt a deep
neural-network architecture with Bi-LSTMs as our primary
building blocks. For text classification, there has been a lot of
recent interest in using character-level embeddings (Kim et al.
2015) as an additional input to neural architectures because
of their ability to model morphological features as well as ef-
fectively handle out-of-vocabulary words. (Ballesteros, Dyer,
and Smith 2015) use character embedding for dependency
parsing, (Xiao and Cho 2016) combine character embeddings
with CNNs for the text classification task.

Semantic parsing and spoken language understanding
(SLU) learn to map natural language to a formal represen-
tation. Although semantic parsers can be trained using sen-
tences annotated with this formal representation (Zelle and
Mooney 1996; Zettlemoyer and Collins 2012; Wong and
Mooney 2006; Kwiatkowski et al. 2010; Krishnamurthy and
Mitchell 2012), they have not generally been used directly
for spoken language. Most applications of spoken language
understanding maps utterances onto a fixed domain, intent,
and slot structure (Gupta et al. 2006). It cannot generally rep-
resent complex, cross-domain, or compositional utterances.

Multitask learning in deep neural networks has been shown
to help generalization. Similar to our work but with CNNs
(Xu and Sarikaya 2013) jointly model sentence classification
and sequence labeling. (Guo et al. 2014) use recursive neural
networks to jointly classify intents and fill slots. (Miwa and
Bansal 2016) achieved state of the art for entity and relation
classification. (Zhang and Weiss 2016) used them for part
of speech tagging and dependency parsing. Transferring of
learned embeddings was explored in in (Yosinski et al. 2014).
Our work builds on these by creating a deep multi-task model
for predicting a meaning representation for spoken language.

Approach

In this section we describe the Alexa meaning representation
language (AMRL), our deep multi-task model, mechanisms
for learning representations for spoken language understand-
ing (SLU) and transferring those representations to improve
AMRL parsing.

Alexa Meaning Representation Language

AMRL provides a common semantics for natural language
understanding for voice applications. An AMRL parse con-
sists of five primary components:
• Actions define the core functionality used for spoken lan-

guage understanding. In Figure 1, the PlaybackAction is
used on a MusicRecording, but can also be used on Books,
Videos and other playable objects.

• Roles Actions operate on entities via roles. The .object
role defines the entity on which the action operates.

• Types apply to each entity mention in a request and are
hierarchical. In Figure 1, there is a MusicRecording and
Musician type.

• Properties define relationships between variables of a
given type. For example, the “byArtist” property of a Mu-
sicRecording, defines who wrote a song.

• Operators Operators can be used to represent complex
logical or spatial relationships.

The aim of AMRL is to provide a common semantic rep-
resentation for spoken language. It can represent anaphora,
conditional statements, sequential actions, and logical expres-
sions. AMRL can have arbitrary nesting, enabling it to repre-
sent complex statements. Figure 1 shows a simple example
of AMRL. Figure 3 shows how sequential and cross-domain
queries can be represented in AMRL.

In this paper, we investigate linearization as a means to
address the data sparsity of annotated AMRL examples. Lin-
earization is a common method to simplify syntactic (Vinyals
et al. 2015), CCG (e.g., via supertagging) (Lewis, Lee, and
Zettlemoyer 2016), and AMR parsing (Peng et al. 2017). The
linearization addresses data sparsity in two primary ways.
First, we use a linearization scheme similar to one that has
been shown to improve parse accuracy for AMR parsing on
similar size datasets (Peng et al. 2017). Secondly, we use
a representation that aligns to the spoken language under-
standing problem, aligning these slots and intents with those
used in AMRL parsing. This alignment should improve the
alignment of embeddings from the SLU domain.

An example of the linearization scheme for AMRL can
be seen in Figure 4. AMRL is a rooted graph. Starting at the
root, the property linearization recursively descends to a leaf,
appending each property visited along the way until a leaf
node is reached. Incoming property arcs to a visited node
are inverted to avoid cycles and handle multi-headed graphs.
Types of the leaf nodes are the only ones that appear in the
linearization. When a leaf node is visited, the corresponding
property is included in the linearization (e.g., one of “type,”
“value” or “name”). Intents include action, the roles on the
action (e.g., “object”), and the type of each of the roles. This
linearization enables the AMRL to be formulated as a se-
quential prediction problem, factoring into three components:
intents, types, and properties as in Figure 4.

Models

AMRL parsing use multi-task learning to jointly learn tasks
of predicting the SLU or AMRL representations. In this sec-
tion we first describe the baseline model used in our experi-
ments. Then we describe models that leverage representations
from spoken language understanding. Compared to models
trained separately for each of the tasks, multi-task models
allow us to exploit commonalities between tasks (Caruana
1998) such as overlapping spans between AMRL types and
properties.

Baseline model The baseline model is a deep bi-directional
LSTM neural network trained using multi-task learning.
There are three LSTM layers, each of which predicts a dif-
ferent component of the parse. The first layer performs type
prediction, the next layer performs property prediction and
the final layer performs intent classification. This structures
the problem as a coarse-to-fine prediction problem. The types

5392

Figure 5: Topology of the baseline multi-task DNN model.
Each component (above) is a bi-LSTM layer. The final layer
is a softmax, and the dashed line is the recurrent connection.
“type” and “prop” perform sequential prediction, while “int”
categorizes the intent of the user.

are predicted at a coarse-grained level, after which the fine-
grained properties and the actions are predicted. Residual
connections are included to leverage embeddings from previ-
ous stages. For example, the word embeddings are used as
input to the LSTM layers predicting the properties and the
actions. Figure 5 shows the topology of this model.

Each block in Figure 5 is a bi-directional LSTM, which
is used for both sequential prediction and classification. At
the output layers, we form a prediction by feeding the con-
catenated hidden representations for the token we wish to
label into another affine transform followed by a softmax to
obtain posterior probabilities over the set of labels. Dropout
is applied after each LSTM layer. For classification, only the
final state from the forward and backward LSTM is used to
predict the category.

The first layer provides a shared word embedding (Col-
lobert and Weston 2008), while the remaining three LSTM
layers are connected to an affine transform and a softmax
layer to provide the output for each of the three tasks (i.e.,
properties, type, and intent prediction). IOB tagging is used
to denote the inside, outside, and beginning of each property
and type span. The input of this baseline model is a one-hot
vector for each word in the sentence.

Transferring learned representations There are four pri-
mary modeling architectures that have been used to add em-
bedding layers for domains, intents and slots. These archi-
tectures use domain and slot embeddings from the SLU task.
Intent embeddings from the SLU task were added to initial
models, but did not result significant performance gains.

The first two model architectures leverage embeddings
from SLU slots. We investigate this first because we expect
that SLU slots and AMRL types will often be correlated in
terms of the spans and semantics. We expect that a shared rep-
resentation that leverages this correlation is likely to improve
the overall parse accuracy.

Two architectures that leverage a common embedding
layer either in parallel or in serial to the AMRL type-
prediction task. The parallel model (+SLU Slots), includes
a separate SLU slot-prediction task in parallel to the AMRL
type-prediction task resulting in a common word embedding
layer. The resulting model can be seen in Figure 6a. The

serial model (+SLU Slots pipe) predicts the SLU slots before
predicting the AMRL types, leveraging the embedding from
the SLU task to directly predict the later stages of AMRL.
This model can be seen in Figure 6b.

The remaining two modeling architectures leverage both
domain and slot embeddings. The domain of a query is a
strong indicator on the entities and their relationships. For
example, if an utterance is from the “Music” domain, then it
is likely include, for example, artists and songs, as well as
certain relationships between the entities (e.g., “xxo” is by the
artist “Coldplay”). As such, the remaining two architectures
incorporate domain embeddings as input to the AMRL types
and property layers. In both models, we only investigate serial
embeddings for the SLU slots since they were found to be
better than the parallel architecture in early experiments.

In the third model architecture (+SLU Slots/Domain), the
domain layer is trained as a task in parallel to the AMRL
type layer and is input to the property layer. The rationale
behind this choice is that, although domain and property
prediction are very different tasks, the domain, when correctly
classified, can restrict what kind of properties we expect (e.g.,
if a sentence is classified in the Music domain we expect
properties such as byArtist but not weatherCondition). There
is still a shared embedding space learned as input to the
type model. This model (+SLU Slots/Domain) is shown in
Figure 6c.

The final model architecture (+SLU Slots/Domain pipe),
a common LSTM embedding layer is trained for SLU slots
and domains. This layer is input to the layer that predicts
the AMRL types. The hypothesis is that a single LSTM em-
bedding layer might be enough to encode all the information
from the SLU representation. Figure 6d shows the topology
for this network.

Word embeddings and gazetteers We add to the input
feature of our baseline pre-trained word embedding vectors
and gazetteers. We use three hundred dimensional pre-trained
word2vec embeddings, trained on the Google News corpus
on 100 billion utterances (Mikolov et al. 2013) and we incor-
porate them as an additional input to the one-hot encoding
of each word. Gazetteers (lists of entity mentions) from the
Alexa ontology that backs AMRL were used in a similar way
to word embeddings (e.g., as an additional input per word).
For example, a Musician gazetteer will contain a list of music
of musician names like “Sting.” These features are indicators
that are set to 1 if the current word or word sequence appears
in a gazetteer, and set to 0 otherwise. This model uses the
same topology of the baseline, shown in Figure 5.

Decoding A beam-search decoder was written to leverage
two primary constraints of this model in order to improve the
accuracy of the result. The first constraint is to ensure the se-
quence of labels obey the IOB constraints. These constraints
include (1) that an I− tag follows either another I− tag or a
B− tag with the same label, and (2) a B− tag follows only an
O− or an I− tag. The second constraint ensures that the final
property label (e.g., name, type, or value) matches the initial
property label, which ensures that we produce predictions
consistent with the AMRL ontology. For example, in Figure 4,
if “ray of light” were predicted as “type@MusicRecording”

5393

(a) Topology of the +SLU Slots model. (c) Topology of the +SLU Slots/Domain model

(b) Topology of the +SLU Slots Pipe model (d) Topology of the +SLU Slots/Domain Pipe model

Figure 6: Multi-task models used for training AMRL models alongside slot and domain embeddings from the existing SLU
system. Highlighted in blue the bi-LSTM layers added compared to the baseline model.

but as a property was predicted at “object.name,” then this
would be an invalid transition. The beam search limits prop-
erty candidates to those that are above minimum probability.
The value of the lower bound probability determines how
aggressive the pruning is. The search is performed over the
combination of properties and types created by combining
the property candidates with all the possible matching types.

Optimization We optimized the parameters in two ways.
In the first we fine-tuned pretrained embeddings for domain
and slots. In the second, we performed joint training, learning
the SLU embedding layers at the same time as the AMRL
ones. Each model is trained until it fully converges on the
training set, typically this takes around 60 epochs. We use
a fixed learning rate of 0.0005 with an L2 penalty of 1e-
8, and a batch size of 128 sentences each. The output of
each bi-LSTM layer is a vector of size 256 that is created
by concatenating the hidden representation of forward and
backward LSTMs (each of size 128).

To prevent overfitting to our training set we take two mea-
sures. First we connect the output of each bi-LSTM layer to
a drop-out component with retention rate of 80%.The output
of the drop-out component is then used as input for the fol-
lowing layers. Second we use weighted cross-entropy loss
functions with a weight of λ when joint training (see below).
We evaluate our accuracy on the development set to show

generalization performance.

Datasets

The two datasets used in these experiments are (1) a large
corpus collected for spoken language understanding (SLU)
and (2) a smaller corpus of linearized AMRL parses. The
SLU corpus is composed by a total of ∼2.8m unique sen-
tences. These sentences span on the order of 20 domains, 200
intents, and 200 slots. The vocabulary of this dataset amounts
to ∼150k distinct words. The representation for this corpus is
shown in Figure 2. The AMRL corpus is significantly smaller
then the SLU corpus and contains only around 350k unique
sentences in the linearized representation. This data consists
of intents, types and properties. Figure 4 shows an example
of the annotation for the same sentence shown in Figure 1.
The AMRL corpus spans over 60 linearized intents, 200 prop-
erties and 200 types. The total vocabulary of this corpus is
around 42k words, one order of magnitude smaller then the
SLU one. The development set and test set contain around
48k sentences annotated using AMRL. Accuracy is reported
only on the AMRL test set.

Metrics

Four metrics are considered to evaluate our models. The first
two, F1IC , F1SC , are F1 scores evaluated respectively at

5394

Models F1IC F1SC ICER IRER

Baseline 0.9383 0.8439 6.4464 25.7176
+SLU Slots 0.9416 0.8551 6.1254 24.2876
+SLU Slots (jt) 0.9389 0.8449 6.4587 25.6867
+SLU Slots pipe 0.9432 0.8602 5.8867 23.1312
+SLU Slots pipe (jt) 0.9390 0.8456 6.3311 25.3534
+SLU Slots/Domain 0.9431 0.8614 5.9649 23.0222

+SLU Slots/Domain (jt) 0.9435 0.8621 6.0204 23.1147
+SLU Slots/Domain pipe 0.9351 0.8232 6.8270 29.9418
+SLU Slots/Domain pipe (jt) 0.9400 0.8538 6.1789 24.4501

Table 1: Models and their results. Models marked as (jt) are trained using the joint training approach.

intent and slot level. F1SC is a strong metric, as it requires
the spans and labels for both the property and the type tasks
to be correct.

The Intent Classification Error Rate (ICER) is inversely
correlated with the F1IC and measures the number of incor-
rect intents. ICER is not always sufficient as there may be
multiple intents in an utterance. The formula for ICER is:

#incorrect(intents)
#total intents

Finally, the Intent Recognition Error rate (IRER) is com-
puted as:

#incorrect(interpretation)
#total utterances

where we consider an interpretation incorrect if any of the
slots or intents differs from the ground truth.

Results

Table 1 shows the results for different model architectures.
The baseline model was trained using only the AMRL cor-
pus. The vocabulary was pruned and only words appearing
twice or more are used. Every other word is mapped to an
“unknown” token resulting in a vocabulary of ∼25k words.
From these results it appears that using SLU tasks clearly pro-
vides benefit when training AMRL models; our best model
(+SLU Slots/Domain) outperforms the baseline across all the
metrics and some by a considerable margin.

We also compared fine-tuning pretraining embeddings and
joint training (learning the SLU embedding layers at the same
time as the other embeddings). For pretraining, we train a
network to predict the SLU tasks; once converged the AMRL-
specific components (i.e., the last three LSTM layers of each
model) are added and trained until convergence using a cross-
entropy loss. Joint training optimizes both SLU tasks and
AMRL ones at the same time. At each time-step a random
training instance is selected from one of the two corpora
with probability (p = |AMRL|/|SLU |). Since the size of
the SLU corpus is much bigger then the AMRL one, we
need to prevent overfitting on the SLU tasks. To do so we
used weighted cross entropy loss functions where the SLU
tasks were down-weighted by a factor λ = |AMRL|/(10×
|SLU |).

We see a slight improvement in accuracy of the models
that use joint training, though there are no conclusive results.

For the first two models pretraining appears to result in higher
accuracy but for the remaining two the opposite seems to hold
true. One possible explanation for this behavior is the use
of cross entropy loss function in conjunction with the joint
training approach. In our experiments we fixed the weight
for the loss function but additional hyper-parameter tuning
might improve the overall result.

We also compared the accuracy of the baseline and our best
performing model across different actions. Figure 7 shows
that our dataset is skewed, with two of the actions (Playback
and Search) covering more then 97% of the total training
instances; the remaining 15 actions have an almost uniform
amount of sentences. Table 2 shows the gain in ICER for
each action. We observe how the improvement is modest on
the two most represented actions but much more pronounced
on the less represented ones. In general, we find that when
there is sufficient data available (i.e., for the Playback and
Search actions) adding more information from the SLU task
is not very helpful. On the other hand, when fewer train-
ing instances are available the information provided by the
SLU tasks becomes very valuable and strongly improves the
results.

In Table 3, we evaluate the best models against those
trained with word embeddings and gazetteers. The baseline

Figure 7: Action distribution on the training and testing set
for the AMRL corpus.

5395

Actions Training instances Δ ICER

PlaybackAction HIGH -0.53
SearchAction MED -0.17

NextAction LOW -3.34
ResumeAction LOW -10.81
BrowseAction LOW +5.88

StopAction LOW -1.93
CreateAction LOW 0
RepeatAction VLOW +3.13

PreviousAction VLOW -23.23
CheckAction VLOW -5.08

DislikeAction VLOW -1.96
PauseAction VLOW -11.86

NavigateAction VLOW -5.12
LikeAction VLOW -6.94

RestartAction VLOW 0

Table 2: Δ at ICER. The HIGH bin contains more than 100k
examples. The MED bin contains between 2k and 100k exam-
ples. The LOW bin contains between 800 and 2k examples.
The VLOW bin contains between 100 and 800 examples.
The actions are ordered, in decreasing fashion, based on the
number of occurrences in the AMRL training set.

model, which only has access only to the AMRL training
dataset has lowest accuracy. Adding gazetteer and word em-
beddings improves accuracy, though the best model is the
one that transfers the learned representations from the SLU
task (proposed model from Table 1). Incorporating the addi-
tional constraints in the decoder (e.g., IOB and final property)
results in our best model. For these experiments, we used a
decoder with a beam of size 3 and a minimum probability
of 10−7. As expected the decoder does not impact any of
the intent metrics (F1IC and ICER). The structurally incor-
rectness of the predicted outputs is upper bounded by 0.96%
IRER using our proposed model with the custom decoder.

Conclusion

AMRL is a new graph-based representation for the meaning
of a sentence. Since annotating AMRL is time consuming
and costly, only a limited amount of data is available. In this
paper we show that learned embeddings from related tasks
can improve the accuracy of AMRL models. Domain and
slot embeddings help significantly, improving the accuracy
by 3.56% IRER (full-parse accuracy). A constrained decoder
that leverages IOB and type/property constraints is a key com-
ponent, decreasing IRER by 1% absolute. Although training
time is a limiting factor, we would also like to explore the
use of a CRF output layer to encode some of the decoding
constraints.

References

Abend, O., and Rappoport, A. 2017. The state of the art in
semantic representation. In Proc. of ACL.
Baker, C. F.; Fillmore, C. J.; and Lowe, J. B. 1998. The
berkeley framenet project. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics

F1IC F1SC IRER

baseline 0.93 0.84 25.71
baseline+emd+gaz 0.94 0.86 23.65

proposed model 0.94 0.86 23.11
proposed model+decoder 0.94 0.87 22.15

Table 3: Results as compared to various baselines. Baseline
is the multi-task model trained only on AMRL data. Base-
line+emb+gaz is the baseline model with word embedding
and gazetteer features as input to the model. Proposed model
is the best model without word embeddings or gazetteer fea-
tures. Proposed model+decoder includes results after decod-
ing of the best model (without gazetteers or word embeddings
as input). Beam size is three and a floor probability of 10−7

is used.

and 17th International Conference on Computational Lin-
guistics - Volume 1, ACL ’98, 86–90. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Ballesteros, M.; Dyer, C.; and Smith, N. A. 2015. Improved
transition-based parsing by modeling characters instead of
words with lstms. arXiv preprint arXiv:1508.00657.
Banarescu, L., et al. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic Annota-
tion Workshop and Interoperability with Discourse, 178–186.
Sofia, Bulgaria: Association for Computational Linguistics.
Caruana, R. 1998. Multitask learning. In Learning to learn.
Springer. 95–133.
Chiu, J. P., and Nichols, E. 2015. Named entity
recognition with bidirectional lstm-cnns. arXiv preprint
arXiv:1511.08308.
Collobert, R., and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167. ACM.
Dong, L.; Wei, F.; Sun, H.; Zhou, M.; and Xu, K. 2015. A
hybrid neural model for type classification of entity men-
tions. In Proceedings of the 24th International Conference
on Artificial Intelligence, 1243–1249. AAAI Press.
Graves, A.; rahman Mohamed, A.; and Hinton, G. 2013.
Speech recognition with deep recurrent neural networks. In
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).
Guha, R. V.; Brickley, D.; and Macbeth, S. 2016. Schema.org:
Evolution of structured data on the web. Commun. ACM
59(2):44–51.
Guo, D.; Tur, G.; Yih, W.-t.; and Zweig, G. 2014. Joint se-
mantic utterance classification and slot filling with recursive
neural networks. In Spoken Language Technology Workshop
(SLT), 2014 IEEE, 554–559. IEEE.
Gupta, N.; Tur, G.; Hakkani-Tur, D.; Bangalore, S.; Riccardi,
G.; and Gilbert, M. 2006. The at&t spoken language under-
standing system. IEEE Transactions on Audio, Speech, and
Language Processing 14(1):213–222.
He, L.; Lee, K.; Lewis, M.; and Zettlemoyer, L. 2017. Deep

5396

semantic role labeling: What works and whats next. In Pro-
ceedings of the Annual Meeting of the Association for Com-
putational Linguistics.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional
lstm-crf models for sequence tagging. In arXiv preprint
arXiv:1508.01991.
Kevin Knight, Bianca Badarau, L. B. C. B. M. B. K. G.
U. H. D. M. M. P. T. O. N. S. 2017. Abstract meaning
representation (amr) annotation release 2.0.
Kim, Y.; Jernite, Y.; Sontag, D.; and Rush, A. M. 2015.
Character-aware neural language models. arXiv preprint
arXiv:1508.06615.
Kiperwasser, E., and Goldberg, Y. 2016. Simple and accurate
dependency parsing using bidirectional lstm feature represen-
tations. Transactions of the Association for Computational
Linguistics (TACL) (4):313327.
Krishnamurthy, J., and Mitchell, T. M. 2012. Weakly super-
vised training of semantic parsers. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning,
754–765. Association for Computational Linguistics.
Kwiatkowski, T.; Zettlemoyer, L.; Goldwater, S.; and Steed-
man, M. 2010. Inducing probabilistic ccg grammars from
logical form with higher-order unification. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’10, 1223–1233. Stroudsburg,
PA, USA: Association for Computational Linguistics.
Lewis, M.; Lee, K.; and Zettlemoyer, L. 2016. Lstm ccg
parsing. In HLT-NAACL, 221–231.
Liang, P. 2013. Lambda dependency-based compositional
semantics. CoRR abs/1309.4408.
Ma, X., and Hovy, E. 2016. End-to-end sequence la-
beling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Miwa, M., and Bansal, M. 2016. End-to-end relation ex-
traction using lstms on sequences and tree structures. arXiv
preprint arXiv:1601.00770.
Nivre, J., et al. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Chair), N. C. C.; Choukri,
K.; Declerck, T.; Goggi, S.; Grobelnik, M.; Maegaard, B.;
Mariani, J.; Mazo, H.; Moreno, A.; Odijk, J.; and Piperidis,
S., eds., Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016). Paris,
France: European Language Resources Association (ELRA).
Peng, X.; Wang, C.; Gildea, D.; and Xue, N. 2017. Ad-
dressing the data sparsity issue in neural amr parsing. arXiv
preprint arXiv:1702.05053.
Shimaoka, S.; Stenetorp, P.; Inui, K.; and Riedel, S. 2016.
Neural architectures for fine-grained entity type classification.
arXiv preprint arXiv:1606.01341.

Steedman, M., and Baldridge, J. 2011. Combinatory Catego-
rial Grammar. Wiley-Blackwell. 181–224.
Vinyals, O.; Kaiser, Ł.; Koo, T.; Petrov, S.; Sutskever, I.;
and Hinton, G. 2015. Grammar as a foreign language. In
Advances in Neural Information Processing Systems, 2773–
2781.
Wong, Y. W., and Mooney, R. J. 2006. Learning for semantic
parsing with statistical machine translation. In Proceedings
of the main conference on Human Language Technology
Conference of the North American Chapter of the Associa-
tion of Computational Linguistics, 439–446. Association for
Computational Linguistics.
Xiao, Y., and Cho, K. 2016. Efficient character-level docu-
ment classification by combining convolution and recurrent
layers. arXiv preprint arXiv:1602.00367.
Xu, P., and Sarikaya, R. 2013. Convolutional neural network
based triangular crf for joint intent detection and slot filling.
In Automatic Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop on, 78–83. IEEE.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Advances in neural information processing systems, 3320–
3328.
Zelle, J. M., and Mooney, R. J. 1996. Learning to parse
database queries using inductive logic programming. In Pro-
ceedings of the national conference on artificial intelligence,
1050–1055.
Zettlemoyer, L. S., and Collins, M. 2012. Learning to
map sentences to logical form: Structured classification
with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420.
Zhang, Y., and Weiss, D. 2016. Stack-propagation: Im-
proved representation learning for syntax. arXiv preprint
arXiv:1603.06598.
Zhou, J., and Xu, W. 2015. End-to-end learning of semantic
role labeling using recurrent neural networks. In Transactions
of the Association for Computational Linguistics (TACL).

5397

