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Abstract

Aspect-level sentiment classification aims at detecting the
sentiment expressed towards a particular target in a sentence.
Based on the observation that the sentiment polarity is often
related to specific spans in the given sentence, it is possible to
make use of such information for better classification. On the
other hand, such information can also serve as justifications
associated with the predictions. We propose a segmentation
attention based LSTM model which can effectively capture
the structural dependencies between the target and the sen-
timent expressions with a linear-chain conditional random
field (CRF) layer. The model simulates human’s process of
inferring sentiment information when reading: when given a
target, humans tend to search for surrounding relevant text
spans in the sentence before making an informed decision on
the underlying sentiment information. We perform sentiment
classification tasks on publicly available datasets on online re-
views across different languages from SemEval tasks and so-
cial comments from Twitter. Extensive experiments show that
our model achieves the state-of-the-art performance while ex-
tracting interpretable sentiment expressions.

Introduction

Aspect-level sentiment analysis (Pang, Lee, and others 2008;
Liu 2012) has been popular recently both in academic com-
munities and industry since it allows the detailed examina-
tion of the user-generated text. Several subtasks are defined
to achieve this goal, e.g., extraction of opinion targets, de-
tection of aspect categories, and targeted sentiment classi-
fication (Pontiki et al. 2014). Aspect-level sentiment classi-
fication is one of these subtasks that aims at detecting the
sentiment expressed towards a particular target appearing in
a given sentence. Regarding such a task as a simple sen-
timent classification problem at the sentence level (Socher
et al. 2013) is undesirable since different targets in the same
sentence may have different sentiment information. Figure 1
shows a concrete example. One key observation that we can
make here is that typically there is always one or more opin-
ion expressions that contribute to the sentiment of the target.
Unlike the joint models (Li et al. 2010; Zhao et al. 2010;
Wang et al. 2016a) which extract the opinion terms explic-
itly, attention-based models (Wang et al. 2016b) regard the
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Figure 1: An example of a review with two target terms
which have different sentiments. The opinions are high-
lighted with a box and point to their corresponding targets.

opinions as latent variables and learns to focus on different
parts of the sentence given a particular target. However, stan-
dard attention mechanism does not model structural depen-
dencies that exist in sentences. For example, as we can see
from the example given in Figure 1, the opinion expression
associated with a target may be in the form of a chunk or a
linear span structure. In general, the opinion expressions can
consist of multiple spans of texts. Accurately modeling and
extracting such structural information can be extremely cru-
cial especially when the sentences contain multiple targets.

Therefore, we propose a model to capture such structural
information so that corresponding opinions can be identified
to facilitate the sentiment classification. Specifically, we in-
corporate a layer that is analogous to conditional random
field (CRF) (Lafferty, McCallum, and Pereira 2001) in the
attention modeling process to capture the structural depen-
dencies. The resulting new attention mechanism will be able
to perform soft selections of opinion expressions in the form
of word spans. This can be viewed as an extension of the
standard attention mechanism. We call such a novel atten-
tion mechanism segmentation attention in this paper.

From the modeling perspective, standard attention mech-
anism that is widely used in the community can be viewed
as the process of performing soft selections of individual
words independently, whereas our segmentation attention
mechanism essentially captures the dependencies between
adjacent words in the process. As a result, we can under-
stand the mechanism as a process that performs soft selec-
tions of a consecutive sequence of words or spans. This is
based on the observation that it is usually a coherent opinion
span rather than individual words scattered in the sentence
that form meaningful information, contributing towards the
sentiment. Standard attention-based models may make the
wrong decision when complex expressions are involved. To
bring positional information to the attention model, previous
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methods either add the positional embeddings to the input
(Tang, Qin, and Liu 2016) or use position-based reweighting
(Chen et al. 2017). Instead of directly building connections
between the position of a context word and its influence on
the sentiment, we want to build a structural model that is ex-
pected to learn this kind of correlation. Deep models such
as Recurrent Neural Networks (RNN) may be able to cap-
ture the structural information implicitly. However, learning
such information automatically from data might require a
substantial amount of data. We believe developing models
that can explicitly capture the structural bias in the attention
modeling process is still useful and important.

Another advantage that our model brings is that we can
extract the opinion expressions explicitly during its decod-
ing step and these opinions can serve as justifications of
our predictions. This property makes our model significantly
more interpretable compared with existing methods and al-
lows us to have a better understanding of the underlying pre-
dictions associated with the neural networks. Furthermore,
we introduce two additional regularizers to guide the model
to learn meaningful opinions. Specifically, as we have men-
tioned, the opinions that contribute to the sentiment of a tar-
get are usually short and coherent spans rather that discon-
nected words. With the guidance of the additional regulariz-
ers, the segmentation attention layer is expected to select a
consecutive sequence of words as opinions.

Our model basically consists of two components: A
bidirectional long short-term memory network (BiLSTM)
(Graves, Mohamed, and Hinton 2013) layer that runs
through the words in the sentence sequentially to get contex-
tual information for each word, and segmentation attention
layer that aims to distill the sentiment information from the
sentence. We believe that with these components, the model
is capable of learning phrase-like features and generate rea-
sonable spans as opinions.

Experiments are conducted in two stages to verify the ef-
fectiveness of our proposed model from different aspects.
First, we evaluate our model on three English datasets which
consist of online reviews and social comments. We show
the effectiveness of BiLSTM and segmentation attention by
using some basic variants which exclude such an attention
mechanism. As our model extracts opinions without explicit
supervision, to understand the quality of the extracted opin-
ions, we then conduct some qualitative analysis by com-
paring the extracted opinions with the manually annotated
opinions. Second, we apply our model on additional review
datasets across seven languages to examine the model’s lan-
guage sensitivity. Note that the datasets we are using at this
stage are specifically from SemEval 2016 Task 5. It also pro-
vides aspect category like “food quality” coupled with each
target term, which reveals more information about the target.

The main contributions of this work include:

• We propose a novel segmentation attention based model
for aspect sentiment analysis, which can capture structural
dependencies between a target and its opinions, as well as
dependencies between opinion words.

• Extensive experiments are conducted on standard datasets
consisting of online reviews and social comments. Results

show that our model consistently achieves the state-of-art
performance on the aspect sentiment analysis task.

• We conduct comprehensive analyses to understand how
our model works with the help of segmentation attention,
including evaluation of latent extracted opinions.

Our implementation is available at https://github.com/
berlino/SA-Sent

Related Work

Earlier approaches to sentiment analysis include rule-based
methods (Ding, Liu, and Yu 2008) and SVM-based meth-
ods (Kiritchenko et al. 2014; Jiang et al. 2011), which usu-
ally require significant manual feature engineering efforts.
Since Neural Networks (NN) have emerged as powerful ap-
proaches for sentiment analysis (Kim 2014; Socher et al.
2013), several methods are adapted for this fine-grained task.
AdaRNN (Dong et al. 2014) tries to propagate the sentiment
of words to the target using recursive neural networks given
the syntactic tree of the sentence. However, the underlying
assumption on the availability of the syntactic tree may not
always hold especially when informal text such as online
comments and reviews are considered. Chen et al. (2016)
use convolutional neural networks (CNN) to infer the senti-
ment of a target by identifying the sentiment of the clause
in which the target lies. Tang et al. (2016) uses two LSTM
networks running towards target word from left and right re-
spectively to capture the contextual information of a target.

There are also different kinds of joint models for this task.
In opinion extraction, one can refine the opinion labels by
adding sentiment polarity (such as positive opinion) (Li et
al. 2010) so that both opinion expressions and the polarity
information can be jointly captured using sequence label-
ing models. Also, target extraction task (Zhao et al. 2010;
Wang et al. 2016a) can be added to this joint learning frame-
work. However, the annotation of opinion expressions is
quite expensive. Mitchell et al. (2013) takes a novel way to
extract the sentiment target together with its sentiment polar-
ity based on the assumption that surrounding context reveals
enough information to detect the target’s sentiment. Li and
Lu (2017) takes a latent-variable approach that learns the la-
tent sentiment scope which contains both target and opinion
expressions. However, it cannot handle the cases where dif-
ferent targets share the same opinion expression.

The attention mechanism has proven to be very effective
in machine translation (Bahdanau, Cho, and Bengio 2015),
question answering (Sukhbaatar et al. 2015) and many other
tasks. Our model is inspired by structural attention network
(Kim et al. 2017) which extends the standard attention to
directly model structural dependencies between source ele-
ments. In contrast with the soft attention mechanism, “hard”
(stochastic) attention (Xu et al. 2015) is also leveraged by
(Lei, Barzilay, and Jaakkola 2016) which uses a separate
model to generate rationales for neural predictions. Yu, Lee,
and Le (2017) propose a model that can skip the irrelevant
text in a “hard” way. These methods share the same spirit
with our model, but they usually require methods like policy
gradient for training.
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Figure 2: Model architecture. Target term “service” is in-
dicated by embeddings of a binary indicator which are de-
picted in green. The model encodes the contextual infor-
mation for each word using BiLSTM. Based on its hidden
states, the internal segmentation attention layer aims at se-
lecting the opinion words of interest. The nodes shown in red
imply that their corresponding words have the most impact
on the classification of the target’s sentiment.

Model

The problem can be formulated as follows. Given a sentence
with n words {w1...wi, wi+1, ..., wj , wj+1, ..., wn} and a
target {wi, ..., wj} which is a span in the sentence, we need
to predict the sentiment polarity of the specific target.

The architecture is shown in Figure 2. Next, we will in-
troduce all components sequentially from bottom to top.

Input Layer

First, the words are mapped to their vector representations
by looking up an embedding table. Unlike conventional
methods (Wang et al. 2016b; Chen et al. 2017) that directly
encode the target with word embeddings, we use a binary
feature to indicate whether each word is part of a target
or not since the positional information of the target can be
thereby encoded by the indicator sequence. Following a sim-
ilar idea in (He et al. 2017), each binary indicator is mapped
to a vector representation using a randomly initialized em-
bedding table.

As we can see from Figure 2, the representation of each
word is formed by concatenating the word’s embedding and
the binary feature embedding:

vt = [Wemb(wt),Wmask(t ∈ [i, j])] (1)

where t ∈ [i, j] is a binary function indicating whether t-th
word belongs to the target span [i, j]. Wemb ∈ R

d1×|V | and
Wmask ∈ R

d2×2 are two matrices, where |V | is the vocab-
ulary size, and d1 and d2 are dimensions of word embedding
and binary feature embedding respectively. If the aspect term

is given, we also encode them using learnable vectors which
are concatenated to the representation above.

BiLSTM Layer

A BiLSTM is then used to capture the contextual informa-
tion for each word. The forward LSTM is computed as fol-
lows:

it = σ(Wi[ht−1,vt] + bi) (2)

ot = σ(Wo[ht−1,vt] + bo) (3)

ft = σ(Wf [ht−1,vt] + bf ) (4)

c̃t = tanh(Wc[ht−1,vt] + bc) (5)

ct = it � c̃t + ft � ct−1 (6)

ht = ot � tanh(ct) (7)

where Wi,Wo,Wf ,Wc ∈ R
dh×(d1+d2+dh) are weight

matrices used for different gates, bi,bo,bf ,bc ∈ R
dh are

bias vectors and d1 + d2 and dh indicate the dimension of
input vector and hidden state for LSTM respectively. � de-
notes element-wise multiplication and σ stands for the sig-
moid function.

The backward LSTM is very similar to the forward one
except that the input sequence is fed in a reversed way. We
concatenate the hidden states of both forward and backward
LSTM to form the final representation. Note that we include
the target information as input in Equation 1, so each ri can
be viewed as a target-specific representation for the word at
position i in the given sentence.

rt = [
→
ht,

←
ht] (8)

where [·, ·] refers to the operation that concatenates two
column vectors to form a single column vector. We use
R = {r1, r2, ..., rn} to denote all the word representations
generated for the sentence.

Segmentation Attention

In order to directly model the structural dependencies be-
tween a target and its opinions (also between opinion
words), we incorporate a segmentation attention layer to
capture them.

As shown in Figure 2, we introduce a latent binary vari-
able z ∈ {0, 1} for each word. This variable indicates
whether its corresponding word is part of an opinion expres-
sion or not. Specifically we incorporate linear-chain CRF
to specify the structural dependencies between these latent
variables. Formally, the distribution of a selected sequence
is parameterized as follows:

p(z|R) =
1

Z(R)

∏
c∈C

ψ(zc,R) (9)

Z(R) =
∑
z′

∏
c∈C

ψ(z′c,R) (10)

where z is formed by zc, each is defined over an individual
clique c, and ψ(zc,R) is the potential function of the clique
c and Z(R) is the partition function. Typically we define
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two kinds of potentials on the vertices and edges for such an
undirected graphical model respectively.

∏
c∈C

ψ(zc|R) =
n∏

i=1

ψ1(zi|R)
n−1∏
i=1

ψ2(zi, zi+1|R) (11)

where
ψ1(zi|R) = exp(Wv

zi · ri + b) (12)
ψ2(zi, zi+1|R) = exp(We

zizi+1
) (13)

Here Wv ∈ R
2×2dh maps context representation to the

feature score of each latent state, We ∈ R
2×2 is a transition

matrix defined for each pair of latent state.

Feature Function Our purpose is to generate the repre-
sentation of the latent opinions which we referred to as opin-
ion vector in Figure 2, based on previous selections. Equa-
tion 15 gives a general form of the function to compute this
value.

z = [z1, ..., zn] (14)

m =
∑
z

p(z)g(R, z) (15)

where g(R, z) is a feature function that is defined based on
the selection of opinions, and m is the expectation of this
feature function. However, enumerating all the possible se-
lections is computationally expensive. To make the proce-
dure tractable, we only define the features on each vertex so
that this function can be computed based on marginal prob-
abilities which can be calculated efficiently using dynamic
programming with a message passing or forward-backward
style algorithm:

g(R, z) =

n∑
i=1

�(zi = 1)ri (16)

Given Equation 15 and 16, the opinion vector can be sim-
plified into the following form.

m =
∑
i

p(zi = 1)ri (17)

We can intuitively see from this Equation 17 that the seg-
mentation attention layer is essentially distilling the infor-
mation from the sentence that contributes to sentiment polar-
ity of the target. During the model prediction, we extract the
latent opinions explicitly and exactly using a Viterbi style
decoding algorithm. These opinions extracted in an unsu-
pervised manner give us the chance to further analyze and
evaluate our model.

Regularizers In initial experiments, we observe that the
common errors that such an attention-based model made
are that they tend to focus on sentiment words even if
these words are not semantically associated with the target.
Based on the assumption that opinion expressions are usu-
ally short and coherent spans rather than disconnected sen-
timent words, we introduce two additional regularizers to
guide the model.

There are basically two states for the hidden variable z:
being a part of the opinion or not. Based on the observation

that only a few opinion spans actually have the effect on
the target’s sentiment, frequent transitions between different
states should be discouraged. This gives rise to our first reg-
ularizer below, which tries to encourage the state to stay the
same:

Ω1(z) =
∑
i

∑
j �=i

max(0,We
ij −We

ii) (18)

Specifically, it enforces the transition feature value be-
tween different states to be smaller than the one between
the same state. Otherwise, the model will get a penalty.

The second regularizer tries to enforce the model to attend
to short and few spans that really matter:

Ω2(z) =
n∑

i=1

p(zi = 1) (19)

Essentially, these regularizers bring some structural bias
so that the model can focus on short yet meaningful opinion
spans through segmentation attention layer.

Objective Function

The distribution of the sentiment tags is computed using
softmax:

p(yi|m) = softmax(Wtag ·m+ btag) (20)

where Wtag ∈ R
2dh maps the opinion vector m to the fea-

ture score for each sentiment label and btag is a bias term.
We mainly focus on two kinds of models: the vanilla seg-

mentation attention based LSTM (SA-LSTM) and the ver-
sion augmented with the additional regularizers (SA-LSTM-
P). In the training mode of mini-batch, loss function for SA-
LSTM-P is defined as follows:

L =
1

N

[
N∑
i=0

−yi log p(yi) + λ1Ω1(z) + λ2Ω2(z)

]
(21)

where λ1 and λ2 denotes the coefficient for each regular-
izer. Without these penalty terms, it becomes the objective
function of SA-LSTM.

Experiments

Datasets

We primarily conduct two sets of experiments using two
groups of datasets. The first group is used to analyze each
component of our model in detail. In the second group, we
focus on examining the model’s language sensitivity issue.

The first group consists of review datasets from SemEval-
2014 task 4 (Pontiki et al. 2014) and Twitter comments col-
lected by (Dong et al. 2014). SemEval-2014 task 4 contains
reviews from two domains: restaurant and laptop. Following
previous work (Tang, Qin, and Liu 2016; Chen et al. 2017),
as part of preprocessing, we also discard the sentences that
contain “conflict” labels (where different sentiments are ex-
pressed towards the same aspect). In order to evaluate the
latent opinions that the model learned, we also make use of
the additional annotations for these two datasets from (Wang
et al. 2016a) which include manually annotated labels for
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Dataset Laptop Restaurant Twitter Restaurant * Hotel *
English English English English Spanish French Turkish Russia Dutch Arabic

Train 2,313 3,602 6,257 2,507 2,720 2,530 1,535 4,022 1,711 10,509
Test 638 1,120 694 859 1,072 954 159 1,300 613 2,604

Table 1: Numbers of 〈 sentence, target, polarity 〉 tuples in each domain. Datasets with “*” are from SemEval 2016 Task 5.

opinion terms. The Twitter dataset is collected by querying
Twitter API using entity words, so each sentence is usually
paired with only one target. In the second group, we use
restaurant and hotel reviews from SemEval-2016 task 5 in-
volving seven different languages. All statistics are shown in
Table 1. 1

Comparison Methods

• SVM (Kiritchenko et al. 2014): The best method reported
in SemEval 2014 task 4, which takes lexicon features, sur-
face features and parsing features for SVM.

• AdaRNN (Dong et al. 2014): This model learns to adap-
tively propagate the sentiments of context words to the
target node based on the dependency tree converted for
the target with Recursive NNs.

• AT-LSTM (Wang et al. 2016b): The representation of
a target is used to capture the associated words through
standard attention which is employed on top of LSTM.

• MemNet (Tang, Qin, and Liu 2016): This model per-
forms the standard attention for a certain number of times
(multi-hops) before it catches the right sentiment.

• RAM (Chen et al. 2017): Similar to MemNet, it adds a re-
current function between multiple attentions to model the
inner dependencies between different steps of attention.

Note that AT-LSTM, MemNet, RAM are all attention-
based methods. The results of MemNet and RAM are re-
trieved from (Chen et al. 2017). The intuition behind mul-
tiple attentions is that there may be multiple semantic com-
ponents that contribute to the sentiment of a particular tar-
get. Similarly, segmentation attention can also be viewed
as “multiple attention” at word level.2 With this setting, the
model has the better capacity to model the dependencies be-
tween multiple attentions. Another point that distinguishes
our model from them is that we use the binary indicator fea-
ture to encode the target’s information at the input layer.

For the SemEval 2016 review datasets, our model may
be the first approach that makes use of the attention mech-
anism. We compare it with two best models reported in the
competition and two LSTM-based models.

• XRCE (Brun, Perez, and Roux 2016): This model in-
volves many hand-crafted rules based on the syntactic fea-
tures generated by a parser.

• IIT-TUDA (Kumar et al. 2016): It incorporates domain
dependency graph features and a large amount of senti-
ment lexicons for each language.

1Detailed statistics can be found in (Pontiki et al. 2014; 2016).
2Our model can also be extended to perform multiple segmen-

tation attention at sentence level by stacking multiple such layers.

Method Laptop Restaurant Twitter
SVM 70.5 80.2 63.4

AdaRNN - - 66.3
AT-LSTM 68.9 77.2 -
MemNet 70.3 78.2 68.5

RAM 74.5 80.2 69.4
A-Softmax 68.8 76.9 66.0

SA-Softmax 69.0 77.1 66.2
SA-Softmax-P 69.1 77.8 66.5

A-LSTM 72.7 78.4 68.2
SA-LSTM 74.5 79.8 69.9

SA-LSTM-P 75.1 81.6 69.0

Table 2: Results on reviews from SemEval 2014 Task 4 and
comments from Twitter in terms of accuracy (%).

• LSTM, HP-LSTM (Ruder, Ghaffari, and Breslin 2016):
The BiLSTM is used to encode the sentence, then the first
and last hidden states are combined for sentiment predic-
tion. HP-LSTM adds a review-level LSTM to capture the
information between sentences within the same review.

To see how well the BiLSTM and segmentation attention
layer work, we implemented the basic versions that leave
them out respectively. We also implemented the standard
attention-based model for comparison.

• A-Softmax: Without using LSTM, this model directly
performs attention mechanism on the input embeddings
of each word. It can be viewed as the process that directly
selects sentiment word from the sentence without consid-
ering the contextual information.

• SA-Softmax, SA-Softmax-P: This model replaces the
standard attention of A-Softmax with segmentation atten-
tion. SA-Softmax-P adds penalty terms.

• A-LSTM: LSTM is used to capture the contextual infor-
mation before the attention layer. This model is very sim-
ilar to the AT-LSTM except that we used a different target
representation.

• SA-LSTM, SA-LSTM-P: Segmentation attention layer
is employed on top of the LSTM. This is the main model
of this paper. Penalty terms are added to guide the learning
process in SA-LSTM-P.

Training Details

We use the 300 dimension word embeddings from GloVe
(Pennington, Socher, and Manning 2014) for English
datasets. The pre-trained embeddings of other languages are
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Method Restaurant Hotel
English Spanish French Turkish Russia Dutch Arabic

XRCE 88.1 - 78.8 - - - -
IIT-TUDA 86.7 83.6 72.2 84.3 73.6 77.0 81.7

LSTM 81.4 75.7 69.8 73.6 73.9 73.6 80.5
HP-LSTM 85.3 81.8 75.4 79.2 77.4 84.8 82.9
A-LSTM 86.5 86.5 81.8 86.2 81.3 85.6 86.5

SA-LSTM 88.1 83.8 81.9 78.6 81.1 86.1 86.7
SA-LSTM-P 88.7 88.0 82.4 83.7 82.8 87.3 86.9

Table 3: Results on review datasets from SemEval 2016 task 5 in terms of accuracy (%)

taken from (Ruder, Ghaffari, and Breslin 2016)3 which are
also used by the methods that we compare against. The di-
mension of target’s binary indicator embedding is 30. We
fixed the word embeddings in all the experiments since we
found that it is very easy to get overfitting if we keep fine-
tuning them. Dropout is also used after the input layer and
it is tuned for each dataset. λ1 is tuned between 0 and 1,
λ2 is chosen from [0, 0.2] with step size 0.04. For LSTM,
we set the hidden dimension size to 300. One-sixth of train-
ing data is left out as the validation set for tuning hyper-
parameters and doing model selection. The model is trained
using stochastic gradient descent with the update rule of
Adam (Kingma and Ba 2015).

Results

The main results based on the first group of datasets can
be found in Table 2. Attention based models are effective
without requiring hand-crafted features or an external parser
compared with SVM and AdaRNN. Both the LSTM layer
and the segmentation attention layer consistently improve
the performance in all domains. Compared with MemNet
and RAM, which both extends the standard attention with
multi-hop, segmentation attention model gets a better per-
formance since it can capture more structural information
which is beneficial for this task. We can empirically con-
clude that in this task attending to sentiment spans at one
time is a more natural and effective way than attending to
one word at a time for multiple times. The penalty terms usu-
ally have positive effects on the segmentation attention layer
except for the social comments from Twitter. We found that
Twitter text is comparatively noisy and less-structured, and
as a result, the introduction of regularizers tend to lead to
the inclusion of wrong opinions. Also, from the results we
can observe that the segmentation attention layer performs
better when it is paired with an LSTM component.

Table 3 shows the results of review datasets across seven
languages from SemEval 2016 Task 5. In line with the above
findings, attention layer improves the performance of all
datasets. Compared with the first two models which are
both based on expensive manual feature engineering, the
improvement is significant especially for low-resource lan-
guages where hand-crafted features are not adequate any-
more. Our model is superior to conventional LSTM because

3https://s3.amazonaws.com/aylien-main/data/multilingual-
embeddings/index.html

Method Laptop Restaurant
Precision Recall Precision Recall

A-Softmax 50.2 44.6 59.7 36.9
SA-Softmax 36.2 68.1 38.5 64.7

SA-Softmax-P 65.5 55.2 42.2 58.3
A-LSTM 48.4 47.9 56.5 53.7

SA-LSTM 25.5 75.4 21.2 78.3
SA-LSTM-P 49.1 58.7 39.4 59.9

Table 4: Performance (%) of unsupervised extraction of
opinions at word level

of the effectiveness of attention mechanism. Furthermore,
segmentation attention based model generally achieves bet-
ter results compared with the standard attention-based model
except for Turkish reviews4, largely demonstrating the lan-
guage insensitivity of our model. Also, segmentation atten-
tion consistently benefits from the additional regularizers
and we can conclude that our assumption of the spans works
across different languages.

Latent Opinions

We have observed the effectiveness of our proposed atten-
tion mechanism. However, does the attention layer focus on
the true opinion expressions as desired? To understand this,
we then take a further step to evaluate the latent opinions
during predictions. We extract the sentiment words or spans,
namely opinions that have a relatively significant effect on
final prediction. For standard attention-based models, we ex-
tract a single opinion word by doing max operation on the at-
tention layer. For segmentation attention, we extract the op-
timal opinion spans using Viterbi decoding algorithm which
results in one or multiple opinion spans. Both are evaluated
with the annotated opinions provided by (Wang et al. 2016a)
at word level.

Main results are shown in Table 4. Compared with models
that do not employ BiLSTM, we found that BiLSTM gener-
ally helps recall more opinion expressions since some sen-
timent words are context dependent. For example, “high” is
positive when it is paired with “tech”, but it becomes nega-
tive when paired with “price”. BiLSTM gives the model the
basic understanding of the sentence. Segmentation attention

4The size of Turkish dataset is relatively small, the difference
between A-LSTM and SA-LSTM-P is only 4 instances.
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Figure 3: Visualization of the extracted opinions from seg-
mentation attention model. Targets are in bold and extracted
opinions are highlighted with boxes, “+” and “-” on the tar-
get indicate positive and negative sentiment respectively.

works in a similar way by modeling the dependencies be-
tween opinion words directly. Since these datasets are rela-
tively small, BiLSTM may be limited in capturing contex-
tual information. The structural bias that segmentation at-
tention brings to the model helps it identify more opinion
expressions as a result. Furthermore, segmentation attention
usually performs better when coupled with BiLSTM since it
is easier to model the interactions if contextual information
is encoded in each representation.

Compared with standard attention, segmentation atten-
tion can naturally recall more opinion expressions since the
model captures a sequence of words rather than individ-
ual words. Intuitively, more identified sentiment words or
spans can reveal more sentiment information for the model
to make the right decision. However, high recall also results
in low precision when segmentation attention is plugged in.
Two regularizers are introduced to balance them. They help
the model focus on correct opinions based on the assumption
that opinions should be short and coherent spans.

Analyses

Case Studies

Figure 3 gives some examples of extracted opinions through
using our proposed segmentation attention. We found that
the model is able to impressively attend to the correct opin-
ion expressions in various cases.

The internal segmentation attention layer is expected to
select the opinions based on both content and structure in-
formation. As we can see from the first example, the seg-
mentation attention successfully detects multiple sentiment
words towards it. The second example shows that the model
can successfully attend to a coherent span when the opinion
consists of a consecutive sequence of words in the sentence.

In the third example, two targets hold the same positive
sentiment. In this case, the correct prediction will always
be made regardless of which sentiment words the model at-
tends to. Nevertheless, our model still accurately attends to
the correct opinion span that contains both the target and
its opinion terms. Similarly, as we can see from the fourth
example, the model is also able to handle cases where tar-
gets within the same sentence are associated with different
sentiments. From these examples, we can observe that the

Figure 4: Examples with negation words and the model fails
to detect the sentiment of the span.

proposed model is capable of capturing shallow structural
information so as to perform sentiment classification.

Error Analysis

The internal attention layer of our model also makes it con-
venient to trace back the errors that the model makes. Based
on our analysis, we found that errors can be broadly catego-
rized into two types: attention error and representation error.

The first type of errors come from the reason that the
model fails to attend to the right span because of various
reasons. One of them is that the model tends to assign sen-
timent to words that express intensity, such as “really” and
“sure”, since they are usually parts of sentiment expressions.
It would be interesting to see if incorporating syntactic fea-
tures can improve the performance since syntactic informa-
tion would hopefully further guide the learning process of
latent opinions.

Most of the remaining errors belong to the latter cate-
gory – representation errors. Though the model can attend
to the correct opinion spans, it does not necessarily mean
it could always figure out the correct sentiment the opinion
expresses. For example in Figure 4, the model successfully
identifies the opinion span but it fails to capture the correct
sentiment that involves negation words. Recall in Equation
16 and 17, opinion vectors are calculated based on simple
sum operations over word representations. Essentially, the
model relies on the LSTM to capture contextual informa-
tion when generating the word representation. However, it
appears that certain stronger mechanism needs to be devised
in the future in order to capture negation scope better.

Conclusion

In this work, we propose a novel model that learns the latent
opinions based on segmentation attention layer for aspect-
level sentiment classification. The internal selection layer
not only benefits the classification but also gives the great in-
terpretation of how the model works. Experiments on exten-
sive datasets show that the model consistently achieves the
state-of-art performance. We further evaluate the extracted
latent opinions by comparing them with annotated opinions
to show how segmentation attention layer affects the model.

Future work includes applying the proposed attention
model to other tasks such as question answering. Specifi-
cally, to predict or generate the answer for a particular ques-
tion, the model can use the proposed segmentation attention
mechanism to search for latent expression spans related to
the question in an unsupervised manner – a step that is anal-
ogous to the process of answering questions by humans.
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