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Abstract

We present a new dataset and model for textual entailment,
derived from treating multiple-choice question-answering as
an entailment problem. SCITAIL is the first entailment set
that is created solely from natural sentences that already exist
independently “in the wild” rather than sentences authored
specifically for the entailment task. Different from existing
entailment datasets, we create hypotheses from science ques-
tions and the corresponding answer candidates, and premises
from relevant web sentences retrieved from a large corpus.
These sentences are often linguistically challenging. This,
combined with the high lexical similarity of premise and
hypothesis for both entailed and non-entailed pairs, makes
this new entailment task particularly difficult. The resulting
challenge is evidenced by state-of-the-art textual entailment
systems achieving mediocre performance on SCITAIL, espe-
cially in comparison to a simple majority class baseline. As a
step forward, we demonstrate that one can improve accuracy
on SCITAIL by 5% using a new neural model that exploits
linguistic structure.

Introduction
Recognizing textual entailment (RTE) involves assessing
whether a given textual premise entails or implies a given
hypothesis. It is a central problem in natural language un-
derstanding (Dagan et al. 2013) as it encapsulates the fun-
damental challenge of linguistic variability. The richness
and subtlety of natural language, however, makes RTE
highly challenging. To facilitate the development of strong
RTE systems, increasingly larger datasets have been pro-
posed, ranging in size from 100s to over 500,000 annotated
premise-hypothesis pairs. Datasets such as RTE-n (Dagan,
Glickman, and Magnini 2005), SICK (Marelli et al. 2014),
and SNLI (Bowman et al. 2015) have played an important
role in advancing the field.

A limitation of mainstream entailment datasets, however,
is that they have been constructed in isolation from any end
task.1 Moreover, in several cases, either the hypothesis or
the premise has been synthesized (e.g., rule-based in SICK
and crowd-sourced in SNLI) specifically for creating the en-
tailment dataset. Consequently, while helpful in advancing
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1A few small-scale datasets have been derived from an end task,
such as RTE-6 for news summaries with fewer than 1000 examples.

Question:
Which of the following best explains how stems trans-
port water to other parts of the plant?

(A) through a chemical called chlorophyll.
(B) by using photosynthesis.
(C) through a system of tubes. �
(D) by converting water to food.

Assertion from question + answer candidate (C):
Stems transport water to other parts of the plant through
a system of tubes.

Supporting sentence (entails):
Water and other materials necessary for biological ac-
tivity in trees are transported throughout the stem and
branches in thin, hollow tubes in the xylem, or wood
tissue.
Non-supporting sentence (neutral):
Cut plant stems and insert stem into tubing while stem
is submerged in a pan of water.

Figure 1: Example annotations for SCITAIL

RTE research, these datasets do not always capture the kind
of entailment queries that naturally arise in an end task. We
present the largest entailment dataset that is directly derived
from an end task and consists of naturally occurring text as
both premise and hypothesis.

Our new dataset, SCITAIL, is designed from the end
task of answering multiple-choice school-level science ques-
tions. Each question and the correct answer for it are con-
verted into an assertive statement to form a hypothesis H;
see Figure 1 for an example. We use an information retrieval
(IR) method to obtain relevant text from a large text cor-
pus of web sentences, and use each of these sentences as a
premise P . While each P , by construction, has a high lex-
ical overlap with H , not every P entails or “supports” the
statement in H . We crowdsource the annotation of each such
premise-hypothesis pair as supports or not, in order to create
the SCITAIL entailment dataset with 27K examples.

The entailment dataset focuses on the reasoning needed
for QA by factoring out the retrieval step. By the nature of its
construction, this dataset captures what a good textual QA
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system needs to be able to infer. A substantial performance
improvement on this dataset is thus expected to translate into
better QA performance as well.

Since both the premise and the hypothesis in SCITAIL
were authored independently of each other and independent
of the entailment task, linguistic variations in the dataset are
not limited by the coverage of hand-designed rules or the
creativityof crowd-workers, especially when shown one of
the two pieces of text. Further, unfiltered web sentences,
which are used to create the premise, tend to be highly
diverse in various aspects (length, complexity, being well-
formed for a parser, etc.), adding to the linguistic challenge.

We find that current RTE systems, including neural entail-
ment models, have mediocre performance on this dataset,
whether pre-trained on their own datasets or on SCITAIL.
For instance, the state-of-the-art Decomposable Attention
Model (Parikh et al. 2016) achieves an accuracy of 72.3%,
which is only 2% higher than a simple n-gram overlap model
and 12% higher than the majority class prediction baseline
of 60.3%. In contrast, on the highly studied SNLI dataset,
the 75% accuracy of even the basic entailment models is
much higher than the 33.3% majority baseline.

We demonstrate that one can exploit linguistic structure
to better capture the entailment relation in this dataset.
Specifically, our asymmetric Decomposed Graph Entail-
ment Model (DGEM) raises the accuracy to 77.3%.

In summary, we make the following contributions:
1. A natural entailment dataset2 where the text and hypothe-

sis were authored independent of each other and indepen-
dent of the entailment task;

2. the first entailment dataset derived from the end task of
multiple-choice question answering; and

3. a new model that exploits linguistic structure in the hy-
pothesis to outperform existing techniques on this dataset.

Related Work

We discuss prior work on textual entailment and question
answering that is most closely related to SCITAIL.

Textual Entailment

The PASCAL RTE challenges (Dagan, Glickman, and
Magnini 2005) have played an important role in develop-
ing our understanding of the linguistic entailment problem.
Due to the small size of these datasets, most earlier ap-
proaches relied on hand-designed features and alignment
systems (Androutsopoulos and Malakasiotis 2010). With the
advent of large entailment datasets (Bowman et al. 2015),
novel neural network architectures have been developed for
the entailment task. However, these datasets were designed
in isolation from any end task and with synthesized sen-
tences. As a result, while they help advance our understand-
ing of entailment, they do not necessarily capture entailment
queries that naturally arise in an end task.

With regard to using linguistic structure, deep learning
entailment models mainly rely on generating a single vec-
tor representation for each of the premise and the hypothe-

2Available at http://data.allenai.org/scitail

sis, using attention between the sentences (Chen et al. 2017;
Parikh et al. 2016). Few models have incorporated syntac-
tic structure from both premise and hypothesis, to help im-
prove these representations. Our proposed model explicitly
uses the syntactic structure, viewed as a graph, by identify-
ing the entailment probability of individual nodes and edges
in the hypothesis structure. This idea is similar to the ap-
proach of Zhao, Huang, and Ma (2016), who compute entail-
ment probabilities on each node in a binarized tree from the
premise and hypothesis. Our approach differs in that it does
not rely on a binarized tree representation and uses structure
only from the hypothesis. The hypotheses typically are short
and thus result in a more reliable extracted structure.

Question Answering

Science QA task involves the challenging domain of school-
level science exams, where questions often require complex
reasoning to arrive at the correct answer (Clark et al. 2016).
Consequently, most systems attempt to stitch together mul-
tiple rules (Khot et al. 2015), table rows (Khashabi et al.
2016), or Open IE tuples (Khot, Sabharwal, and Clark 2017)
to produce an answer. However, these systems must both re-
trieve the relevant knowledge and perform the required rea-
soning, without really knowing whether the retrieved knowl-
edge actually supports the answer or whether there even ex-
ists any knowledge in the underlying knowledge base that
can, in principle, be used to answer the question. Our dataset
identifies sentences that are annotated as supporting the cor-
rect answer for each question. It thus opens up the way for
QA systems to factor out the retrieval aspect and focus on
the reasoning challenge.

Reading comprehension (RC) datasets (Rajpurkar et al.
2016; Richardson, Burges, and Renshaw 2013; Joshi et al.
2017) are similar in that they allow systems to focus on
the reasoning aspect of question answering. However, these
datasets require the system to identify the answer span in
the paragraph, which is a harder task than predicting tex-
tual entailment. At the same time, answer choices in Science
QA need not be valid spans in the retrieved sentence(s), thus
making the task out of scope for span prediction models.

Question Answering as Entailment

Consider the following question from 4th grade science test:
Which of the following best explains how stems trans-
port water to other parts of the plant?
(A) through a chemical called chlorophyll.
(B) by using photosynthesis.
(C) through a system of tubes.
(D) by converting water to food.

Upon reading the statement, “Water and other materials
necessary for biological activity in trees are transported
throughout the stem and branches in thin, hollow tubes in
the xylem, or wood tissue.”, a layman can conclude that
the answer ‘through a system of tubes’ is correct. In other
words, the question combined with answer choice (C) is
entailed by this knowledge statement. We use this intu-
ition to create an entailment dataset where each premise
consists of a knowledge sentence and each hypothesis is a
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Figure 2: Snippets from the annotation tool. The original annotation page had more examples and a description of the task.

statement representing the question along with an answer
candidate (e.g., “Stems transport water to other parts of
the plant through a system of tubes”.). Given an entailment
model trained on such a dataset, multiple-choice questions
can now be answered by returning the answer choice with
the highest entailment score for a knowledge sentence as a
premise and a hypothesis generated from the answer choice.
We next describe a general methodology for annotating such
an entailment dataset starting from a multiple-choice ques-
tion set, and then discuss specifics of the SCITAIL dataset.

Entailment Annotation Task

To create an entailment dataset from a QA task, we start with
a dataset Q of multiple-choice questions, and an indexed
corpus T of sentences. For each multiple-choice question
q ∈ Q, we collect a set of candidate knowledge sentences
P to generate the premises of the entailment dataset. Rather
than synthesizing these sentences, we use for P the top K
retrieved sentences from T . Given a candidate knowledge
sentence (premise) p ∈ P for the question q and an answer
choice a, we next collect an entailment label for the knowl-
edge sentence and (q, a) pair. We convert the (q, a) pair into
an assertion, h = assertion(q, a) to create the entailment
example (p, h) with the annotated label.

For an incorrect answer choice, one can assume that
none of the knowledge statements will support this answer.3
However, we can not make an analogous assumption about
the sentences for the correct answers, i.e., not all retrieved
sentences support the correct answer choice. Specifically,
among the 43% of questions that were answerable by a sin-
gle sentence, only 16.6% of the retrieved sentences provided
sufficient support to answer the question. Hence we focus on
obtaining annotations for the correct answer choices.

For each question and correct answer choice, we show
a batch of 10 sentences to crowd-workers and ask them to
classify each sentence into one of three categories:

3We manually verified that 88% of retrieved sentences do not
support the incorrect choice and 4% only partially support the an-
swer choice. The residual 8% of the sentences either contradicted
the question assertion or involved a question that itself was noisy.

1. Complete Support, if the sentence fully supports the an-
swer choice;

2. Partial Support, if the sentence is related to the question
but only provides partial support for the answer; or

3. Unrelated, if the sentence is unrelated to the question.
Figure 2 shows a snippet of the annotation guidelines and

the task. We used the Complete Support label to create the
examples with entails label and the Unrelated label to cre-
ate neutral label examples. Partial Support examples were
ignored but can potentially be useful to identify and re-
trieve the knowledge gaps in these sentences. We had also
included a ‘contradicts’ label but, in our pilot annotations,
we noticed that we rarely had examples of contradiction and
so we simplified the task by dropping the additional label.
Since entailment annotations can be ambiguous depending
on the sentence being labeled, each sentence was annotated
by 5 crowd-workers and only sentences with 80% agreement
were retained (similar to RTE).

SCITAIL Dataset

We used this annotation scheme to create an entailment
dataset for the Science question answering task. We use
multiple-choice science questions from publicly released 4th
grade (204 questions) and 8th grade (195 questions) ex-
ams4 and the crowd-sourced questions from SciQ dataset
(2,835 questions) (Welbl, Liu, and Gardner 2017) to cre-
ate Q. For the text corpus, T , we use a large text corpus
from Clark et al. (2016) containing 280 GB of plain text ex-
tracted from Web pages and 80,000 sentences from domain-
targeted sources. We retrieved the top K=40 sentences from
this corpus using the tokens from the question and answer
choice as the query as described by Khot, Sabharwal, and
Clark (2017). We used Amazon Mechanical Turk5 to anno-
tate our sentences.

In total, we annotated 3,234 questions and 115,564 sen-
tences from these datasets. About 43.3% of the questions
did not have a single supporting sentence, indicating that

4Using AI2 Science Questions v1 from
http://allenai.org/data/science-exam-questions.html

5https://www.mturk.com
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Question Answer Sentence (Premise) Q+A as sentence (Hypothesis) Label

When waves of two different frequen-
cies interfere, what phenomenon oc-
curs?

beating Beats are the periodic and repeating
fluctuations heard in the intensity
of a sound when two sound waves
of very similar frequencies interfere
with one another.

When waves of two different frequen-
cies interfere, beating occurs.

entails

Because trees add water vapor to air,
cutting down forests leads to longer
periods of what?

drought During periods of drought, trees
died and prairie plants took over
previously forested regions.

Because trees add water vapor to air,
cutting down forests leads to longer
periods of drought.

neutral

What material comprises the sun and
other stars, as well as lightning and
the northern lights?

plasma Our Sun and other stars are in the
plasma state.

Plasma comprises the sun and other
stars, as well as lightning and the
northern lights.

–

Table 1: Randomly selected examples from the entailment dataset. The first sentence supports the right answer but also provides
lot more information that needs to be ignored. Second example has some word overlap but can not be used to answer the
question. In the third example, we only have partial support for the question, i.e., “Plasma comprises the sun and other stars.”

these questions either need multiple sentences for ques-
tion answering or better retrieval results. From the remain-
ing 56.7% of the questions (1,834 questions), we obtained
10,101 examples with entails label and 16,925 examples
with neutral label. The remaining sentences (33,792) were
ambiguous for crowd-workersto annotate or only provided
partial support. Our goal is to capture the obvious reason-
ing that a layman is able to perform, which in itself is a
challenging task (as evidenced by our results). Hence these
ambiguous sentences are ignored. To create an entailment
dataset, we also had to reliably convert questions and answer
choices into statements, i.e. the h = assertion(q, a) func-
tion. We manually converted every question in our dataset
into the best possible fill-in-the-blank statement (based on
the answer choices) and then replaced the blanks with the
given answer choice to create a valid assertion, h.

The final SCITAIL dataset contains 1,834 questions6 with
10,101 entails examples and 16,925 neutral examples. As
mentioned earlier, we do not have any examples with the
contradicts label and only focus on the binary classification
task. Some sample annotations are presented in Table 1. We
next compare this dataset with previous published datasets
to highlight some of the challenges relative to these dataset.

Dataset Size We compare SCITAIL against four popular
datasets, listed chronologically.

1. RTE-6 (Bentivogli et al. 2010): The sixth PASCAL Rec-
ognizing Textual Entailment challenge dataset generated
from news articles. Outputs from the summarization task
from previous year are used to generate the hypothesis
and sentences retrieved from a large news corpus are used
as premises. While they have a large dev set with 16K ex-
amples, they only have 897 examples with entails label.

2. SICK (Marelli et al. 2014) (9.8K examples): The
Sentences Involving Compositional Knowledge (SICK)
dataset was created automatically using rules to capture
compositional knowledge (active, passive, negation, etc).

3. SNLI (Bowman et al. 2015) (570K examples): Largest
entailment dataset created by asking annotators to write

64th grade: 102 qns, 8th grade: 83 qns, SciQ: 1649 qns

statements that would be true (or false) for an image given
its caption.

4. SCITAIL (27K examples): The dataset presented here us-
ing statements derived from independently written multi-
ple choice questions and web sentences.

Token Lengths We compare the average number of to-
kens on the training sets for all the datasets in Table 2. We
ignore the stop-words7 and average the counts for premises
and hypothesis per label. Apart from the RTE dataset, the
number of tokens do not change much based on the gold la-
bel. Across all datasets, premises tend to be longer than the
hypothesis which is expected for the entailment task. On av-
erage, SCITAIL dataset contains much longer premises and
hypotheses (apart from the much smaller RTE-6dataset).

Datasets Premise Length Hypothesis length

entails neutral entails neutral

RTE-6 17.96 15.41 5.60 7.19
SICK 5.09 5.04 4.58 5.07
SNLI 7.35 7.35 3.61 4.45
SCITAIL 10.79 10.28 6.69 7.01

Table 2: Average number of stop-word filtered tokens in the
premise and hypothesis in the training set per gold label.

Premise vs. Hypothesis Next, we compare the premises
and hypothesis tokens (as computed before) for each exam-
ple in these datasets in Table 3. We calculate the propor-
tions of hypothesis tokens that overlap between the hypoth-
esis and the premise. In all the datasets, entails class tends to
have a higher word overlap (as expected) with SCITAIL pro-
portions being similar to that of SNLI. We also compute the
difference between the premise and hypothesis tokens for
each example. On an average, the entails example tend to
have longer premises as also seen in the SCITAIL dataset. In
general, SCITAIL is statistically similar to existing datasets
with no easy wins by relying on overlap proportions or token
lengths.

Final dataset Our final released dataset is available at
http://data.allenai.org/scitail/ along with the raw annotations

7As per NLTK English stopword list.
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Datasets Overlap proportion Token difference

entails neutral entails neutral

RTE-6 0.53 0.23 12.36 8.22
SICK 0.79 0.43 0.51 -0.03
SNLI 0.65 0.45 3.74 2.90
SCITAIL 0.67 0.48 4.11 3.28

Table 3: Average proportion of the hypothesis tokens that
overlap with the premise and average difference between the
number of tokens in premise and the hypothesis in the train-
ing set per gold label.

collected for all the questions. We use the same train/dev/test
splits from the original question sets so that QA systems
trained on this dataset can be evaluated against the origi-
nal test questions. Table 4 gives the distribution of examples
and questions in our splits. In addition, we also present the
percentage of sentences with ‘S’-rooted parses, percentage
with at least one Open IE extraction and the number of dis-
tinct words in Table 5. Since the hypotheses in our datasets
are created from a relatively small set of questions, we have
much fewer unique words in the hypotheses as compared to
the premises.

Splits Examples Questions entails neutral

Train 23,596 1,542 8,602 14,994
Dev 1,304 121 657 647
Test 2,126 171 842 1,284

Total 27,026 1834 10,101 16,925

Table 4: Distribution of entailment examples and underlying
questions in the SCITAIL train/dev/test split.

Premise Hypothesis

‘S’-rooted parses 89.5% 99.1%
Open IE 85.8% 96.5%
Distinct words 23,968 4,010

Table 5: Percentage of sentences with ‘S’-rooted parse trees,
percentage of sentences with at least one Open IE extraction,
and number of distinct words in the SCITAIL dataset.

Decomposed Graph Entailment Model

As we show in Table 1, the examples in the SCITAIL dataset
can be challenging for methods that ignore the semantics of
the data. While LSTM embeddings used by current mod-
els can learn to capture the semantics, they need a much
larger training set to do so. Even training the model on
SNLI, a much larger but out-of-domain set, did not result
in any improvement. We hypothesize that providing syntac-
tic/semantic structure to the model can mitigate this issue.

However, the premises in our dataset are much longer than
the previously published datasets and harder to parse. For
example, Open IE (Banko et al. 2007) v4 8 was able to parse

8https://github.com/allenai/openie-standalone

only 85.8% of the premises on our test set, while it can ex-
tract 92.6% of the premises in the test set for SNLI. Note
that this statistic only captures the failure to parse; the per-
centage of noisy extractions would be even larger. On the
other hand, we can extract Open IE tuples from 96.5% of
the hypotheses (as compared to 93.25% for SNLI).

Based on this analysis, we design a new entailment model
that exploits structure from the hypothesis only. Instead of
extracting structure from the premises that tend to be much
longer and harder to parse, we focus on finding words in the
premise that can prove the hypothesis structure. Our main
goal with this proposed model is to show the value of struc-
tured representation on just the hypothesis for this task.

Graph Definition

We first start with extracting graph structure from the
hypothesis. Given the success of Open IE on this do-
main (Khot, Sabharwal, and Clark 2017), we also use Open
IE tuples as our graph representation for the hypothesis.
However, our model can use any graph with labeled edges.

For each (subject; predicate; obj(s)) tuple T (S, P,Oi),
we describe the edges added to our graph. The source and
target nodes of these edges form the nodes in our graph. We
create an edge between S and P named subj and between
S and O1 named subj − obj . Since we use Open IE v4, it
also extracts additional tags for certain objects (such as lo-
cation and time). For such objects, we use these tags as the
label for the edge from P to Oi. Also edges from P to ob-
jects beginning with a preposition (e.g., “through a system
of tubes”) are labeled with the corresponding preposition9

(e.g., through) similar to the collapsed dependencies (de
Marneffe and Manning 2008).

While phrases with prepositional attachment to the verbs
are converted into an object, other prepositional phrases tend
to be collapsed into a single object. For example, “to other
parts of the plant” would be a single object and as a result a
single node in our graph. To capture these within-object rela-
tions, we split objects using the same list of prepositions and
add an edge from each prepositional phrase to the previous
split phrase. For example, “to other parts of the plant” would
be converted into “to other parts” – of→ “the plant”. Fi-
nally, objects, Oi with no Open IE tags or recognized prepo-
sitions have edges from P labeled as “obj”. We collect the
edges and corresponding nodes from all the tuples in our hy-
pothesis to get GH = (VH , EH). Instead of computing the
probability distribution over the output labels using the en-
tire graph, we decompose this problem into first computing
the node and edge probability distributions and aggregating
them. These probability distributions basically capture the
probability of a node (or edge) in the hypothesis being sup-
ported/not supported by the premise.

Node Attention

To compute whether a node in the graph is supported by the
premise words, we first identify the premise words similar
to the node. We compute the attention (Bahdanau, Cho, and
Bengio 2015) of the words in the node over the words in

9We only consider a fixed list of prepositions; cf. Appendix.
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Stems transport water to other parts of the 
plant through a system of tubes.Water and other materials necessary for biological activity in 

trees are transported throughout the stem and branches in 
thin, hollow tubes in the xylem, or wood tissue.
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Figure 3: The decomposable graphical model architecture. Blue rectangles are used to indicate vector representations of words,
brown rectangles indicate attention vectors and green rectangles indicate distribution over the output labels.

the premise. Similar to the decomposable attention model,
we use the raw word embeddings of the premise to com-
pute this attention. Consider a node, vi ∈ VH with J words
{hij}. The attention weight for the hypothesis word hij on
the premise word pk in the premise (of length K) is com-
puted as: αijk = hij · pk

We compute the normalized attention, ωijk for the word,
hij and average the attentions from all the words in the node,
vi = {hij} to compute the node attention , ρik:

ωijk =
exp(αijk)∑
k′ exp(αijk′)

ρik =
1

J

∑

j

ωijk (1)

Node Probabilities

Next we calculate the probability of each node being sup-
ported by the premise by comparing the vector representa-
tion of the node with an attention-weighted representation
of the premise. We compute the hypothesis node representa-
tion, v̂i and the weighted premise representation, ρ̂i as:

v̂i =
1

J

∑

j

hij ρ̂i =
∑

k

ρikpk

Intuitively, if the words in a node are present in the premise,
the attention-weighted vector representation ρ̂i should be
similar to average vector representation v̂i. We compare
these vector representations using a single-linear percep-
tron, fv with dropout in the output layer (Srivastava et al.
2014) and ReLU (Glorot, Bordes, and Bengio 2011) acti-
vation function. Along with their vector representations, we
use element-wise difference and products (Mou et al. 2016)
as inputs to this linear perceptron.

Pr(vi) = fv([v̂i; ρ̂i; v̂i − ρ̂i; v̂i ∗ ρ̂i]) (2)

The linear perceptron outputs a two-dimensional vector cor-
responding to the final output labels: {entails, neutral}.
While our dataset only contains two output classes, the
model can be easily extended for the three-way entailment
classification task.

Edge Probabilities

The edges in our hypothesis graph capture relations between
the nodes and computing the support of an edge corresponds
to extracting this relation from the hypothesis. Standard re-
lation identification models (Ji and Grishman 2011) assume
the entity spans are provided as inputs to the model. Since
we do not have the exact spans in the hypothesis correspond-
ing to the nodes in the edge, we use the previously computed
attention, ρ̂ik to identify soft spans. Also, relation extraction
methods (Miwa and Bansal 2016) commonly use the out-
put embeddings from an LSTMs (Hochreiter and Schmid-
huber 1997) to calculate context-dependent representation
of the entities. Hence, we compute the representation for
each node using the attention-weighted representation of
the LSTM embeddings for each word in the premise, p̃k as
ρ̃i =

∑
k ρikp̃k.

We also learn an n-dimensional embedding for each edge
label, embe. Given an edge el = (vs, label, vt), we compute
the edge probability using the LSTM-weighted embedding
p̃ and edge embedding as

Pr(el) = ge([ρ̃s; embe(label); ρ̃t]) (3)

We use a single-layer perceptron with a ReLU activation
function and dropout in the output layer.

Final Prediction

Finally we combine the probability predictions on the nodes
and edges to get the final prediction by averaging the node
and edge probabilities.

Pr(VH ;P ) =
1

|VH |
∑

vi∈VH

Pr(vi)

Pr(EH ;P ) =
1

|EH |
∑

el∈EH

Pr(el)

Pr(GH ;P ) = Pr(VH ;P ) + Pr(EH ;P )

Note that we use probabilities to intuitively describe the
outputs of the node and edge modules. These “probabilities”
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range between (−∞,∞) i.e. correspond to the logit func-
tion value of the actual probability values. We finally use the
cross-entropy loss on the logit graph probability Pr(GH ;P )
to train this model.

Implementation Details

We implement our model using AllenNLP toolkit10 (Gard-
ner et al. 2017) in PyTorch.11 We use the 300-dimensional
840B Glove embeddings (Pennington, Socher, and Manning
2014) projected down to 100 dimensions. We set the di-
mensionality of the hidden vectors in LSTM and MLPe as
100. We used the cross-entropy loss with Adam optimiza-
tion (Kingma and Ba 2015). We halved the learning rate at
every epoch and used early-stopping (patience=20) based on
the validation set accuracy. We set the dropout to 0.5 and the
edge embedding dimensionality to 10. We selected these pa-
rameters based on the accuracies on the validation set. Our
implementation is also available from the dataset page at
http://data.allenai.org/scitail.

Experiments

We compare our system against two state-of-the-art neural
entailment systems along with a simple overlap-based model
trained on the SCITAIL dataset.

Baselines

Decomposable Attention Model (DecompAtt) (Parikh et
al. 2016): A simple model that decomposes the problem
into parallelizable attention computations. We used the Al-
lenNLP (Gardner et al. 2017) implementation of the decom-
posable attention model with 341K parameters

Enhanced LSTM (ESIM) (Chen et al. 2017): Enhanced
Sequential Inference model using only sequential informa-
tion12 with 4.3M parameters.

Ngram Overlap: We also implement a simple word-
overlap baseline to show that simple overlap measures are
not sufficient. We compute the proportion of unigrams, 1-
skip bigrams, and 1-skip trigrams (Guthrie et al. 2006) in
the hypothesis that are also present in the premise as three
features13. We feed these features into a two-layer percep-
tron(hidden dimension=2). (20 parameters).

DGEM: Our proposed decomposed graph entailment
model with 112K parameters.

Results

Table 6 shows the accuracies of the baseline systems on this
dataset. State-of-the-art neural methods achieve 10-12%
above the majority class baseline. Surprisingly the ngram-
based model, is also able to achieve similar results on the test
set.14 This shows the sequence-based neural models barely

10http://allennlp.org
11http://pytorch.org
12From https://github.com/lukecq1231/nli
13stemmed and stop-word filtered
14MaxEntropy-based model from the Excitement Plat-

form (Magnini et al. 2014) also achieved similar scores on
this dataset.

Models Validation Accuracy Test Accuracy

Majority class 63.3 60.3
DecompAtt 75.4 72.3
ESIM 70.5 70.6
Ngram 65.0 70.6
DGEM w/o edges 75.1 70.8
DGEM 79.6 77.3

Table 6: Validation and test set accuracy on the entailment
dataset. Our proposed models outperforms the state-of-the-
art by exploiting the structure of the hypothesis.

capture any semantics. On the other hand, our structure-
based approach is able to achieve about 5% gain over the
best baseline system on this task. The important of consider-
ing structure is further illustrated by the drop in test accuracy
when we ignore the edge probabilities in our model.

Qualitative Analysis

For some insight into the model, we depict in Figure 4 the
node attention and probabilities computed by our model on
one of the examples in our dev set. Even though the model is
not able to find support for the phrase ‘from water droplets’,
it is able to use the edge probability model on the LSTM-
embeddings to identify the ‘from’ relation between ‘water
droplets’ and ‘are formed’.

Comparison to Decomposable Attention Next we
present two cases where the decomposable attention model
incorrectly labels the example but our model is able to use
structure to accurately label the example. Consider the fol-
lowing entails example:

premise: Upwelling upward movement of deep
(abyssal), cold water to the surface.
hypothesis: Upwelling is the term for when deep ocean
water rises to the surface.

While most of the hypothesis words can be found in the
premise, the key phrase “is the term for” is mostly missing.
Our model is able to use the learned edge predictor model
to identify this relation, where as the decomposable atten-
tion model mainly relies on word attentions and labels this
incorrectly. On the other hand, consider the neutral example:

premise: If the conditions are not cold enough, the pre-
cipitation will be rain.
hypothesis: Precipitation commonly occur(s) along a
cold front.

Here, the decomposable attention model incorrectly predicts
this as entails due to the largely similar words in the sen-
tences. Our model does not find any support for the edges in
the hypothesis, specifically the (commonly occurs -subj→
Precipitation) and (commonly occurs -along→ a cold front)
edge and correctly predicts the neutral label.

Error Analysis

We analyzed 10 false positives (neutral examples marked as
entails) and 10 false negatives (entails examples marked as
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Figure 4: Attention map and graph probabilities on a sample entailment example where premise=“HOW CLOUDS ARE
FORMED Clouds are masses of water droplets or ice crystals that are suspended in the air.” and hypothesis=“Clouds are
formed from water droplets.” While the model does not find the phrase “from water droplets” as indicated by the low entails
probability, it recognizes the “from” relation between “are formed” and “water droplets”. Thus, even though the premise does
not explicitly mention ‘from’, our edge prediction model is able to identify this implicit relation using the context.

neutral) from the dev set. We identified five key causes of
errors ignoring one-off error cases.15

Noisy structure: In 35% of the examples, noisy extracted
structure from the hypothesis resulted in incorrect predic-
tions. For example, the Open IE extraction from “The en-
ergy content of foods is often expressed in calories.” does
not contain the key phrase ‘in calories’16.

Term Importance: In 20% of the examples, a key term
from the question is not supported by the premise but the
model still predicts the entails label due to other well-
supported terms. For example, ‘invisible gas’ is the key term
that needs to be supported for the hypothesis “Water vapor
exists in the atmosphere as an invisible gas”. However, the
model still identifies “of the water budget is present as a gas
(water vapor) in the atmosphere.” as a supporting hypothe-
sis. Identifying essential terms (Khashabi et al. 2017) from
the hypothesis could be one way to mitigate this problem.

Misleading premise words: In 15% of the examples, our
model fails to identify the key phrase in the hypothesis to
attend over for the node attention due to multiple similar
words. For example, the model has very low attention prob-
abilities over the premise words ‘are a key contributor’ for
the hypothesis node ‘is the main cause of ’ in the premise
due to other very similar words in the premise.

Long phrases: In 10% of the examples, averaged per-
word attention for longer phrases was not very useful as the
attention is spread across the entire sentence. Instead of a
simple averaged attention, a model using the parse structure
or the head-word of the phrase can likely avoid this issue.

Hard entailment: In 10% of the examples, the model
needed subtle reasoning to be able to infer the true label.
For example, the premise “Viruses have Nucleic Acids and
Proteins but lack other features of living cells.” can be used
to conclude “Nucleic acids are found in all living cells and
viruses.” even though it is not explicitly stated.

15In one example, the hypothesis tokens had noisy HTML char-
acters and in the second example, the annotator labeled assumed
domain knowledge that was not stated in the premise.

16Open IE: (The energy content of foods; is expressed; T:often)

Conclusion

We present a new natural dataset for textual entailment, SC-
ITAIL, derived directly from an end task, namely that of Sci-
ence question answering. We show that this is a challenging
dataset for current state-of-the-art models. We propose a new
neural entailment architecture that can use any graph-based
syntactic/semantic structure from the hypothesis. This ad-
ditional use of structure results in 5% improvement on this
dataset. We hope that this model sets a strong baseline for
achieving further gains on SCITAIL in the near future, help-
ing the field make progress in reasoning with complex, nat-
ural language. Exploring other possible syntactic represen-
tations for the hypothesis and comparing against newly de-
veloped approaches for using structure (Chen et al. 2017)
remain interesting directions for future work, as does the
translation of improvements on this entailment sub-task to
more effective question-answering systems for the Science
domain.

Acknowledgments

The authors would like to thank Dongyeop Kang, Oyvind
Tafjord, Luke Zettlemoyer for valuable discussions and help
throughout the project.

Appendix: Complete list of edge labels

Prepositions := {“with”, “at”, “from”, “into”, “during”, “in-
cluding”, “until”, “against”, “among”, “throughout”, “de-
spite”, “towards”, “upon”, “concerning”, “of”, “to”, “in”,
“for”, “on”, “by”, “about”, “like”, “through”, “over”, “be-
fore”, “between”, “after”, “since”, “without”, “under”,
“within”, “along”, “following”, “across”, “behind”, “be-
yond”, “plus”, “except”, “but”, “up”, “out”, “around”,
“down”, “off”, “above”, “near”}

Special Open IE tags := ”L:”, ”T:”
Argument edges := “subj”, “subj-obj”, “obj”
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