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Abstract

This work performs verb sense induction and clustering based
on observed syntactic distributions in a large corpus. VerbNet
is a hierarchical clustering of verbs and a useful semantic
resource. We address the main drawbacks of VerbNet, by
proposing a Bayesian model to build VerbNet-like clusters
automatically and with full coverage. Relative to the prior
state of the art, we improve accuracy on verb sense induction
by over 20% absolute F1. We then propose a new model,
inspired by the positive pointwise mutual information (PPMI).
Our PPMI-based mixture model permits an extremely efficient
sampler, while improving performance. Our best model shows
a 4.5% absolute F1 improvement over the best non-PPMI
model, with over an order of magnitude less computation time.
Though this model is inspired by clustering verb senses, it
may be applicable in other situations where multiple items are
being sampled as a group.

1 Introduction

The distributional hypothesis is most eloquantly stated as,
“You shall know a word by the company it keeps” (Firth
1957). Semantic vectors built on this principle (Deerwester et
al. 1990; Mikolov, Yih, and Zweig 2013; Pennington, Socher,
and Manning 2014) have proven to be highly effective rep-
resentations of words for many natural language processing
tasks. The vectors capture a view of a word’s context, typi-
cally representing the words appearing within a reasonably
small, sliding window.

This work builds on a modified distributional hypothe-
sis for analyzing verb semantics, which states that the dis-
tribution of syntactic expressions can play an equally im-
portant role in reflecting a word’s semantics (Levin 1993).
VerbNet (Kipper-Schuler 2005) is a lexical resource rely-
ing on this syntactic version of the distributional hypothe-
sis. It is a hierarchical clustering of verbs, manually built
by linguists, on this theoretical footing. Polysemy, where
a word may have more than one meaning, is important to
verb semantics - “enter a room” is fundamentally different
than “enter a race”, and we should account for this fact.
VerbNet handles polysemy by allowing distinct senses of
verbs to participate in different clusters. VerbNet addition-
ally lists the allowed syntactic patterns for each class, and
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labels the semantic roles of arguments. VerbNet’s accuracy,
and rich annotation, has made it useful for semantic tasks
like semantic role labeling (Palmer, Gildea, and Xue 2010;
Giuglea and Moschitti 2006).

In practice, it is difficult to get the full value from VerbNet.
It suffers from lack of coverage, despite manual work that
spans over a decade. Verb use and meaning varies widely, and
specialized domains such as legal and medical documents are
poorly covered. It has no coverage for languages other than
English. Expanding coverage to these areas through manual
effort alone is infeasible.

Automated approaches to this problem are promising in
general, and address the main concerns of extending coverage
and domain specificity. There has been a limited amount of
work in this domain. Mainly it has focused on probabilistic
graphical models, which can give a measure of uncertainty
along with their estimates of cluster membership. Given a
corpus, such a model can output a verb clustering that has full
coverage, tailored specifically to the domain of interest. For
any sentence, a full description of the possible cluster mem-
berships can be trivially computed, and semantic processing
of documents in the target domain can become much easier.
The state-of-the-art model (Kawahara, Peterson, and Palmer
2014) breaks the problem into two steps: sense induction
and verb clustering. This work includes contributions to each
step.

Our first contribution is improved sense induction. Our
new model improves clustering accuracy of verbs into senses
by an absolute F1 of over 20%. These improvements carry
over to direct, across-the-board improvements in the second
step, which is clustering those senses into a VerbNet-like
structure.

Our second contribution is a new model, based on the pos-
itive pointwise mutual information (PPMI). This measure
has been shown to be extremely effective at modeling distri-
butional similarity, and has wide applicability on semantic
tasks (Levy and Goldberg 2014b). The main insight behind
this model is that Dirichlet multinomial mixtures, like latent
Dirichlet allocation (LDA) (Blei, Ng, and Jordan 2003), com-
pute the sufficient statistics of word distributions in each topic.
The PPMI can be computed with the same sufficient statistics,
and is a sparse representation whose vector is semantically
meaningful.

With this new model, we are able to achieve better clus-
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ters in dramatically less time. Our best-performing model
outperforms the prior state-of-the-art by 15% absolute F1,
and outperforms the best non-PPMI model by almost 4.5%
absolute F1. The speedup for the PPMI model is over 20x in
the worst case.

The PPMI-based model is novel, but may be useful in non-
textual domains. Word2Vec is implicitly tied to the pointwise
mutual information, and has been adapted for use in areas like
network analysis (Grover and Leskovec 2016) and genetics
(Ng 2017). Our model is also likely to be useful for clustering
items with rich contextual information, regardless of domain.

The main contributions of our paper are:

• improved sense induction, that dramatically outperforms
the best previous approach;

• a novel PPMI-based exponential mixture model that is
more accurate than prior models, is over an order of magni-
tude faster, and is potentially applicable in other domains;
and

• a finer-grained feature set for sense clustering that boosts
performance for the novel model.

1.1 Prior work

The state of the art model for generating VerbNet-like clusters
(Kawahara, Peterson, and Palmer 2014) proposed a step-wise
approach. First, induce verb senses using a Dirichlet process
prior over Dirichlet-multinomial topics, with a model that is
similar to latent Dirichlet allocation (LDA) (Blei, Ng, and
Jordan 2003). Second, group senses into verb clusters using
a second Dirichlet process mixture. These two steps are com-
puted separately, instead of using the hierarchical Dirichlet
process (HDP) (Teh et al. 2006), because the two steps benefit
from different feature granularity. In the preliminary sense in-
duction stage, lexicalized syntactic features (slot:token
pairs) provide the best verb senses. However, when clustering
known senses into verbs, simple slot features (aggregating
over tokens sharing the same dependency relation) provide
the most accurate clustering of verb senses.

Others have approached the task of capturing syntactic
similarity by building semantic vectors using syntactic depen-
dency relationships (Levy and Goldberg 2014a), but we still
require a sense induction mechanism. We also require a map
from dense semantic vectors to clusters, in order to compare
to VerbNet. Both steps pose unsolved research challenges,
and so we prefer clustering with Bayesian mixture models.

2 Verb Sense Induction using Latent Dirchlet

Mixtures

The first stage in the step-wise verb clustering (Kawahara,
Peterson, and Palmer 2014) is the induction of verb senses.
In this step, we take the corpus as a set of “instances”: each
instance is extracted from a sentence in the corpus, and is a
verb together with its labeled dependencies. For the sentence,
“The dog chased the cat around the house,” the extracted
instance would look like (verb:chase, subj:dog,
dobj:cat, prep around:house). Sense induction
is treated as a clustering problem, forming groups of instances
that share a sense. Polysemy is only ambiguous within a verb,

so we first partition all instances with the same verb into
distinct documents, and treat the instances as atoms.

Similar to LDA, the prior work (Kawahara, Peterson, and
Palmer 2014) defines a “topic” for each sense, which is a
multinomial distribution over a vocabulary of slot:token
pairs (e.g., subj:dog or dobj:cat). Topic distributions
are drawn from a Dirichlet with a constant parameter β,
which controls the sparseness of the multinomials. When
β < 1, the topics tend to be sparse, which increases the like-
lihood that the induced senses are coherent, and makes sen-
tences with similar arguments tend to group together. These
topics are drawn from a Dirichlet process (DP) prior, which
uses a Chinese restaurant process (CRP) (Ferguson 1973) to
encourage a small, but unbounded and unspecified, number
of clusters.

In particular, the probability of choosing a cluster k based
on the CRP is

P (k|α,Ck(∗)) ∝
{
Ck(∗), if Ck(∗) > 0

α, if k = knew,
(1)

where Ck(∗) is the count of clustered items already in cluster
k. The probability of choosing an instance, I , with slots
s1, s2, . . ., given a particular topic θk, is given by

P (I|θk, β) ∝
∏
si∈I

P (si|θk, β), (2)

where P (si|θk, β) ∝ Cik + β, and Cik being the count
of observed instances of si assigned to topic k. The final
probability is given by the product of these components,
namely,

P (k|I, α, Ck(∗), θk, β) ∝ P (k|α,Ck(∗))·P (I|θk, β). (3)

The sampling procedure is stated in Algorithm 1. The
statement in line

Algorithm 1 Sampling verb senses in the Dirichlet-
Multinomial mixture

1: for verb v in corpus C do
2: Assign instances to random clusters and compute

counts matrices
3: for iteration in range(num iters) do
4: for instance I with current assignment k in v do
5: Update counts matrices Ck and C∗k to remove

instance I
6: Sample topic knew according to Equation (3)
7: Update counts matrices Cknew and C∗k to add

instance I
8: end for
9: end for

10: end for

Given a large corpus and many examples of a particular
verb, inducing verb senses can be accomplished using this
Gibbs sampler, but the prior work also includes some re-
finements that speed convergence. The first is a reduction
in vocabulary size by relabeling named entities (e.g. “John”,
“Microsoft”) with a generic <name> token, and clausal com-
plements (e.g. “John thought that <some other sentence>”)
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with a generic <CCOMP> token. We adopt the same conven-
tions here1. The second is the introduction of “initial frames,”
groups of instances that share the same tokens in the same
syntactic slots. The use of initial frames reduces the number
of elements that need to be assigned to clusters, and helps
initialize the topics with sensible values. However, the initial
frames remain fixed throughout sampling, which means the
model cannot recover from any mistakes in that initialization.
Finally, treating each verb separately is both a benefit and
a drawback. It is much more distributable, since there is no
need to synchronize across verbs, and it allows the topics
of syntactic arguments to be tailored to the specific usage
of each verb. However, not all verbs are frequent, and less-
frequent verbs will not necessarily have enough instances to
produce coherent topics.

2.1 Simultaneous Sense Induction by Sharing
Topics

In this work, rather than clustering instances of each verb
separately, we treat the collection of instances for a verb as
a document, and replace the DP with a fixed-size Dirichlet
multinomial - that is to say, we sample using LDA, with a very
small modification, to ensure that an instance with multiple
syntactic slots will be sampled as a unit. With this modifi-
cation, an instance (subj:he, dobj:it, prep to:me)
will have to draw all three syntactic slots from same topic,
independently, as in Equation (2), and we also update the
count matrices for each slot. This is detailed in Algorithm 2.

Algorithm 2 Sampling verb senses with common topics
1: Assign instances to random clusters and compute counts

matrices
2: for iteration in range(num iters) do
3: for verb v in corpus C do
4: for instance I , with current assignment k, in v do
5: Update counts matrices Ck and C∗k to remove

instance I
6: Sample topic knew according to Equation (3)
7: Update counts matrices Cknew

and C∗k to add
instance I

8: end for
9: end for

10: end for

This approach is reminiscent of LDA-Frames (Materna
2012), but is much simpler. Sampling each instance as a unit
encourages the topics to represent the entirety of their con-
stituent units, and the slot:token vocabulary eliminates the
need to sample unique topics for each syntactic slot. This
has a huge advantage in ease of implementation because dis-
tributed and optimized samplers for LDA are freely available
(Liu et al. 2011; Řehůřek and Sojka 2010). It is similar to the
LDA-based selectional preference model of (Wu and Palmer
2015), which uses LDA on the bag of labeled-dependencies
for each verb, and then uses the resulting topics for Semantic

1Although distinguishing named entity types is possible, explor-
ing whether it is useful is left for future investigation.

Role Labeling. Our contribution, compared to that work, is
to analyze the topics in the context of sense induction; this
requirement is the reason we insist that each instance should
be assigned to exactly one cluster, even though the prior work
did not. The Hierarchical Dirichlet Process(Teh et al. 2006)
could also be used here, allowing us to leave the number of
topics unspecified, but the algorithm is less practical on large
datasets.

We ran our sense induction on two datasets. The first,
in order to permit direct comparison with prior work, was
the Gigaword corpus (Parker et al. 2011). The second is
the freely-available Google Books syntactic n-grams corpus
(Goldberg and Orwant 2013). To our knowledge, this is the
largest dependency-parsed corpus in the English language,
and the “verbargs” section neatly aggregates the information
we need. Each line of the verbargs section represents a single
pattern of verb and linked dependencies. Because the corpus
is so large, these patterns also contain frequencies, and pat-
terns occurring fewer than 10 times are not included. The
paper associated with the release of the corpus has much more
detail, but the verbargs include the direct syntactic dependen-
cies of each verb pattern, which is exactly the information
relevant to our model.

2.2 Clustering Evaluation

VerbNet is both the motivation for this work, and our gold
standard clustering. In order to evaluate the quality of the
models, we use instances from the SemLink corpus (Palmer
2009), which has VerbNet class annotation. Our test set only
contains verbs that occur at least 100 times, because we want
to ensure there are enough instances to compute meaningful
metrics. Also, many of these verbs are polysemous, in the
sense of having multiple VerbNet classes, so we have a test set
that encompasses the behavior we aim to capture. Because the
model is generative, we can compute probabilities of sense
assignments, even for previously unseen instances. For each
instance in the test set, we assign the maximum-probability (a
posteriori) sense, given the learned topics. We compare this
sense assignment against the known VerbNet classes using
standard clustering metrics, in keeping with prior work on
this task: (modified) purity and inverse purity (Korhonen,
Krymolowski, and Marx 2003).

Purity is the proportion of “correct” assignments made
by a clustering algorithm, and is analogous to precision in
a supervised learning setting. Each found cluster is labeled
with the most-frequent true class and any elements of other
classes are counted as errors. Precisely, the purity for an
induced clustering K of n items, given gold standard classes
G is

PU(K,G) =
1

n

∑
i

|Ki|max
j

|Ki ∩Gj |
|Ki| .

A perfect purity score may be trivially achieved by assigning
each item to its own cluster. Indeed, the purity will always
increase with the number of singleton clusters, so the pu-
rity may give misleading assessments about cluster quality.
As in prior work (Korhonen, Krymolowski, and Marx 2003;
Kawahara, Peterson, and Palmer 2014), we prefer the modi-
fied purity (mPU), where we count all clusters of size one as
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errors,

mPU(K,G) =
1

n

∑
i

I(|Ki|)|Ki|max
j

|Ki ∩Gj |
|Ki| ,

where I(x) is a step indicator function that is one iff x > 1,
0 otherwise.

The inverse purity (iPU) is analogous to recall, and is
computed as

iPU(K,G) =
1

n

∑
i

|Gi|max
j

|Kj ∩Gi|
|Gi| .

This metric rewards grouping all items of the same true class
together. Singleton clusters in the gold standard G do always
count toward increased inverse purity, but we do not generate
G and so have no reason to penalize its structure. There is no
need for a modified inverse purity.

Table 1 shows the clustering mPU, iPU, and F1 score (sim-
ple harmonic mean of mPU and iPU) for senses induced
from various models (trained on Gigaword or Google Books
syntactic n-grams corpora, with 100 and 200 topics). Since
we observe a large difference in relative verb frequencies,
we compute micro-average and macro-average of mPU and
iPU across verbs. The micro-average weights all instances
equally, which gives more weight to accuracy on frequent
verbs. The macro-average is the mean of the mPU (or iPU),
taken on a verb-by-verb basis. We use the published model
from the prior work (Kawahara, Peterson, and Palmer 2014)
as a baseline. Again, we assign the instances to their maxi-
mum a posteriori sense given the published topics and topic
sizes.

An odd result from this table is that the automatically-
induced senses on the Google Books corpus do not generalize
as well to SemLink data, despite being based on a much larger
corpus. This result is discussed in more detail in Section 5.3.

3 Verb Clustering with Specific Features

Once we have each verb’s instances grouped into senses, we
can tackle the verb clustering problem. By sampling topics
for all verbs together, we actually have a natural clustering
of verbs induced by the topic assignments. However, in the
prior state-of-the-art model, there were two parts. After the
sense induction step, the induced verb senses were clustered
using a mixture model with a modified vocabulary. Because
Levin’s distributional hypothesis is based primarily on syntax,
slot features, which have summed across all tokens sharing
the same syntactic slot, gave the best alignment to VerbNet
classes.

We further refine the syntactic clustering model by intro-
ducing pattern features, such as subj/dobj/prep with.
The slot features worked best in the prior work, but the
aggregated count of subj and dobj counts doesn’t give a
clear estimate of the number of transitive constructions. It is
in general intractable to decipher which arguments occurred
together in particular instances. Because we marginalize out
the token information, the number of distinct syntactic pat-
terns is reasonable, and there is a large amount of overlap
across senses.

In Tables 2 and 3, we compare the effectiveness of these
features using the model described in the prior work. For
clarity, we show only the results from sense induction using
100 topics, because those induced senses perform better, and
they have identical patterns of performance. As a baseline for
each model, we include the performance of using the topics
from the sense induction step. For the Gigaword corpus, we
also show the accuracy of the prior state-of-the-art model.

4 A Novel Clustering Algorithm for Senses

In the second step of the clustering process we are in a sit-
uation that is not modeled well by a Dirichlet-Multinomial
mixture. Each sense is an aggregate of hundreds or thousands
of sentences, but should belong only to a single cluster. Slight
differences in the distributions across topics get multiplied
thousands of times, creating enormous differences in relative
probability.

We propose a novel clustering algorithm, that better rep-
resents the sense clustering task, and is orders of magnitude
faster. This model is one of the major contributions of this
work, and it may find application in other domains.

It is based on Positive Pointwise Mutual Information
(PPMI), which was shown to be implicitly related to pop-
ular semantic vector models (Levy and Goldberg 2014b).
Indeed, the PPMI vectors of word context even perform well
on word analogy tasks, so they seem to be extremely use-
ful semantic representations. We generate a PPMI vector for
each verb sense using the (fixed) counts of syntactic patterns.
During sampling, we compute the count matrices of syntactic
patterns assigned to each cluster, so we can easily generate a
PPMI vector for each cluster, as well.

Then, given cluster PPMI vectors Θi, i ∈ [1, . . . ,K], and
sense vector xs

P (xs|Θk) ∝ exp
(xs ·Θk

τ

)
, (4)

where τ > 0 is a parameter dictating “temperature”, and
the probability of assigning sense s to cluster k, with cluster
sizes Ck(∗), is

P (k|s,Θ, C) ∝ P (k|Ck(∗))P (xs|Θk). (5)

Note that computation of the left factor is given by Equation
(1).

We maintain exactly the same count matrices maintained
in LDA and the Dirichlet-Multinomial mixture, so the only
new overhead is the computation of PPMI vectors from these
matrices. This computation is more effort than the simple
smoothing and normalization of the Dirichlet-Multinomial,
but by batching samples before updates, this operation is
infrequent. During our testing, we observed that quality does
not suffer as the batch size increases, so we only update the
vectors once at the end of each sampling iteration.

Once the cluster vectors are computed, Equation (4) can
be computed at once for an entire batch, and for all top-
ics, with a simple matrix computation. There’s no need to
add smoothing to the PPMI vectors, and the matrices are
sparse. In the end, the runtime is dramatically lower than the
Dirichlet-Multinomial model, even with the added overhead
of computing PPMI.
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Corpus Algorithm
Verb Sense (Micro) Verb Sense (Macro)

mPU iPU F1 mPU iPU F1

Gigaword
Baseline 85.08 20.44 32.96 71.92 38.72 50.34

mLDA-100 81.59 43.06 56.37 71.35 54.07 61.52
mLDA-200 80.29 40.62 53.95 68.16 50.07 57.73

Google mLDA-100 78.84 27.67 40.97 61.40 47.85 53.79
mLDA-200 75.21 26.04 38.68 57.01 44.21 49.80

Table 1: Sense induction accuracy, on the Gigaword (Gigaword) and Google Books syntactic n-gram Google corpora. mLDA-
100 refers to the modified LDA algorithm run with 100 topics, mLDA-200 uses 200 topics. We include maximum a posteriori
assignment from the published verb-specific models as a baseline (Kawahara, Peterson, and Palmer 2014), but this baseline is
only available on the Gigaword corpus. The highest scores achieved by any model, on each corpus, are highlighted.

Algorithm
slot features pattern features

mPU iPU F1 mPU iPU F1
Prior 57.0 28.1 37.6 57.0 28.1 37.6
None 46.2 48.1 47.1 46.2 48.1 47.1
D-M 48.6 ± 0.7 47.7 ± 0.9 48.2 ± 1.5 36.3 ± 0.7 48.2 ± 6.0 41.4 ± 1.8
PPMI 52.5 ± 0.8 47.34 ± 4.8 49.8 ± 1.6 60.6 ± 0.8 46.60 ± .04 52.7 ± 0.2

Table 2: Verb clustering accuracy, for both algorithms, on verb senses from the Gigaword dataset. D-M is the Dirichlet
Multinomial model, and PPMI is the novel model proposed here. We include the published model of prior work (Kawahara,
Peterson, and Palmer 2014) as a baseline, as well as none, which is the baseline where we skip the second-step clustering and
simply use the shared topics from the sense-induction step as clusters. The highest scores achieved by any model are in bold face.
Baseline scores are duplicated in both columns.

Pseudo-code for the PPMI-vector clustering algorithm is
given in Algorithm 3

Algorithm 3 Clustering with Exponential Mixture of PPMI
Vectors

1: Compute X , the PPMI vectors for input matrix of sense-
syntax counts

2: Assign senses to random clusters and compute counts
matrices

3: Compute and normalize Y , the PPMI vectors for as-
signed clusters

4: for iteration in range(num iters) do
5: Compute probabilities by Equation (5), using 〈X · Y 〉
6: Assign new topics to senses and compute counts ma-

trices
7: Re-compute and normalize Y
8: end for

In Table 4, we report runtimes for comparison. Runtimes
are measured in seconds, processed on the same single ma-
chine with roughly equivalent optimization. A few patterns
in the table are worth mentioning. First, the accuracy of the
clusters induced by the modified LDA is surprisingly high.
On the Gigaword corpus, the mLDA clusters outperform the
predictions of the baseline, prior state-of-the-art. The only
model that dramatically outperforms this one-shot clustering
is the PPMI model using pattern features. Second, the PPMI
model always performs better with pattern features over slot
features on the same data. Third, the PPMI model is more
than an order of magnitude faster.

5 Implementational Notes and Observations

Prior work (Kawahara, Peterson, and Palmer 2014) proposed
a model based on a Dirichlet process, but we used a fixed-
size Dirichlet distribution for both sense induction and sense
clustering. By using a Dirichlet with capacity C that far
exceeded the final number of clusters used, and fixing the
concentration parameters at α/C, we end up with a truncated
approximation to the Dirichlet Process (Kurihara, Welling,
and Teh 2007; Ishwaran and Zarepour 2002). This difference
should have a minimal impact on performance. Further, in
Equation (2), we posit that the probability of choosing a
cluster in the Dirichlet-Multinomial mixture is proportional
to the product of all independent observations. In practice,
verb senses may have thousands of separate observations,
and small differences in the topic probability across clusters
tended to grow into extreme differences when amplified to
such high powers. Our performance was much better, and
much closer to the performance of prior work, when we
used the geometric mean of probabilities, rather than the
raw product. This also helps ensure that the Dirichlet prior
over cluster sizes behaves on the same scale as it does in a
traditional topic model. For individual instances, with only a
small number of observed slots, this doesn’t seem to make
such a large difference.

5.1 Parameter choices in the PPMI mixture

The parameter τ is important to the convergence properties
of the PPMI-based mixture model. It is the same form as the
well-known softmax, and as the temperature goes from zero
toward infinity, the resulting distribution switches from as-
signing all probability to the maximum of observed dot prod-
ucts, toward a uniform distribution. Essentially, it governs the
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Algorithm
slot features pattern features

mPU iPU F1 mPU iPU F1
None 35.04 30.22 32.45 35.04 30.22 32.45
D-M 44.82 30.15 36.05 45.96 30.25 36.49
PPMI 14.05 83.71 24.07 19.50 57.99 29.18

Table 3: Verb clustering accuracy, for both algorithms, on verb senses from the Google Books syntactic n-grams dataset. D-M is
the Dirichlet Multinomial model, and PPMI is the novel model proposed here. As a baseline, we include none, which is the
result if we were to skip the second-step clustering and simply use the shared topics from the sense-induction step as clusters.
The highest scores achieved for each feature set are in bold face. Baseline scores are duplicated in both columns.

Dataset Features D-M runtime PPMI runtime

Gigaword-100 slots 7400 160
Gigaword-100 patterns 6600 280
Gigaword-200 slots 5900 270
Gigaword-200 patterns 9400 320

Google-100 slots 6100 110
Google-100 patterns 4000 150
Google-200 slots 7800 110
Google-200 patterns 4900 140

Table 4: Verb clustering runtime (in seconds) on automati-
cally induced senses. The dataset names indicate the corpus
and the number of topics used in the sense induction step.

extent to which small differences in dot product produce large
differences in probability. We found that τ ∈ [0.01, 1] pro-
duced reasonable results. Lower temperature values caused
the model to make dramatic reassignments frequently, con-
verging quickly, but exhibiting occasional, dramatic shifts
of the cluster vectors even after many iterations. Larger tem-
perature settings made smaller, more stable steps, and used
fewer clusters.

In order to determine the final cluster for a particular in-
stance or verb sense, we looked at their probability under
the produced models and made maximum-likelihood assign-
ments.

The parameter α behaves exactly as it does in any Dirichlet
mixture. We tuned it for distinct datasets, but the same setting
worked well for both algorithms.

5.2 When not to use the PPMI mixture

In Tables 2 and 3, we see different stories about the effec-
tiveness of the PPMI mixture. On the Gigaword corpus, it
outperforms all other models. But on the Google Books syn-
tactic n-grams, it does not perform well. In this section, we
hypothesize why this happens.

The mPU/iPU tradeoff is governed by the number of clus-
ters the model preferred, and depends more on τ than on
α. On the Google Books syntactic n-grams corpus, when
setting τ > 0.1 the model tended to use only one or two
clusters, extremely favoring iPU. As τ was lowered progres-
sively, the model used more clusters, and purity increased,
until τ ≈ 0.01. Lowering τ further is impractical. It requires
a more complex implementation to avoid numerical overflow
after the exponential, but also, the signal from Equation (4)
overwhelms the Dirichlet prior entirely. Functionally, the

knob that governs the mPU/iPU tradeoff was at its extreme
setting, and it still hadn’t reached a region of acceptable
peformance.

This issue seems to come up only on the Google Books
syntactic n-grams corpus, and is worse using slot features.
Together, these results give clues as to the suitability of the
PPMI mixture model.

5.3 Performance on Google Books corpus

The Google Books syntactic n-grams makes poorer automatic
sense distinctions, along with poorer verb clusters. This runs
counter to the intuition that a larger corpus should prove more
accurate for distributional models.

The Google Books corpus is nearly two orders of mag-
nitude larger than the English Gigaword corpus. However,
it is functionally smaller because it is so heavily trimmed.
The number of distinct lexicalized syntactic structures is only
roughly 1.5× the number of distinct structures in Gigaword.
Pruning of low-frequency items may remove noise, but it also
has a dramatic smoothing effect. It seems that, at least for
this purpose, some important signal was lost along with the
noise.

This pruning removes many of the sentences that con-
tribute to finer-grained description of automatic senses, as
well. Since the slot features are broad and highly shared
across senses, there doesn’t seem to be enough discrimina-
tive power for the PPMI mixture to tell senses apart. The
Dirichlet-Multinomial performs better at making these dis-
tinctions, or at least is able to reach a more sensible tradeoff
between purity and inverse purity, on this dataset, but even
so the pattern features seem to help somewhat.

6 Qualitative Cluster Analysis

VerbNet is built on a combination of linguistic theory and
evidence. The linguistic theory points to the distribution of
syntactic patterns and selectional preferences as being highly
relevant to semantic clustering. This paper makes those ex-
plicit features, and runs an unsupervised clustering.

However, a qualitative analysis of the clusters suggests
that semantic generalization is still a difficult task. We use
SemLink instances for evaluation, but these are dominated
by a small number of highly-frequent verbs, and typically
only two or three automatically-induced senses are selected
for the SemLink instances. The majority class, and purity, of
most learned clusters are dominated by a single automatic
sense assignment. It is difficult to find any VerbNet class
well-represented by the induced clusters that also contains a
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significant portion of SemLink instances from more than one
verb.

For example, one learned cluster contains only the verbs
“rise” and “find”, both of which are well-represented in Sem-
Link. However, the SemLink instances do not belong together,
and there are many more “rise” instances. The instances of
“rise” in this cluster belong to VerbNet class 45.6, and it has
a relatively high purity. But all instances of “find” belong
to entirely different VerbNet classes, 13.5.1 or 18.4. Other
high-scoring clusters tend to follow this pattern.

Another cluster, one that has a lower purity, does show
generalization: it correctly clusters instances of “correct”,
“accumulate”, and “grab” from VerbNet class 13.5.2; it cor-
rectly joins distinct senses of “introduce” from VerbNet class
22.2 that the sense induction step separated incorrectly; and
correctly clusters instances of “get”, “switch”, and “turn” that
belong to VerbNet class 26.6.2. However, these three correct
generalizations should not be part of the same cluster.

SemLink provides a starting point for evaluation, but leaves
many questions unanswered when seeking to understand the
behavior of these models. It may be necessary to design a
task to measure coherence and generalization more directly.
Use of the verb clusters in a semantic task (semantic role
labeling, translation, or even sentiment analysis) would also
provide a more compelling argument. These investigations
are left to future work.

7 Future Work

The novel PPMI-vector mixture takes advantage of a few
properties of the verb-clustering dataset, but is applicable in
other domains, as long as those properties hold. The most im-
portant properties, as we see it, are: the items to be clustered
are not singletons, but are collections of multiple, discrete
units; the distributions for the collections are distinctive; and
we believe they should be grouped into a small number of
clusters. An example dataset with these properties is word
sense disambiguation. Word2Vec and PPMI provided an in-
spiration for this mixture, but Word2Vec does not explicitly
account for polysemy at all. There are multiple approaches
to this problem in the literature (Chen, Liu, and Sun 2014;
Trask, Michalak, and Liu 2015; Neelakantan et al. 2015), so
we can test the effectiveness of the PPMI mixture against
strong baselines.

The novel model should be more closely investigated -
parameter settings, such as varying temperature over time
to balance speed of convergence with stability, could play a
key role in performance. Also, by analogy to Word2Vec, the
Bayesian PPMI vectors should be useful semantic representa-
tions in their own right. We are looking forward to exploring
this connection in more detail.

The models employed here rely on a dependency-based
syntactic parse of a large corpus, but no corpus- or language-
specific features, so application of this framework to resource-
poor languages is also a promising direction for future work.

8 Conclusion

We have proposed a new framework for verb sense induction
and clustering, that captures the distributional hypothesis for

verbs, and achieved state-of-the-art results on replication of
VerbNet, using a Bayesian model. Our framework includes
a novel exponential mixture model, which takes advantage
of recent advances in vector representations of words and
senses.

Our recommendations for verb clustering are as follows.
First, share topics across verbs, following the lines of LDA.
This will automatically improve accuracy, and benefit repre-
sentations for infrequent verbs. Second, use the entire corpus.
Pruning of infrequent constructions may harm, rather than
help, with sense induction and verb clustering. Third, run
the verb clustering using the PPMI mixture with pattern
features. Tune τ to give an appropriate number of clusters,
if possible, and otherwise commence to run the Dirichlet-
multinomial model.

Our work proposes a PPMI-based exponential mixture
model whose sampler uses the same sufficient statistics as
LDA. It performs well, and is much faster, when each atom
in the mixture has a rich and unique context.
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