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Abstract

We propose cw2vec, a novel method for learning Chinese
word embeddings. It is based on our observation that ex-
ploiting stroke-level information is crucial for improving the
learning of Chinese word embeddings. Specifically, we de-
sign a minimalist approach to exploit such features, by us-
ing stroke n-grams, which capture semantic and morpholog-
ical level information of Chinese words. Through qualita-
tive analysis, we demonstrate that our model is able to ex-
tract semantic information that cannot be captured by exist-
ing methods. Empirical results on the word similarity, word
analogy, text classification and named entity recognition tasks
show that the proposed approach consistently outperforms
state-of-the-art approaches such as word-based word2vec and
GloVe, character-based CWE, component-based JWE and
pixel-based GWE.

1. Introduction

Word representation learning has recently received a sig-
nificant amount of attention in the field of natural lan-
guage processing (NLP). Unlike traditional one-hot repre-
sentations for words, low-dimensional distributed word rep-
resentations, also known as word embeddings, are able to
better capture semantics of natural language words. Such
representations were shown useful in certain down-stream
NLP tasks such as text classification (Conneau et al. 2016;
Xu et al. 2016), named entity recognition (Turian, Ratinov,
and Bengio 2010; Collobert et al. 2011; Sun et al. 2015),
machine translation (Devlin et al. 2014; Meng et al. 2015;
Jean et al. 2015) and measuring semantic textual similarity
(Shen et al. 2014; Wieting et al. 2015). It is therefore vital
to design methods for learning word representations that can
capture word semantics well.

Existing approaches only concentrated on learning such
representations based on contextual information (Mikolov
et al. 2010; 2013b; Ling et al. 2015; Levy, Goldberg, and
Ramat-Gan 2014; Pennington, Socher, and Manning 2014)
where words are regarded as atomic tokens. Recently, re-
searchers also have started looking into incorporating sub-
word level information to better capture word semantics
(Bian, Gao, and Liu 2014; Cotterell and Schütze 2015;
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Figure 1: Radical v.s. components v.s. stroke n-gram

Bojanowski et al. 2016; Cao and Lu 2017). While these ap-
proaches were shown effective, they largely focused on Eu-
ropean languages such as English, Spanish and German that
employ the Latin script in their writing system. Therefore
the methods developed are not directly applicable to lan-
guages such as Chinese that employ a completely different
writing system.

In Chinese, each word typically consists of less charac-
ters than English1, where each character conveys fruitful se-
mantic information (Wieger 1915; Liu et al. 2010). Given
the rich internal structures of Chinese words and characters,
approaches that exploit character level information (Chen et
al. 2015) have been proposed for learning Chinese word em-
beddings. However, is such information sufficient for prop-
erly capturing the semantic information of words? Does
there exist other useful information that can be extracted
from words and characters to better model the semantics of
words?

For internal structural information of words, we argue that
characters alone are not sufficient for capturing the seman-
tic information. For instance, as shown in Figure 2, two
words “timber” and “forest” are semantically closely re-
lated. However, “timber” is composed of two characters
“wood” and “material”, while “forest” is made up of “trees”
and “jungle”. If only character level information is consid-
ered, there is no information that is shared across these two
words as they consist of distinct characters.

While certain manually defined rules for extracting sub-
word information such as radicals2 (Sun et al. 2014; Li et

1Most modern Chinese words consist of only one or two char-
acters (Chen, Liang, and Liu 2015).

2A component primarily used for indexing characters.
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Figure 2: Example Chinese words and their English transla-
tions.

al. 2015; Yin et al. 2016) and components can be exploited
(Xin and Song 2017), such information might be incomplete
and noisy. As an illustrative example shown in Figure 1 (a),
“sun” serves as the radical of “intelligence”, but it hardly
expresses any semantic information related to its character.
Besides traditional radicals, components – the super collec-
tion of radicals, as summarized by HTTPCN3, can be used
to supplement the radicals. As shown in Figure 1 (b), “in-
telligence” is further reduced into the components “arrow”,
“mouth” and “sun”. However, all these components may not
be relevant to the semantics of the character. Also, a pixel-
based model that learns character features from font images
is not shown to be better than original word2vec model as
reported in (Su and Lee 2017). What constitutes the basic se-
mantic unit that resides in a Chinese word and how to extract
such information remain research questions to be answered.

While one can manually design methods to extract se-
mantic features from Chinese characters, automatic feature
learning could serve as an alternative approach (Bengio,
Courville, and Vincent 2013). In this work, we develop an
approach that can automatically acquire the meaningful la-
tent representations associated with Chinese words, which
requires minimal prior assumptions about how the words
and characters are constructed. Specifically, we take a min-
imalist approach by exploiting stroke4 n-gram information
conveyed by Chinese words, which flexibly captures mor-
phological and semantic information of the words. As shown
in Figure 1(c), our proposed stroke n-gram “knowledge”
is such a morphological structure of the character “intelli-
gence”, where more details will be given in Section 2.1.

We perform extensive experiments and through both qual-
itative and quantitative analysis, we show that our model is
able to learn better Chinese word representations than other
state-of-the-art approaches, including word-based word2vec
(Mikolov et al. 2013a) and GloVe (Pennington, Socher, and
Manning 2014), character-based CWE (Chen et al. 2015),
component-based JWE (Xin and Song 2017) and pixel-
based GWE (Su and Lee 2017). To the best of our knowl-
edge, this is the first work that exploits stroke level informa-
tion for learning Chinese word embeddings.

2. cw2vec Model

We provide a quick high-level overview of our cw2vec
model. The overall architecture of the proposed model is

3http://tool.httpcn.com/zi/
4The basic patterns in the writing of Chinese characters:

https://en.wikipedia.org/wiki/Stroke (CJKV character)

Figure 3: The overall architecture of our approach.

Figure 4: General shapes of Chinese strokes.

shown in Figure 3 with an illustrative example. In this ex-
ample, the current word is “haze” and its context words are
“manage” and “without delay”.

We first reduce the current word into stroke n-grams as
described in Section 2.1, where each stroke n-gram has a
representational vector, i.e., stroke n-gram embedding. Also,
each context word is assumed to be associated with a word
embedding of the same dimension. In our setting, the same
word appearing at different positions in the corpus shares the
same embedding, and so does the same stroke n-gram. After
that, we optimize the carefully designed objective function
and obtain final word embeddings and stroke n-gram em-
beddings based on the entire training corpus, as detailed in
Section 2.2.

2.1 Stroke n-grams

We classify the strokes into five different types in Figure 4.
For convenience, we assign each stroke an integer ID, from
1 to 5 respectively.

The Chinese writing system provides some guidelines on
what should be the natural order for strokes involved in
each character5. With such stroke order information, one
could design various models that can exploit such sequen-
tial information when modeling words. For example, recur-
rent neural networks (RNNs) such as LSTM (Hochreiter and
Schmidhuber 1997) could be used here. However, as noted
by (Mikolov et al. 2013a), such models typically involve an
expensive training process. Inspired by the models built in
the word2vec toolkit (2013a), we adopt a simpler and more
efficient approach in this work by employing stroke n-gram
information for characterizing Chinese words.

As described in Figure 5, we map a Chinese word into
stroke n-grams using the following steps: (1) dividing the
current word into characters, (2) retrieving the stroke se-
quence from each character and concatenating them to-
gether, (3) using stroke ID to represent stroke sequence, and
(4) imposing a slide window of size n to generate stroke n-

5https://en.wikipedia.org/wiki/Stroke order
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Figure 5: An illustrative example to show the procedures of
the generation of stroke n-grams from a word.

grams6.

2.2 Objective Function

We consider measuring the similarity between a word and its
context. In most models that regard words as atomic units,
the similarity between current word w and one of its context
words c is defined as sim′(w, c) = �w · �c, where �w and �c
are the embeddings of w and c respectively. In this work, we
assign an embedding to each stroke n-gram and each context
word, and define the similarity function between w and c
based on the embeddings of stroke n-grams of the current
word and the context word.

We scan every word throughout the corpus and obtain a
stroke n-gram dictionary S, and we use S(w) to denote the
collection of stroke n-grams of the word w. We define the
following similarity function between w and c:

sim(w, c) =
∑

q∈S(w)

�q · �c

where q is a stroke n-gram element of set S(w), and the
vector �q is the embedding of q.

Similar to (Mikolov et al. 2013a; Bojanowski et al. 2016),
we are interested in modeling the prediction of the context
word c based on the current word w. One could use the soft-
max function to model the probability of predicting c given
w:

p(c|w) = exp(sim(w, c))∑
c′∈V exp(sim(w, c′))

where c′ is a word in the word vocabulary V . Direct calcula-
tion of the denominator can be very expensive, as it involves
|V | operations. To resolve the issue, we employ the negative
sampling method, which is related to the noise-contrastive
estimation proposed by (Gutmann and Hyvärinen 2012) and
later extensively applied to word embedding learning tasks
(Mnih and Kavukcuoglu 2013; Mikolov et al. 2013b), mea-
suring semantic text similarity tasks (Huang et al. 2013;
Shen et al. 2014), and node embedding learning tasks (Tang
et al. 2015; Cao, Lu, and Xu 2015). The key idea of nega-
tive sampling is to replace the expensive denominator with a
collection of context words “negatively” sampled based on a

6For all the experiments, we set the values of n from 3 to 12.

distribution. This gives rise to the following objective func-
tion defined throughout the entire corpus:

L =
∑

w∈D

∑

c∈T (w)

log σ(sim(w, c))

+ λEc′∼P [log σ(−sim(w, c′))]

where λ is the number of negative samples, Ec′∼P [·] is the
expectation term and a selected negative sample c′ conforms
to the distribution P , which could be set as the word unigram
distribution U . In practice, to overcome the data sparseness
issue, we raise U to the the 3/4rd power, following (Mikolov
et al. 2013b). The activation function σ is the sigmoid func-
tion: σ(x) = (1 + exp(−x))−1. where T (w) is the set of
context words given current word within a window size, and
D is the set of all words within the training corpus.

We optimize the above objective function using standard
gradient based methods. After the learning process com-
pletes, we directly use the context word embeddings as our
output word embeddings.

3. Experimental Setup

In this section, we describe our data, benchmarks, evaluation
methods, and baseline algorithms.

3.1 Data

We downloaded Chinese Wikipedia dump7 on November
20, 2016, which consists of 265K Chinese Wikipedia arti-
cles. We use a script in the gensim toolkit to convert data
from XML into text format8. Based on our observation, the
corpus consists of both simplified and traditional Chinese
characters. Hence we utilize the opencc toolkit9 to normal-
ize all characters as simplified Chinese. Following (Chen et
al. 2015), all characters whose Unicode falls into the range
between 0x4E00 and 0x9FA5 are Chinese characters and
are retained. We use the ansj toolkit10 for word segmenta-
tion.

We scan the training corpus and record all the characters
so as to collect stroke n-grams. After that, we call the API
of Chinese character information search service of the Juhe
Data11, which crawls stroke information from the online
Xinhua Dictionary12.

3.2 Benchmarks and Evaluation Metrics

Word Similarity Task Following (Chen et al. 2015; Xu
et al. 2016), we adopt two manually-annotated datasets
for Chinese word similarity task, i.e., wordsim-240 and
wordsim-296 (Jin and Wu 2012). These datasets are trans-
lated from English benchmarks and manually scored again,
where words that have multiple senses or are difficult to
translate are removed.

7https://dumps.wikimedia.org/zhwiki/20161120/
8https://radimrehurek.com/gensim/corpora/wikicorpus.html
9https://github.com/BYVoid/OpenCC

10https://github.com/NLPchina/ansj seg
11https://www.juhe.cn/docs/api/id/156
12http://xh.5156edu.com/
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The word similarity task aims at the evaluation of the
model’s ability to capture semantic closeness and relat-
edness between two words. We compare the score calcu-
lated by the model against human-assigned scores using the
Spearman’s rank correlation coefficient ρ (Zar 1972) to as-
sess the quality of word embeddings.

Word Analogy Task Another commonly used task for
evaluating word embeddings is the word analogy task. This
task examines the ability to deduce the semantic relations
between different words with the learned word embeddings.
In this task, three words a, b, and s are given, the goal is to
infer a fourth word t that satisfies “a is to b that is similar to
s is to t”. The test dataset contains 1,124 testing instances.

Given the learned word embeddings, we use 3CosAdd
(Mikolov, Yih, and Zweig 2013) and 3CosMul function
(Levy, Goldberg, and Ramat-Gan 2014) to calculate the
most appropriate word t. We employ both methods and
adopt the same test data used in (Chen et al. 2015) for eval-
uations.

Text Classification Text classification is a common
method to validate word embeddings on downstream tasks.
We download Fudan Corpus13, which contains 9,804 doc-
uments in 20 different topics. Similar to how we process
the training data, non-Chinese characters are removed and
ansj is used for performing Chinese word segmentation.
Following (Xu et al. 2016), we select documents from 5 top-
ics: 1,218 environment, 1,022 agriculture, 1,601 economy,
1,025 politics and 1,254 sports documents. Motivated by
(Xu et al. 2016; Tang et al. 2015), we average the embed-
dings of the words occurred in a document as the feature
representations of the document. We build classifiers with
the LIBLINEAR14 (Fan et al. 2008), where 70% of total data
is used for training and the rest are used for evaluation. We
report the accuracy score using different embeddings gener-
ated by different methods.

Named Entity Recognition We evaluate word embed-
dings via the Named Entity Recognition (NER) task as well.
We implement the model described in (Ma and Hovy 2016)
for performing NER, where only word embeddings are fed
into the input layer as features. We used a publicly available
dataset fully annotated with named entity labels15, which
contains 7 attributes for each Chinese word, including time,
location, person, organization, company, product and oth-
ers. The complete data consists of 1,999 documents, and
70% is randomly selected for training and the remaining
30% is used for evaluation. Note that for both text classifi-
cation and NER tasks, we did not fine-tune the learned word
embeddings.

Qualitative Evaluation We also conduct qualitative anal-
ysis of our results, where the top 10 words that are most
similar to our target word are presented. The similar words
are retrieved based on the cosine similarity calculated us-
ing the learned embeddings. Through the qualitative analy-

13http://www.datatang.com/data/44139/
14https://www.csie.ntu.edu.tw/c̃jlin/liblinear/
15http://bosonnlp.com/resources/BosonNLP NER 6C.zip

sis, we can observe the different characteristics of each ap-
proach.

3.3 Baseline Algorithms

In order to assess the effectiveness of our model, we com-
pared with several state-of-the-art algorithms listed below.
• word2vec16 (Mikolov et al. 2013a; 2013b) is an effective

and efficient toolkit for learning word embeddings, which
implements two models, i.e., skip-gram and cbow.
Both of them will be regarded as our baselines.

• GloVe17 (Pennington, Socher, and Manning 2014) is an-
other state-of-the-art approach that collects global word-
word co-occurrence information from the entire dataset.
Both GloVe and word2vec are general word-based em-
bedding learning models that are not specifically designed
for any particular language.

• CWE18 (Chen et al. 2015) is a character-based model aim-
ing at learning Chinese word embeddings that exploits
character level information by jointly learning character
and word embeddings.

• GWE19 (Su and Lee 2017) leverages pixel-level informa-
tion, which exploits character features from font images
by convolutional autoencoders.

• JWE20 (Xin and Song 2017) reduces Chinese words into
components of characters, as the superset of radicals.
Components are extracted from the HTTPCN website, and
component-based JWE was shown to be much more ef-
fectively than MGE (Yin et al. 2016) - another recently
proposed purely radical-based Chinese word embedding
model.
For a fair comparison between different algorithms, we

use same dimension size for all word embeddings, and re-
moved the rare words that appeared less than 10 times in the
training corpus. The window size and negative samples were
both set to 5.

4. Empirical Results

In this section, we will show the empirical results of our
cw2vec model compared to each baseline method.

4.1 Word Similarity and Word Analogy Results

As shown in Table 1, skip-gram performs better on word
analogy than cbow, but worse on word similarity task. The
results of CWE are generally better than skip-gram and
cbow model on both word similarity and word analogy tasks.
It is consistent with the findings reported in (Chen et al.
2015), since the character level information can improve
Chinese word embeddings. We also observe that the embed-
dings produced by the GloVe model perform better on Chi-
nese word analogy task than skip-gram and cbow. By lever-
aging a large number of Chinese components, JWE achieves

16https://code.google.com/archive/p/word2vec/
17http://nlp.stanford.edu/projects/glove/
18https://github.com/Leonard-Xu/CWE
19https://github.com/ray1007/gwe
20https://github.com/hkust-knowcomp/jwe
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Model Word Similarity Word Analogy Text Classification Named Entity Recognitionwordsim-240 wordsim-296 3CosAdd 3CosMul
skip-gram (Mikolov et al. 2013b) 44.2 44.4 58.3 58.9 93.4 65.1
cbow (Mikolov et al. 2013b) 47.0 50.2 54.3 53.5 93.4 59.6
GloVe (Pennington, Socher, and Manning 2014) 45.2 44.3 68.8 66.7 94.2 66.0
CWE (Chen et al. 2015) 50.0 51.5 68.5 69.6 93.2 65.8
GWE (Su and Lee 2017) 50.0 49.1 50.8 50.6 94.3 65.5
JWE (Xin and Song 2017) 48.0 52.7 74.2 76.3 94.2 67.9
cw2vec (stroke n-grams) 50.4 52.7 78.1 80.5 95.3 71.7

Table 1: Performance on word similarity, word analogy task, text classification and named entity recognition. The embeddings
are set as 300 dimensions. The evaluation metric is ρ× 100 for word similarity, accuracy percentage for word analogy and text
classification, F1-measure for named entity recognition task.

good performance on wordsim-296 dataset and word anal-
ogy task21. Besides, GWE is not more effective than skip-
gram and cbow model on our experiments in conformity
with the conclusion reported in (Su and Lee 2017). Overall,
thanks to the effectiveness of the proposed stoke n-grams,
our model achieves the best results on wordsim-240 dataset.
Our model also achieves the best results on wordsim-296,
along with JWE. On the other hand, our model improves
around 4 points over JWE on word analogy task.

Although morphological analysis for Chinese presents
some unique challenges (Packard 2000), we believe that
the rich stroke n-gram information used in our model does
capture certain level of morphological information of Chi-
nese. Words that share the same morphologically meaning-
ful structure may tend to convey similar semantics – captur-
ing such information can lead to improved modeling of word
representations. Indeed from the results of the word similar-
ity task we can see that our approach can be used to better
capture the similarity between semantically related words,
leading to improved word similarity results. Such stroke n-
gram information, together with the contextual information
exploited in the learning process, results in improved repre-
sentations for Chinese words that also perform well on the
word analogy task.

4.2 Text Classification and Name Entity
Recognition Results

One of the goals for learning word embeddings is to use
them in certain downstream NLP tasks. We first conduct
experiments on the text classification task, in order to val-
idate the effectiveness of the learned Chinese word embed-
dings. For each document, we construct a representation us-
ing word embeddings generated by different models. Thus
high quality word embeddings will lead to good accuracy
under the same classifier. As we can see from Table 1, skip-
gram, cbow and CWE achieves over 93% accuracy, while
the results of GloVe, GWE and JWE are above 94% on such
a task. Overall, our model can reach above 95%, which gives
a 1% absolute improvement in accuracy over the best base-
line approach.

21We were unable to obtain the original source code of MGE
(Yin et al. 2016), but conducted experiments using the reproduced
version provided by (Su and Lee 2017), whose results are consis-
tently worse than JWE on each dataset in accordance with (Xin and
Song 2017).

Figure 6: Performance on word analogy over dimensions

We next conduct an experiment on NER to observe the
effectiveness of the embeddings on such a structured pre-
diction task. The key of the task is to extract named entities
and their associated types. F1 score of NER will be higher
if better word embeddings are fed into the neural networks.
As shown in Table 1, cbow does not perform well on this
task, which might be due to the averaged context word em-
beddings, and skip-gram, GloVe, CWE and GWE are much
better. JWE outstrips other baseline methods by around 2
points. Overall, our model outperforms JWE by 3.8 points,
confirming the effectiveness of our stroke n-gram based ap-
proach.

4.3 Performance v.s. Dimensions

In order to study the performance over different dimensions
of embeddings, we conduct experiments on word analogy
task for each model. As described in Figure 6, we can con-
clude that the results of skip-gram and cbow achieve the best
scores when the dimension of the embeddings are set to 200.
GloVe performs much better than these two methods over
different dimensions, and CWE is better than GloVe espe-
cially when dimension is set to 200. With the component
level information, JWE is able to outperform other base-
line methods. Finally, our model achieves the best perfor-
mance across different dimensions with finer grained sub-
word structure - stroke n-grams.

4.4 Performance v.s Training Data Size

Besides the whole Chinese Wikipedia dump corpus as the
data for training word embeddings, we also explore the re-
sults on a smaller dataset that includes only the first 20%
Wikipedia articles for learning. The results are presented
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Figure 7: Performance on word similarity, trained on the
front 20% wikipedia articles. The embeddings are set as 100
dimensions.

in Figure 7. With less training data, word-based skip-gram,
cbow and GloVe do not perform well, while the rest of mod-
els appear to be more robust than these models, which we be-
lieve is largely due to its ability to capture subword informa-
tion. CWE outperforms other baseline methods on wordsim-
240, while JWE performs better on wordsim-296 dataset.
Our model, on the other hand, is able to obtain the best re-
sults on both datasets. We believe it is because our approach
that exploits n-gram information is more robust to the data-
sparseness issue during learning, in comparison to alterna-
tive approaches when there is limited training data available.

4.5 Qualitative Results

To better understand the quality of the learned word em-
beddings for each model, we conduct qualitative analysis by
performing some case studies in Table 2 to illustrate the most
similar words to certain target words under different meth-
ods. As shown in Table 2, the first example word we consider
is “water pollution”. It is an environment related term and is
thus semantically related to words under such a theme.

GWE produces several words relevant to “polluted”, such
as “sludge”, “stain” and “filth”, which are not directly se-
mantically related to the target word. Compared with the
GWE model, JWE appears to tend to emphasize on the last
two characters “pollution”. It learns a representation for the
target word “water pollution” that is similar to that of “oil
pollution”, which seems not very semantically related. As a
global count-based model, GloVe yields several words such
as “circulatory system” and “nervous system”, which do not
appear to be semantically close to the target word. All the
top-ranked words identified by CWE contain the character
“water” or “sewage”, which embodies its joint learning idea.
Certain words such as “leakage” do not appear to be seman-
tically very closely related to the target word. In contrast, the
words identified by our model do not exhibit such an issue.
They are largely semantically relevant to the target word and
also share certain structural similarity with the target word.
For example, the only model that can identify “water qual-

ity” as a similar word is our model, yet this word is seman-
tically highly relevant to the target word. Overall, our model
can capture semantic relatedness well, since it appear to be
able to extract additional semantic information due to the
unique subword information it is able to capture.

As another example, we intentionally select the target
word “Sun Wukong”, the protagonist of both the popular
Chinese classic novel known as “Journey to the West” and
the famous Japanese cartoon known as “Dragon Ball”. GWE
and CWE yields irrelevant words such as “Xiao Wu”, “A
Wu”, “Gan Wu”, and “Yu Wu”, which share the same char-
acter “Wu”. Again, GloVe generates several irrelevant words
such as “lady-killer” and “A Ge”. Conversely, all the similar
words computed by our model are from the figure names (or
alias) or production names in either of these two artworks.

The learning procedures for CWE and GWE involve
learning separate embeddings for words and characters (and
pixel information for GWE), combining them using simple
operations such as averaging. One issue with such an ap-
proach is that the frequent characters may play a dominating
factor in the learned embeddings to a certain extent from
the above examples. In contrast, our model directly learns
a single embedding for each word by constructing a simi-
larity function between stroke n-grams and context words.
Such an approach is shown to be able to alleviate the above-
mentioned issue.

5. Related Work

Most models for learning word embeddings are based on
the idea of modeling the relationship between a word and its
context. There are two main families of models for learning
word embeddings – neural based and co-occurrence count-
based models. The underlying principle based on which such
models are proposed is the distributional hypothesis (Har-
ris 1954): similar words tend to appear in similar contexts.
Word2vec (Mikolov et al. 2013a) and GloVe (Pennington,
Socher, and Manning 2014) are two representative models
for learning word embeddings, which are widely used in the
community due to their effectiveness and efficiency in learn-
ing.

5.1 Learning with Subword Information

Although the above-mentioned models are effective, they re-
gard individual words as atomic tokens and the potentially
useful internal structured information of words is ignored.
This observation has led to the investigations on models that
exploit subword information. Luong, Socher, and Manning
(2013) proposed to use a recursive neural network to extract
morphological information from words. Botha and Blun-
som (2014) introduced a scalable model to integrate com-
positional morphology. Bian, Gao, and Liu (2014) explored
different types of subword features to enhance the morpho-
logical property of word embeddings. Cotterell and Schütze
(2015) also proposed models to integrate morphological in-
formation in the embedding learning process. Bojanowski
et al. (2016) and Wieting et al.(2016) introduced models
to learn word embeddings with character n-gram informa-
tion. Cao and Lu (2017) presented a model based on convo-
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Targets GWE JWE GloVe CWE cw2vec

水污染
(water
pollution)

污染源(pollutant src) 荒漠化(desertification) 公害(public nuisance) 污染源(pollutant src) 污染(pollution)
污染(pollution) 污染物(pollutant) 废弃物(garbage) 污染(pollution) 污染物(pollutant)
水害(water damage) 内涝(waterlogging) 洪涝(flood) 污染物(pollutant) 水质(water quality)
污泥(sludge) 排污(pollution discharge) 奶制品(dairy product) 水害(water damage) 水资源(water resource)
沙漠化(desertization) 油污(oil pollution) 循环系统(circulatory sy) 污泥(sludge) 污染源(pollutant src)
污水(sewage) 沙漠化(desertization) 神经系统(nervous sy) 污水(sewage) 废水(waste water)
污渍(stain) 地表水(surface water) 市容(city appearance) 污渍(stain) 荒漠化(desertification)
废水(waste water) 盐碱化(salinization) 职业病(occupational ds) 污物(dirt) 地下水(groundwater)
渗水(leakage) 渗漏(seepage) 结构性(designability) 废水(waste water) 地表水(surface water)
污垢(filth) 公害(public nuisance) 污染(pollution) 渗水(leakage) 沙漠化(desertization)

孙悟空
(Sun
Wukong)

孙悟天(Son Goten) 唐僧(Monk Tang) 唐僧(Monk Tang) 孙悟天(Son Goten) 沙悟净(Sha Wujing)
孙悟饭(Son Gohan) 孙悟饭(Son Gohan) 孙悟饭(Son Gohan) 孙悟饭(Son Gohan) 白骨精(Bai Gujing)
小悟(Xiao Wu) 白骨精(Bai Gujing) 白骨精(Bai Gujing) 小悟(Xiao Wu) 西游记(J. to the West)
龙珠(Dragon Ball) 沙悟净(Sha Wujing) 西游记(J. to the West) 阿悟(A Wu) 沙僧(Monk Sha)
甘悟(Gan Wu) 西游记(J. to the West) 龙珠(Dragon Ball) 沙悟净(Sha Wujing) 猴王(Monkey King)
阿悟(A Wu) 唐三藏(Xuanzang) 三打(three strikes) 甘悟(Gan Wu) 孙悟天(Son Goten)
玉悟(Yu Wu) 贝吉塔(Vegeta) 沙悟净(Sha Wujing) 董悟(Dong Wu) 唐三藏(Xuanzang)
天大(extremely big) 红孩儿(Red Boy) 唐三藏(Xuanzang) 玉悟(Yu Wu) 贝吉塔(Vegeta)
真飞龙(really dragon) 猴王(Monkey King) 色狼(lady-killer) 西游记(J. to the West) 龙珠(Dragon Ball)
悟(Wu) 沙僧(Monk Sha) 阿哥(A Ge) 龙珠(Dragon Ball) 孙悟饭(Son Gohan)

Table 2: Case study for qualitative analysis. Given the target word, we list the top 10 similar words from each algorithm so as to
observe the differences. Due to limited space, we use the following abbreviations: src for source, J. for Journey, sy for system,
and ds for disease.

lutional neural networks that learns word embeddings with
character trigrams, word affixes and inflections.

5.2 Chinese Word Embeddings

Models specifically designed for learning Chinese word em-
beddings have also been studied in the literature. Yang and
Sun (2015) used a Chinese synonym dictionary known as
Cilin (Jiaju et al. 1983) to disambiguate multiple senses of
words or characters. Xu et al. (2016) utilized a translation
tool to extract semantic knowledge from other languages for
capturing the semantic information of characters in a word.
While these approaches improve the quality of embeddings
with external knowledge, there also exist approaches that ex-
ploit internal structure information associated with words.
Chen et al. (2015) designed CWE model for jointly learning
Chinese character and word embeddings, which makes full
use of character level structured information for improving
the quality of Chinese word embeddings. Sun et al. (2014)
and Li et al. (2015) used a radical dictionary to extract sub-
word features during learning, and Xin and Song (2017) in-
troduced a model called JWE that is based on components
that is an extended radical collection. Liu et al. (2017) il-
lustrated visual character embeddings from their images to
reduce the data sparseness issue related to rare words, and
GWE, proposed by Su and Lee (2017), directly extracts
character features from the images using convolutional au-
toencoders .

6. Conclusion and Future Work

In this work, we introduced cw2vec, a new model for learn-
ing Chinese word embeddings. From a linguistic point of
view, unlike rule-based approaches that exploit rigid charac-
ter or component level information, our approach provides
a flexible way of capturing semantically meaningful sub-

Figure 8: Two example Chinese characters and their English
translations.

word information for Chinese. We validated our argument
from an empirical point of view through both quantitative
and qualitative analysis with comparisons against baseline
approaches.

Generally speaking, stroke n-grams flexibly provide finer
grained information associated with words, which may be
overcomplete. On the other hand, similar to radical-based,
component-based and pixel-based features, stroke n-grams
might express ambiguous information under certain situa-
tions. For example, as shown in Figure 8, the two words
“soil” and “soldier” share exactly the same stroke n-grams
though they are semantically unrelated. Nonetheless, our
model outperforms other subword based models as we can
observe from the experimental results. Although our model
is introduced to learn Chinese word embeddings, the idea
can also be applied to other languages that share a similar
writing system. In the future, we would like to further ex-
plore learning representations for traditional Chinese words
and Japanese Kanji, and we are also interested in investi-
gating alternative neural architectures for capturing stroke
information of Chinese words.
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