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Abstract

There are two major problems in duplicate question identifi-
cation, namely lexical gap and essential constituents match-
ing. Previous methods either design various similarity fea-
tures or learn representations via neural networks, which
try to solve the lexical gap but neglect the essential con-
stituents matching. In this paper, we focus on the essential
constituents matching problem and use FrameNet-style se-
mantic parsing to tackle it. Two approaches are proposed to
integrate FrameNet parsing with neural networks. An ensem-
ble approach combines a traditional model with manually de-
signed features and a neural network model. An embedding
approach converts frame parses to embeddings, which are
combined with word embeddings at the input of neural net-
works. Experiments on Quora question pairs dataset demon-
strate that the ensemble approach is more effective and out-
performs all baselines.1

Introduction

Duplicate question identification (DQI) aims to compare two
questions and identify whether they are semantically equiv-
alent or not, i.e., a binary classification problem. It is a vi-
tal task for community question answering (CQA). With an
automatic DQI method, a CQA forum can merge duplicate
questions so as to organize questions and answers more ef-
ficiently. Besides, by retrieving questions that are semanti-
cally equivalent to a question presented by a user, an auto-
matic QA system can answer the user’s question with an-
swers of the retrieved questions.

There are two major problems in DQI, namely lexical gap
(or called semantic gap) and essential constituents matching.
Essential constituents of a question refer to constituents that
are important to the meaning of the question. A constituent
contains two parts, name and value. For example, for a ques-
tion asking route, there is usually a destination constituent.

Four questions are listed below to explain the two prob-
lems. The first two questions are duplicate, and the last two
are non-duplicate.

• Q1: What is the most populous state in the USA?
• Q2: Which state in the United States has the most people?

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The code is available at https://github.com/zxdcs/DQI

• Q3: How can I go downtown from the airport?
• Q4: How can I go downtown from the park?

First, different people tend to use different words and
phrases to express the same meaning. For Q1 and Q2, al-
though they are semantically equivalent, there are only a few
overlapped words. If only considering the surface form of
the questions without leveraging any semantic information,
it is hard to identify that they are duplicate. This problem
is called lexical gap. Second, for Q3 and Q4, although most
words are overlapped and there is only one different word,
they are not duplicate. There are two essential constituents,
points of departure and destination, in the two questions. The
departure places are different, therefore the answers for one
question are useless for the other one. It is hard for a model
to classify them as non-duplicate because their surface forms
are so similar. We refer to this problem as essential con-
stituents matching.

Distributed representation is an effective way to tackle the
lexical gap problem. Researchers have designed various sim-
ilarity features based on word embeddings (Franco-Salvador
et al. 2016), or acquired representations of questions via neu-
ral networks and then calculated their similarity (Santos et
al. 2015; Lei et al. 2016). Although much effort has been
paid to the lexical gap problem, there is little research on the
essential constituents matching problem, which is also vital
to DQI. Previous approaches are generally based on simi-
larity. Therefore they are unlikely to classify Q3 and Q4 as
non-duplicate. The words and sentence patterns of the two
questions are so similar that representations learned by neu-
ral networks are likely to be similar. There should be a way
to model the matching of essential constituents in question
pairs explicitly. The unmatched essential constituents can
provide strong clues for predicting question pairs as non-
duplicate.

It is non-trivial to extract essential constituents in a ques-
tion. A common way is to define constituent categories by
experts and label some questions by annotators to get a la-
beled dataset. Then, a supervised sequence labeling model
can be trained on the dataset to extract essential constituents,
which is similar to named entity recognition task (Sang
and Meulder 2003). However, defining and labeling essen-
tial constituents in open domain are impractical, consum-
ing too much time and funding. Fortunately, there is a cor-
relation between essential constituents and semantic units
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in a semantic parse. Hence, we parse questions using a
FrameNet (Baker, Fillmore, and Lowe 1998) parser and ap-
proximate essential constituents by frames. The essential
constituents matching problem is transformed into a frame
matching problem. In this way, manual labeling is avoided
and all we need is a frame parser, which is publicly available
on the Internet.

In this paper, we use FrameNet parsing for essential con-
stituents matching and neural networks for handling lexical
gap. Two approaches are proposed to integrate FrameNet
parses with neural networks, namely ensemble approach and
embedding approach. In the ensemble approach, two mod-
els are trained separately and their outputs are combined. For
FrameNet parses, two kinds of features on the word and the
frame level are designed to measure the matching degrees
of essential constituents. A gradient boosting decision tree
(GBDT) (Friedman 2001) classifier is trained on these fea-
tures. For neural networks, any kinds of neural networks that
take two sentences as input can be used. In the embedding
approach, a unified model is proposed. Each kind of frame is
assigned to an embedding. The frame embeddings are con-
catenated with word embeddings at the input of neural net-
works. Consequently, the representations learned by neural
networks can include essential constituents information.

Frame Parsing
The FrameNet project (Baker, Fillmore, and Lowe 1998) is a
semantic database of English, which contains about 200,000
manually annotated sentences linked to more than 1,200 se-
mantic frames. It is based on a theory of meaning called
Frame Semantics (Fillmore 1976). The basic idea is that the
meaning of most words can be understood on the basis of se-
mantic frames, which are represented by three major compo-
nents: frame, frame elements (FEs) and lexical units (LUs).

Table 1 lists the parse of Q3 using a FrameNet parser
called SEMAFOR (Kshirsagar et al. 2015). The first column
lists all words in the question. In the rest columns, each col-
umn represents a frame. The word that triggers a frame is
marked by bold text, and other items represent FEs of the
frame. The question contains three frames, including capa-
bility, motion and buildings. Take the motion frame as an
example, it is evoked by LU go and contains three FEs, i.e.,
theme, goal and source. The FE goal is filled by LU down-
town.

Capability Motion Buildings
How Entity
can Capability

I Event Theme
go Motion

downtown Goal
from

Sourcethe
airport Buildings

?

Table 1: FrameNet-style parsing of a question.

The resemblance of frame and essential constituent is ap-

parent. By viewing the name and LUs of a frame as the name
and value of an essential constituent, a frame can be easily
converted to an essential constituent. This is the main reason
why FrameNet-style parsing is used.

We find that the FrameNet parsing cannot cover all es-
sential constituents in questions, which is because of both
the incomplete coverage of FrameNet and unsatisfying per-
formance of the parser. A major missing is some location
constituents. For example, in question “What is the best
travel website in Spain?”, the word Spain is not included
in any frame. To overcome this shortcoming, named enti-
ties in questions are recognized by an automatic recognizer
and they are fitted into the FrameNet structure. Specifically,
the word Spain is recognized as a geo-political entity (GPE).
Hence, a frame with GPE as the name and Spain as the LU
is constructed.

Neural Networks Model

Neural networks models (NNMs) with word embeddings as
input are ideal models to handle the lexical gap problem.
Because our focus is how to leverage frame parsing rather
than proposing a novel NNM, we directly use some off-the-
shelf models that perform well on similar tasks. In exper-
iments, many different kinds of neural networks are tried.
Here we only introduce a basic one as an example, that is
a Siamese network (Bromley et al. 1993) consisting of two
bidirectional long short-term memory (BLSTM) networks.
The structure is shown in Figure 1.

Q1

E1

H1

E2

Q2… the most populous… … has the most people…

H2

J

MLP

y

Figure 1: The structure of the BLSTM model.

At first, a question Q = [w1, w2, ..., wn] is mapped
to an embedding matrix E via lookup table, i.e. E =
[e(w1), e(w2), ..., e(wn)], where e(wt) is the word embed-
ding of wt. Then a BLSTM (Hochreiter and Schmidhuber
1997; Graves 2012) is employed to learn contextual repre-
sentations of the embeddings and these representations are
reduced to a fixed-length representation H . The gates, cell
and output of LSTM are calculated as follows:
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it = σ(Wixt + Uiht−1 + bi) (1)
ft = σ(Wfxt + Ufht−1 + bf ) (2)
ot = σ(Woxt + Uoht−1 + bo) (3)
ĉt = tanh(Wcxt + Ucht−1 + bc) (4)
ct = ft � ct−1 + it � ĉt (5)
ht = ot � tanh(ct) (6)

where it, ft, ot are input gate, forget gate and output gate
respectively, σ is a sigmoid function, Wi, Wf , Wo, Wc, Ui,
Uf , Uo, Uc are weight matrices, bi, bf , bc are biases, and xt

is the input at the time step t.
We use a function LSTM to represent the computation

of LSTM. With e(wt) as the input, the hidden state is

ht = LSTM(e(wt), ht−1) (7)

A BLSTM consists of a forward and a backward LSTM.
The forward LSTM reads the input sequence as it is or-
dered and calculates forward hidden states (

−→
h 1, ...,

−→
h n).

The backward LSTM reads the sequence in the reserve order
and calculates backward hidden states (

←−
h 1, ...,

←−
h n). The

fixed-length representation is obtained by concatenating the
last forward and backward hidden state, i.e.,

H = [
−→
h n;

←−
h 1] (8)

Given two questions Q1 and Q2, their representations H1

and H2 are calculated as above-mentioned. The matching
degree of H1 and H2 is measured by their absolute differ-
ence and element-wise product, i.e.,

J = [|H1 −H2|; (H1 �H2)] (9)

A multi-layer perceptron (MLP) (Bishop 1995) is used to
learn high-level representation and the top layer is a soft-
max classifier. The output is predicted scores for all classes
PN = [pN+ , pN− ], where pN+ is the score of the duplicate and
pN− is the non-duplicate.

Ensemble Approach

In this section, we describe the ensemble approach that com-
bines the predictions of a NNM and a gradient boost deci-
sion tree (GBDT) model with features based on frame pars-
ing. The latter model is referred to as Frame-GBDT and is
described as follows.

We design two kinds of features to measure the match-
ing degrees of essential constituents in questions, namely
frame level features and lexical level features. Suppose F =
{fi|i ∈ [1, |F |]} is a set of all frames in FrameNet. A ques-
tion is represented as Q = [w1, w2, ..., wn], where n is the
length of Q, and wi is the i-th word. The frame parse of Q
is QP = [q1, q2, ..., qn], where qi is a set of frames that wi

belongs to. For the example in Table 1, w3 is “I” and q3 is
{Capability, Motion}. If wi is not assigned to any frame,
the qi is ∅. The frame level representation R is obtained by
collecting all LUs in each frame. Formally,

R = {ri|i ∈ [1, |F |]} (10)
ri = {wk|fi ∈ qk, k ∈ [1, n]} (11)

For example, if fi is Capability in Table 1, ri is {How, can,
I}. So, R is a |F |-dimensional sparse vector, in which most
elements are empty sets and a few elements are the LU sets
of frames in a question.

For two questions Q1 and Q2 with frame representa-
tions R1 and R2, their frame matching feature is MR =
[mR

1 ,m
R
2 , ...,m

R
|F |], where

mR
i =

⎧⎪⎨
⎪⎩

|r1i∩r2i|
|r1i∪r2i| + b r1i �= ∅ and r2i �= ∅
0 r1i = ∅ and r2i = ∅
−1 otherwise

(12)

That is, for a frame that exists in both questions, the match-
ing degree is defined as Jaccard similarity2 of the corre-
sponding word sets plus a bias, where b is a hyper-parameter.
The Jaccard similarity can be 0, thus a bias is used to distin-
guish with the following condition. For a frame that exists in
neither question, the matching degree is 0. Otherwise, for a
frame that exists in one question but not in the other one, the
matching degree is -1, which indicates an unmatched frame.

An example of calculating MR is given by the Q3 and Q4
presented in section “Introduction”. We only list frames that
appear at least in one question, as shown in Table 2. Suppose
b is 1 and stop words are removed.

Frame RQ3 RQ4 MR

Capability {How, can, I} {How, can, I} 2

Motion
{I, go,
downtown,
from, airport}

{I, go,
downtown,
from, park}

1.67

Buildings {airport} {park} 1

Table 2: An example of calculating frame level features.

A lexical level representation is constructed in a similar
way. Suppose V = {vi|i ∈ [1, |V |]} is the vocabulary. The
lexical level representation is defined as

L = {li|i ∈ [1, |V |]} (13)

li =

⎧⎨
⎩

⋃
wj=vi

qj

∣∣∣∣∣∣
j ∈ [1, n]

⎫⎬
⎭ (14)

Take Table 1 as an example again. If vi is “I”, li is
{Capability, Motion}. A word can occur more than once
in a question. Here we use a simple way, that is, merging
the frame sets of all its occurrences. Hence, L is a |V |-
dimensional sparse vector like R.

The lexical matching feature ML = [mL
1 ,m

L
2 , ...,m

L
|V |]

is calculated in a similar way as MR. The only difference
is that the r1i and r2i in Equation (12) are changed to l1i
and l2i. An example for calculating ML of Q3 and Q4 is
demonstrated in Table 3. Suppose b is also 1.

A final matching feature vector M is constructed by con-
catenating the frame and lexical matching features, i.e. M =
[MR;ML]. A GBDT classifier is adopted to train the es-
sential constituents matching model with M as features. We

2https://en.wikipedia.org/wiki/Jaccard index
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LU LQ3 LQ4 ML

How {capability} {capability} 2
can {capability} {capability} 2

I {capability,
motion}

{capability,
motion} 2

go {motion} {motion} 2
downtown {motion} {motion} 2
from {motion} {motion} 2

airport {motion,
buildings} ∅ -1

park ∅ {motion,
buildings} -1

Table 3: An example of calculating lexical level features.

also try other classifiers, like logistic regression and support
vector machines, but find that GBDT performs best. The out-
put is predicted scores for all classes PG = [pG+, p

G
−].

We use a straightforward but effective ensemble method.
The Frame-GBDT and NNM are combined by a weighted
average, and the predicted label is the class with max score
in the combined score. Formally, we have

P = αPN + (1− α)PG (15)
y = argmax

i∈{+,−}
Pi (16)

where α ∈ [0, 1] is a hyper-parameter. With α becomes
larger, the combined result is more prone to the prediction of
the NNM, otherwise it is more prone to the Frame-GBDT.

Embedding Approach

In the ensemble approach, two models are used to solve the
two challenges in DQI separately, and their outputs are com-
bined to make a final prediction. In this section, we present
a unified NNM to solve those two challenges together. To
leverage frame information, each frame is mapped to an em-
bedding. The frame embeddings can be combined with word
embeddings as inputs, providing more information to learn
better representation. Figure 2 demonstrates the process of
representation learning. The processes of calculating match-
ing degree of two representations and making prediction are
omitted here.

Given a question Q = [w1, w2, ..., wn], the word embed-
ding matrix Ew = [e(w1), e(w2), ..., e(wn)] is computed as
before. We use a superscript to distinguish word and frame
embeddings. The frame parse of Q is QP = [q1, q2, ..., qn]
as described in the section “Ensemble Approach”. The only
difference is that the words that are not assigned to any frame
are allocated with a manually added frame called “N/A”,
which also corresponds to an embedding. This is meant to
make every word in a question has at least a frame em-
bedding for further computation. A word can be assigned
to more than one frame. The frame representation c(wt) of a
word wt is calculated by averaging all its frame embeddings.
Formally, we have

c(wt) =
1

|qt|
∑
f∈qt

g(f) (17)

can            I           go
Capability Capability Motion

     Motion

Ew

Ef

Q

QP

H

Figure 2: The structure of the embedding approach.

where g(f) is the embedding of the frame f . Thus, the frame
representation of a question Ef = [c(w1), c(w2), ..., c(wn)]
is obtained. The input xt of BLSTM at the time step t is the
combination of the word embedding and the frame represen-
tation of wt, i.e.,

xt = [e(wt); c(wt)] (18)

Therefore, the hidden state of LSTM is calculated as

ht = LSTM([e(wt); c(wt)], ht−1) (19)

In this way, the frame information is incorporated into a
NNM. The learned representation can include frame infor-
mation so that the comparison of two representations can
imply the comparison of essential constituents in two ques-
tions.

Experiments

Dataset

The recently released Quora question pairs (QQP) dataset3
is adopted in our experiments. It consists of over 400,000
potential question duplicate pairs. Each sample contains two
questions and a label. Like the four questions in the section
“Introduction”, Q1 and Q2 is a pair and the label is positive,
while Q3 and Q4 is a pair and the label is negative. Because
there is not an official partition of train/dev/test set, we shuf-
fle the dataset randomly and split train/dev/test set with a
proportion of 8:1:1. The statistics of the question pairs are
listed in Table 4.

Positive Negative Total
Train (80%) 119282 204150 323432
Dev (10%) 15010 25419 40429
Test (10%) 14971 25458 40429
Total 149263 255027 404290

Table 4: Statistics of QQP dataset.

3https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs
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Experimental Setup

We choose some well-performed methods on other similar
tasks for comparison and reimplement them on the QQP
dataset.
• BM25 (Robertson and Zaragoza 2009) is a widely used

similarity for information retrieval, especially in search
engines.

• SimBow (Franco-Salvador et al. 2016) is the top team of
question-to-question similarity ranking task in SemEval
2016. They use lexical and semantic similarity measures.

• BLSTM is the model presented in the section “Neural
Networks Model”.

• CNN has the same overall structure with the BLSTM
method except that the representations of questions are
learned by CNN (LeCun et al. 1998) with max-pooling.

• CNN-II is the ARC-II model proposed by Hu et al.
(2014). It directly compares each pair of CNN represen-
tations, instead of compressing them to fixed-length first.

• AP (Santos et al. 2016) uses a two-way attention mecha-
nism to calculate the matching relation of representations
of two sentences.

• DA (Parikh et al. 2016) decomposes natural language in-
ference problem into three steps, i.e. attend, compare and
aggregate.

• AI (Zhang et al. 2017) improves AP by modeling the in-
teraction of representations and using more information
to calculate the attention.

• Frame-GBDT is our proposed model in the section “En-
semble Approach”. It can deal with the essential con-
stituents matching problem.
For AP, DA and AI, there are some variants based on

which kind of neural network is utilized to learn repre-
sentations. CNN and BLSTM are commonly used. Conse-
quently, there are actually six methods, namely AP-CNN,
AP-BLSTM, DA-CNN, DA-BLSTM, AI-CNN and AI-
BLSTM.

All hyper-parameters are tuned on the development set.
We use spaCy4 to recognize named entities, and the full list
of entity types can be found at the documents5 of spaCy.
LightGBM6 is used for GBDT implementation. The maxi-
mum number of leaves in a tree is 700 and minimal number
of data in a leaf is 0. The number of boosting round is 10000
and the early stopping round is 100. All neural networks are
implemented using PyTorch7. Word embeddings8 have the
dimension of 300 and are pretrained by GloVe (Penning-
ton, Socher, and Manning 2014). Frame embeddings are 50-
dimensional, which are initialized randomly with a uniform
distribution between [−1, 1]. Word and frame embeddings
are both fine-tuned at the training process. The dimension of
H is 300, thus the dimension of J is 600. The MLP consists
of a 200-dimensional hidden layer. The model is trained us-
ing Adam (Kingma and Ba 2014) optimization method with
the learning rate set to 0.001. The batch size is set to 100.

4https://spacy.io/
5https://spacy.io/docs/usage/entity-recognition
6https://github.com/Microsoft/LightGBM
7http://pytorch.org/
8http://nlp.stanford.edu/data/glove.840B.300d.zip

Experimental Results

We set up two groups of experiments. The first group is
about the ensemble approach, that is to see whether the per-
formance of baselines can be improved by combining with
the Frame-GBDT. The results are listed in Table 5.

Method
Baseline
accuracy

Improved accuracy
(+ Frame-GBDT)

BM25 65.23 86.12 (+20.89)
SimBow 67.96 86.30 (+18.34)
BLSTM 86.17 87.92 (+1.75)
CNN 85.93 87.69 (+1.76)
CNN-II 84.69 87.27 (+2.58)
AP-CNN 85.28 87.40 (+2.12)
AP-BLSTM 86.11 87.84 (+1.73)
DA-CNN 84.50 87.14 (+2.64)
DA-BLSTM 85.72 87.62 (+1.90)
AI-CNN 86.55 87.97 (+1.42)
AI-BLSTM 87.43 88.53 (+1.10)

Table 5: Results of the ensemble method. The second col-
umn is the accuracy of baseline methods. The third column
is the accuracy of our proposed ensemble model, i.e., base-
line + Frame-GBDT. The improvements are listed in the
parentheses.

The BM25 and SimBow perform badly and are discussed
in detail in the next paragraph. For the NNMs, we can see
that a sophisticated model is not necessarily better than a
straightforward one. The results of CNN-II, AP and DA
are comparable or worse than BLSTM and CNN. Never-
theless, AI-BLSTM outperforms other methods by a large
margin, demonstrating strong capability on this task. Next,
we combine these methods with Frame-GBDT, as shown
in the third column. It is worth mentioning that the Frame-
GBDT achieves an accuracy of 86.01% individually, which
is comparable to most NNMs and it demonstrates the effec-
tiveness of the designed features. With Frame-GBDT added,
all neural network models are improved by 1 ∼ 3%9. The
improvements are due to the fact that Frame-GBDT is good
at essential constituents matching and neural network mod-
els are good at handling lexical gap. The two kinds of mod-
els are complementary so that the ensemble model can deal
with the two problems together. By combining AI-BLSTM
and Frame-GBDT, we can achieve an accuracy of 88.53%
on this task.

BM25 and SimBow perform much worse than other meth-
ods. However, these two methods perform well in question-
to-question ranking (QR) task in SemEval 2016 (Nakov et
al. 2016). The QR task is similar to the DQI task, both judg-
ing the relation of two questions, so it is worth exploring
the reason of the difference. Through statistical analysis, we
find that the main difference of question pairs in the two
datasets is word overlap rate (WOR). WOR of two ques-
tions is defined as the number of overlapped words between
them divided by the average length of them. Hence, WOR is

9All improvements are statistically significant (P < 0.05).

6065



17.3%

23.9%

28.8%

21.4%

8.6%

[0-0.2) [0.2-0.4) [0.4-0.6) [0.6-0.8) [0.8-1.0][0.4-0.6) [0.6-0.8) [0.8-1.0]
1.1%
0.1%
1.7%

54.3%

42.8%

(b)(a)

Figure 3: WOR of QQP (left) and QR (right) dataset.

a real number between 0 and 1. We calculate WOR of ques-
tion pairs in the two datasets and the proportion is shown in
Figure 3. High WOR pairs take a large proportion in QQP
dataset, which means the difficult point is identifying non-
duplicate in the alike pairs. The word similarity based meth-
ods BM25 and SimBow are likely to fail in such case. In QR
dataset, most pairs have a low WOR, indicating that the key
point is to discover connection between the unlike pairs and
these two methods work well.

The second group of experiments is about the embedding
approach. We only compare four BLSTM based methods,
because the first group has demonstrated that the results of
BLSTM based methods are comparable or better than CNN
based methods. The results are listed in Table 6.

Method
Baseline
accuracy

Improved accuracy
(+ Frame embedding)

BLSTM 86.17 86.42 (+0.25)
AP-BLSTM 86.11 86.22 (+0.11)
DA-BLSTM 85.72 86.03 (+0.31)
AI-BLSTM 87.43 87.62 (+0.19)

Table 6: Results of the embedding method. The second col-
umn is the accuracy of baseline methods. The third col-
umn is the accuracy of these models with frame embeddings
added. The improvements are listed in the parentheses.

With the frame embedding added, the four methods
have some improvements. However, the improvements are
marginal compared to the ensemble approach. We think it is
because the continuous representation is not suitable for es-
sential constituents matching. Take the following two ques-
tions as an example: “Which is the largest city in America?”
and “Which is the largest city in Canada?”. With frame em-
beddings, the neural network can be aware that America and
Canada are location constituents. However, in this approach,
the essential constituents matching is performed in continu-
ous space. The word embeddings of America and Canada
are normally similar. Consequently, the model cannot dis-
cover that the locations are unmatched. In the Frame-GBDT,

85.5

86

86.5

87

87.5

88

88.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: The influence of weight in ensemble model.

the essential constituents matching is performed in discrete
space. America and Canada are unmatched because they are
different words. The two groups of experiments demonstrate
that the discrete matching is more suitable for essential con-
stituents matching than the continuous way.

Further Analysis of the Ensemble Approach

In this subsection, we provide some further analysis of
the ensemble approach, mainly about the combination of
Frame-GBDT and NNM.

Two models are combined by a weighted average as in
Equation (15) and α is the weight. Figure 4 shows the
change of performance with the change of α. Here we
choose BLSTM as the NNM. The combined model becomes
Frame-GBDT when α is 0, and becomes BLSTM when α
is 1. When α is close to 0.5, the model performs best, and
the score decreases nearly linearly as α becomes larger or
smaller. It indicates that the two separate models contribute
equally to the combined model. Therefore, the information
learned by the two models is different, which supports our
argument that essential constituents matching and lexical
gap are both important in DQI and better performance can
be achieved by combining them.

As is known to all, ensemble methods can improve the
performance. Hence, is the improvement of the feature-
based method just because of combining two models? The
answer is negative. We combine different kinds of models to
illustrate it, as shown in Table 7.

Method Accuracy (%)

BLSTM 86.17%
BLSTM + CNN 87.14%
BLSTM + AP-BLSTM 87.01%
BLSTM + Frame-GBDT 87.92%

Table 7: Results of combining two models.

The BLSTM is selected as the baseline model and three
other models are used for combination, including CNN, AP-
BLSTM and Frame-GBDT. These three models are selected
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because their scores are close, which ensures a fair compari-
son. When BLSTM is combined with CNN or AP-BLSTM,
the improvement is about 1%. However, when it is combined
with Frame-GBDT, the improvement is close to 2%. The dif-
ference indicates that the information learned by NNMs is
basically same so that the improvement is limited. Even if
the score of Frame-GBDT is a little lower than CNN and
AP-BLSTM, it can learn different information and the im-
provement of combination is more significant.

Related work
With the rapid development of CQA forum, DQI has become
a hot research area in recent years. DQI has tight connection
with text relevance and paraphrase detection. Early work
on text relevance calculation usually uses similarity mea-
sures based on word overlap (Broder 1997; Wu, Zhang, and
Huang 2011). However, these methods are not capable of
measuring semantic equivalence. More sophisticated meth-
ods use machine translation, knowledge graphs, and topic
model for better measuring text similarity (Jeon, Croft, and
Lee 2005; Zhou et al. 2013; Ji et al. 2012). Ji and Eisen-
stein (2013) reweight term matrix and use the latent rep-
resentation from matrix factorization for paraphrase classi-
fication. In recent years, many deep learning models have
been proposed to avoid feature engineering and handle lex-
ical gap. Hu et al. (2014) propose two CNN architectures
for matching sentences. ARC-I first finds the representation
of each sentence and then compares their representations,
while ARC-II calculates the interaction of two sentences be-
fore obtaining their representations. Some follow-up work
adopts the idea of ARC-II and sophisticated methods are
proposed to calculate the interaction of two sentences,
mainly based on attention mechanism (Santos et al. 2016;
Parikh et al. 2016; Zhang et al. 2017).

There has been some prior work on question similarity
calculation. Santos et al. (2015) combine a CNN and a bag-
of-words representation for comparing questions. Barzilay
et al. (2016) propose a semi-supervised method that pre-
trains a gated convolution model within an encoder-decoder
framework. Wang, Hamza, and Florian (2017) propose
a bilateral multi-perspective matching model and achieve
good performance on DQI. There have been evaluations
on question and answer retrieval in SemEval for several
years (Nakov et al. 2016). For the question-to-question rank-
ing subtask, Franco-Salvador et al. (2016) use both lexical
and semantic-based similarity measures and take the first
place. These methods have made great progress in solving
lexical gap, but they have not considered the essential con-
stituents matching problem.

Essential constituents is close to the notion of essential
question terms proposed by Khashabi et al. (2017). The main
difference is that essential question terms only define which
words are essential, while essential constituents further de-
fine the name (category) of constituents so that matching
under each category can be performed. Extracting essen-
tial constituents in questions is similar to spoken language
understanding (SLU) task, which identifies intents and slots
(can be view as essential constituents) in utterances (Zhang
and Wang 2016). However, SLU usually needs to define and

label slots, which is impractical in open-domain CQA. In
this paper, the essential constituents matching problem is
transformed into frame matching to avoid defining and la-
beling essential constituents.

Conclusion

In this paper, we point out the importance of essential con-
stituents matching in DQI. Frames are adopted to approx-
imate essential constituents so as to avoid labeling essen-
tial constituents. Two approaches are proposed to leverage
the frame information. The ensemble approach combines a
GBDT model with designed frame features and a neural net-
works model. The embedding approach represents frames as
embeddings, which are combined with word embeddings at
the input of neural networks. Experiments demonstrate that
the ensemble method is more effective. The Frame-GBDT
model can handle essential constituents matching and the
neural network model can deal with lexical gap. In future
work, we plan to explore other kinds of semantic parsing,
such as abstract meaning representation and NomBank.
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