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Abstract

In this paper, we focus on multiple-choice reading compre-
hension which aims to answer a question given a passage and
multiple candidate options. We present the hierarchical atten-
tion flow to adequately leverage candidate options to model
the interactions among passages, questions and candidate op-
tions. We observe that leveraging candidate options to boost
evidence gathering from the passages play a vital role in this
task, which is ignored in previous works. In addition, we ex-
plicitly model the option correlations with attention mecha-
nism to obtain better option representations, which are further
fed into a bilinear layer to obtain the ranking score for each
option. On a large-scale multiple-choice reading comprehen-
sion dataset (i.e. the RACE dataset), the proposed model
outperforms two previous neural network baselines on both
RACE-M and RACE-H subsets and yields the state-of-the-art
overall results.

Introduction

In this paper, we study the task of multiple-choice read-
ing comprehension, in which every question is accompanied
with four candidate options and only one is correct. Fig-
ure 1 shows an example. Comparing to questions from pre-
vious reading comprehension tasks (Hermann et al. 2015;
Hill et al. 2016; Onishi et al. 2016; Rajpurkar et al. 2016),
multiple-choice questions put no constraints on the answers
to be exact match spans of the reference passage. Instead
the candidate options are human generated sentences, which
may not appear in the passage.

RACE (Lai et al. 2017) and MCTest (Richardson, Burges,
and Renshaw 2013) are two representative benchmark
datasets generated by human for multiple-choice reading
comprehension. Yin, Ebert, and Schütze (2016) use convo-
lutional neural network to build the representation at differ-
ent hierarchical levels with attention mechanism. Trischler
et al. (2016) propose to conduct the match in multiple paral-
lel perspectives with the hierarchical structure, and a train-
ing technique for the proposed neural model to converge on
MCTest. Lai et al. (2017) adapt two strong neural models
GA Reader (Dhingra et al. 2017) and Stanford AR (Chen,
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Passage: ... In 1993, New York State ordered stores to
charge money on beverage containers. Within a year,
consumers had returned millions of aluminum cans and
glass and plastic bottles. Plenty of companies were ea-
ger to accept the aluminum and glass as raw mate-
rial for new products, but because few could figure out
what to do with the plastic, much of it wound end up ...
Question: What regulation was issued by New York
State concerning beverage containers?

A. A fee should be charged on used containers for
recycling.

B. Throwaways should be collected by the state for
recycling.

C. Consumers had to pay for beverage containers
and could get their money back on returning them.

D. Beverage companies should be responsible for
collecting and reusing discarded plastic soda bottles.
Answer: C

Figure 1: An example multiple-choice reading comprehen-
sion question.

Bolton, and Manning 2016) as neural network baselines
for the large-scale RACE dataset. Specifically, the models
gather and summarize the passage evidence only with the
question, then conduct the match between the evidence and
candidate options.

Inspired by Yin, Ebert, and Schütze (2016) and Trischler
et al. (2016), we present the neural network based hierar-
chical attention flow, depicted in Figure 2, to adequately
leverage candidate options to model the word level and sen-
tence level interactions among passages, questions and can-
didate options. The attention flow is organized in the fol-
lowing hierarchical order. We use a bi-directional recurrent
neural network (BiRNN) to encode passage sentences, ques-
tion and candidate options separately. Then, the word-level
attention layer builds the question-aware passage sentence
and the candidate option representation. Next, the sentence
context encoder models temporal context between passage
sentences with a BiRNN. Afterwards, the sentence-level at-
tention layer gathers evidence from the passage with candi-
date options in addition to the question, and models option
correlations for better option representation. Finally, the bi-
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Figure 2: Hierarchical Attention Flow overview. The superscripts P, Q and O correspond to passage, question and option
respectively. The text blocks marked with the same color are at the same hierarchical level. ⊕ represents the weighted sum
operation. Finally, argmax function outputs the option with highest score as the answer.

linear layer computes the ranking score for each option. The
key contributions of our work are three-fold.

Firstly, we propose to use the candidate options to gather
evidence from the passage. In two neural baselines adapted
by Lai et al. (2017), only the question is used to gather evi-
dence. While in multiple-choice reading comprehension, the
questions are sometimes not informative and clear enough to
guide evidence gathering. Especially to the questions with
blanks or about general purpose, where the partial evidence
gathered by the question alone may mislead the model to
wrong predictions. However, the candidate options can pro-
vide additional information for clarifying the question’s in-
tent. Therefore we leverage the question-aware option rep-
resentation to boost evidence gathering in our model. In this
way, the model utilize the candidate options information in
addition to the question information to gather more suffi-
cient evidence to distinguish the answer from the distraction
options.

Secondly, to further exploit candidate options, we lever-
age option correlations, which are ignored by previous
works, as additional information to the original indepen-
dent option representation. Existing models (Richardson,
Burges, and Renshaw 2013; Sachan et al. 2015; Narasimhan
and Barzilay 2015; Wang et al. 2015; Smith et al. 2015;
Trischler et al. 2016; Yin, Ebert, and Schütze 2016; Lai et
al. 2017) for multiple-choice reading comprehension score
each candidate option independently. We compare options
with each other to model option correlations. The correla-
tion is encoded into a vector representation with sentence-
level attention, then concatenated to the independent option

representation. Thus our proposed model scores each option
with considering other options.

Lastly, we conduct extensive experiments on the RACE
dataset, in which RACE-M and RACE-H corresponds to
middle school and high school difficulty respectively. Our
proposed model outperforms previous strong neural network
baselines by 1.9% in overall accuracy and achieves state-of-
the-art results.

Model
We describe the details of the hierarchical attention flow in
the order of the appearance in Figure 2 bottom-up from left
to right.

Word Context Encoder

Given a question {wQ
t }qt=1 of q words, a passage {wP

i,t}ni=1

of n sentences and candidate options {wO
i,t}mi=1 of m can-

didates. We first map every word w to its respective d-
dimensional vector e via an embedding matrix E ∈ R

|V |×d,
where V represents the vocabulary. Then we apply a BiRNN
to encode word context from both sides. Here we choose
Gated Recurrent Unit (GRU) (Cho et al. 2014) as the recur-
rent network building block:

uQ
t = BiGRUQ(u

Q
t−1, e

Q
t ) (1)

uP
i,t = BiGRUP (u

P
i,t−1, e

P
i,t) (2)

uO
i,t = BiGRUO(u

O
i,t−1, e

O
i,t) (3)

Hence, we obtain the context-aware word representation
uQ for question, uP

i for i-th sentence of passage and uO
i for

i-th candidate option.
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Attention Flow

In our model, interaction between two components is used
to emphasize and organize relevant information accordingly.
We adopt the same attention mechanism to every interaction.
In this section, we first describe the attention mechanism in
detail and then explain various interactions.

Attention Mechanism We adopt the attention mechanism
similar to Cui et al. (2016), but we use the bilinear func-
tion (Luong, Pham, and Manning 2015) to compute the rel-
evance score instead of the dot product. Given two inputs
X ∈ R

m×k of m k-dimensional vector and Y ∈ R
n×l of n

l-dimensional vector, att(X,Y | Wxy) outputs the attention
weight vector a, where aj indicates the attention weight of
Yj according to X .

More specifically, we first compute the matching matrix
A ∈ R

m×n with the bilinear term Wxy ∈ R
k×l, where Ai,j

is the relevance score of Xi and Yj . Then we apply row-wise
softmax function to get the attention weight matrix s:

Ai,j = XiWxyYj (4)

si,j =
exp (Ai,j)∑n
j exp (Ai,j)

(5)

where si indicates the relevance weight over Y in the view
of Xi. Then we combine the view of each vector of X by
averaging the attention weight matrix column-wise to get the
final attention weight vector a:

aj =
1

m

m∑

i=1

si,j (6)

Question-to-Passage (Q2P) Word-level Attention
Words within a sentence are not equally important, the
significances may change in tune with the question. To get
the vector representation of the passage sentence, we apply
word representation of the question uQ to attend words uP

i
of the i-th passage sentence. We utilized the output of every
time step of the question BiGRU, instead of the output of
the last time step, which is used in (Lai et al. 2017). Then
we get the question-aware representation vPi of the i-th
sentence at sentence level:

a = att(uQ, uP
i | Wqp) (7)

vPi =
∑

t

atu
P
i,t (8)

Question-to-Option (Q2O) Word-level Attention Lai et
al. (2017) represent candidate option with the last hidden
state of option BiGRU, which produces the question free
vector representation. While the meaning of the option is
more interpretable when combined with the question. There-
fore we incorporate the question information to compose op-
tion’s word representation into a fixed-size vector with atten-
tion mechanism at word level. In a similar way, we get the
question-aware representation vOi of the i-th candidate op-
tion:

a = att(uQ, uO
i | Wqo) (9)

vOi =
∑

t

atu
O
i,t (10)

Sentence Context Encoder The order of sentences within
a passage matters just as the order of words within a sen-
tence. But we process the passage sentences in parallel
and produce the context independent sentence representa-
tion vPi . To encode sentence context, similar to word context
modeling, we apply another BiGRU on top of vPi . Then the
sentence context is encoded into ṽPi :

ṽPi = BiGRUS(ṽ
P
i−1, v

P
i ) (11)

Option-to-Passage (O2P) Sentence-level Attention In
reading comprehension task, the passage generally contains
abundant information about the events, places, etc. When
a question only concerns about a certain aspect, the irrel-
evant parts of the passage could be redundancy and noise.
To avoid the negative effect of redundant information, Lai et
al. (2017) summarize the whole passage into a single vec-
tor as evidence with question to passage attention. It is a
popular setting in cloze-style reading comprehension mod-
els (Hermann et al. 2015; Hill et al. 2016). In our model, we
leverage the question-aware candidate option representation
vO to boost evidence gathering from passage sentences with
attention mechanism at sentence level. In attention computa-
tion procedure, each candidate option assigns higher weights
to its corresponding evidence sentences. Then we average
the assigned weights of each passage sentence to obtain the
final attention weight. Different from previous works, we
implicitly incorporate the question information, which is en-
coded by Q2O word-level attention. Finally, the candidate
options, along with the question, summarize the evidence
into a fixed-size vector:

a = att(vO, ṽP | Wop) (12)

rP =
∑

i

aiṽ
P
i (13)

Option Correlations The option representation vOi is gen-
erated by Q2O word attention, which is aware of the ques-
tion. But such representation is independent of other options
and no comparison information between options is encoded.
To model the option correlations, we compare the candidate
options with attention mechanism. In case of the option be-
ing compared to itself, we set the diagonal of the attention
weight matrix to zero. si,j indicates the relevance score of
the j-th option to the i-th option, and merging operation is
not necessary like before. Inspired by Chen et al. (2017),
we model the option correlations with difference vOi − ṽOi ,
which then concatenated to the independent option represen-
tation as the enhancement:

Ai,j = vOi Woov
O
j (14)

si,j =
1 (i �= j) exp (Ai,j)∑
j 1 (i �= j) exp (Ai,j)

(15)

ṽOi =
∑

j

si,jv
O
j (16)

rOi = [vOi ; vOi − ṽOi ] (17)
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Answer Prediction

We follow Lai et al. (2017) to compute the matching score
si of i-th option against the summarized evidence rP with
the bilinear function and the probability pi of being correct.
The model predicts the answer with the argmax function:

si = rPWpr
O
i (18)

pi =
exp (si)∑
j exp (sj)

(19)

ans = argmaxi (pi) (20)

We train the network to minimize the negative log proba-
bility of ground truth option.

Experiments

Dataset

Large-scale ReAding Comprehension Dataset From Exam-
inations (RACE) is a multiple-choice reading comprehen-
sion dataset. RACE-M and RACE-H correspond to middle
school and high school difficulty level. All questions contain
four candidate options with only one correct option. RACE
contains 27,933 passages and 97,687 questions in total, 5%
as development set and 5% as test set. Table 1 shows separa-
tion of the dataset. Table 2 is the statistics about the average
number of words and sentences of the passage, question and
candidate options.

Train Dev Test

RACE-M #passages 6,409 368 362
#questions 25,421 1,436 1,436

RACE-H #passages 18,728 1,021 1,045
#questions 62,445 3,451 3,498

RACE #passages 25,137 1,389 1,407
#questions 87,866 4,887 4,934

Table 1: Dataset separation of training, development and test
sets of the RACE dataset.

RACE-M RACE-H RACE
#w/p 249.9 374.9 342.9
#s/p 17.2 19.2 18.7
#w/q 10.1 11.4 11.0
#w/o 4.9 6.8 6.3

Table 2: Data statistics of RACE-M, RACE-H and RACE.
#w/p and #s/p represent the average number of words and
sentences in the passage. #w/q and #w/o are the average
length of the question and option. Training, development
and test sets share the similar statistics.

Implementation Details

Following Lai et al. (2017), we combine RACE-M and
RACE-H together as training set and development set. We
tokenize the passages, questions and options into sentences

and words with tokenizer from Natural Language Toolkit1.
We use Tensorflow2 to implement our model. To train the
model, we adopt stochastic gradient descent with ADAM
optimizer (Kingma and Ba 2015), with initial learning rate
0.001. Gradients are clipped in L2-norm to no larger than
10. A mini-batch of 32 samples is used to update the model
parameter per step. We keep 50,000 most frequent words
in training set as vocabulary and add a special token UNK
for out-of-vocabulary (OOV) words. We initialize word em-
beddings with 300D pre-trained case-sensitive Glove (Pen-
nington, Socher, and Manning 2014) embeddings3, which
are further updated in training phase. The hidden state size
of all GRU network is 128. We apply dropout(Srivastava et
al. 2014) to word embeddings and BiGRU’s outputs with a
drop rate of 0.4.

Results

RACE-M RACE-H RACE
Random† 24.6 25.0 24.9
Sliding Window† 37.3 30.4 32.2
GA Reader (100D)† 43.7 44.2 44.1
GA Reader (300D)‡ 42.4 44.5 43.9
Stanford AR (100D)† 44.2 43.0 43.3
Stanford AR (300D)‡ 44.9 43.7 44.1
Ours (100D) 46.2* 44.1 44.7*
Ours (300D) 45.0 46.4* 46.0*

Table 3: Accuracy on test set of RACE-M, RACE-H and
RACE. † indicates the results from (Lai et al. 2017) which
are trained with 100D pre-trained Glove word embeddings,
‡ indicates the results that we get by running the published
code (Lai et al. 2017) of GA Reader and Stanford AR with
300D pre-trained Glove word embeddings.

Accuracy is the only metric to evaluate the model perfor-
mance on RACE. We report the accuracy of our model and
several baselines on test set. Our model outperforms pre-
vious best neural network baseline, GA Reader (100D), on
both RACE-M and RACE-H subset and yields the state-of-
the-art overall accuracy.

In Table 3, GA Reader(Dhingra et al. 2017) and Stan-
ford AR (Chen, Bolton, and Manning 2016) are two very
strong neural models on cloze-style reading comprehension,
and adapted as neural baselines by Lai et al. (2017) along
the release of RACE. To make the results more compara-
ble and reduce the impact of parameter count, we train two
neural baselines with 300D word embeddings, and with the
same code used in previous 100D neural baselines. We also
train our model with 100D word embeddings. The result
shows that our model outperforms neural baselines under the
same word embedding size. Moreover, our model with 100D
word embeddings even outperforms 300D neural baselines
in overall accuracy.

1http://www.nltk.org/
2https://www.tensorflow.org/
3https://nlp.stanford.edu/projects/glove/
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Figure 3: Attention weight matrix visualization of evidence gathering. Reference passage sentences are numbered in order.
Darker color indicates the higher weight. Each row represents the attention weight of a option over passage sentences.

Ablation Study

To evaluate how different components contribute to the
model’s performance, we conduct ablation tests on devel-
opment set, and results are illustrated in Table 4. We first
investigate the influence of sentential temporal relationships
by removing sentence context encoder layer. The accuracy
is slight influenced and even increases 0.2 point on RACE-
M subset. While this is because the evidence summariza-
tion over the passage sentences weaken the effect of sen-
tence context encoder layer, which summarizes and encodes
context. Then we remove O2P attention and replace options
with the question to gather evidence, which is similar to (Lai
et al. 2017). The large accuracy drop shows that incorpo-
rating candidate options into evidence gathering contributes
most to the model’s improvement. At last, to verify the ef-
fectiveness of option correlations, we directly conduct the
match on the independent option representation produced by
Q2O word-level attention. The 0.7 point overall accuracy
drop reveals that option correlations do strengthen option
representation. The above ablation tests results validate the

necessity of fully utilizing candidate options for multiple-
choice reading comprehension.

RACE-M/H RACE
Full Model 45.3/47.9 47.2
- Sentence Context Encoder 45.5/47.6 46.9
- O2P Attention 43.7*/47.2 46.2*
- Option Correlations 44.5/47.4 46.5

Table 4: Layer Ablation on the development set.

Discussion

Evidence Gathering and Option Correlations

To investigate how candidate options boost evidence gath-
ering from the passage, we visualize the attention weight
matrix in O2P attention. In Figure 3, the darker color indi-
cates higher weight. The attention weight matrices show that
the evidence related to each option scatters in the passage.
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Figure 4: Statistics analysis of the answer ranking position.
Accuracy corresponds to the relaxed requirement that as
long as the model ranks the answer in top-N.

The merged attention weights over passage sentences sum-
marize necessary information as much as possible. While
the question may miss key evidence, especially to the ques-
tion that does not contain evident indicative words or phrase,
just like the second question in Figure 3. Only in combina-
tion with the candidate options, the model can get the hint
to gather evidence, which emphasize the sentences about
“state, money, recycling, landfill, disposal, raw material”.

Option correlations are also useful for some cases. We
take the first question in Figure 3 as an example. The model
without option correlations chooses the wrong option A with
a slightly higher score than option C. By incorporating op-
tion correlations, the model chooses the correct option C
with a extremely high score 0.987.

Top-N Accuracy

To further investigate our model beyond the overall accu-
racy, we also statistically analyze the ranking score of the an-
swer on development set. Since every question corresponds
to only one correct answer, we settle to accept the predica-
tion as correct as long as the answer ranked in top-N, and
compute the the accuracy (acc@N) accordingly. In Figure
4, acc@2 and acc@3 reach overall accuracies of 70.2% and
87.2% respectively. The lead over the expectation of random
guess illustrates the effectiveness of our proposed model
from another perspective and reveals the potential improve-
ment can be achieved by reranking.

Difficulty Gap between RACE-M and RACE-H

RACE-M subset is collected from middle school exams, and
RACE-H subset corresponds to high school exams. Thus
RACE-M is easier in advance. The data statistics also show
that the length of the passage, question and candidate op-
tions of RACE-M subset are shorter. And RACE-M sub-
set has a smaller vocabulary than RACE-H subset. The dif-
ference on the passage length mainly reflects on sentence
length, which is narrowed down by the hierarchical struc-
ture to minimal difference on sentence count. In terms of the
vocabulary, most words in both subsets are covered by the
vocabulary. And these affect accuracies on two subsets to be
consistent with their prior difficulties.

Related Work

Large-scale Datasets

Large-scale datasets stimulate significant advance in reading
comprehension research. According to whether the answers
are restricted to an exact match span of the reference pas-
sage, we can classify existing datasets into two categories.
CNN/Daily Mail (Hermann et al. 2015), Children’s Book
Test (CBT) (Hill et al. 2016) and Who Did What (WDW)
(Onishi et al. 2016) are the automatically generated cloze-
style large-scale datasets, in which the answer is a word (of-
ten a named entity) of the passage. The answer in SQuAD
(Rajpurkar et al. 2016) is a continuous span that is labeled by
human to guarantee high quality, instead of a word. RACE
(Lai et al. 2017) and MS MARCO (Nguyen et al. 2016) are
two large-scale datasets fall into another category that the
answers may not appear in the reference passage. This is
closer to the setting in human orientated reading comprehen-
sion. In addition, RACE is a multiple-choice reading com-
prehension dataset, where the answer is one of four addi-
tional candidate options.

Multiple-choice Reading Comprehension

Multiple-choice questions are common in language exami-
nations to human. MCTest (Richardson, Burges, and Ren-
shaw 2013) is a multiple-choice reading comprehension
dataset of high quality and the difficulty is restricted to 7
years old children. It contains 500 crowdsourcing stories and
2,000 questions, where each question is followed by four
candidate answers and only one is correct. But the size is too
small to efficiently train a neural network model end-to-end.
So the majority of previous work on MCTest are feature-
engineering models (Richardson, Burges, and Renshaw
2013; Sachan et al. 2015; Narasimhan and Barzilay 2015;
Smith et al. 2015; Wang et al. 2015). These models heav-
ily rely on lexical, syntactic and frame semantic features
that extracted by various natural language processing tools.
Even though these work lay heavy burden on human, but can
achieve good performance on the sparse data. Yin, Ebert,
and Schütze (2016) propose a hierarchical attention-based
convolutional neural network (HABCNN) to project the pas-
sage with attention, and then determine a match or textual
entailment. The model outperforms previous neural base-
lines but still performs far below feature-engineering mod-
els. Trischler et al. (2016) propose a parallel-hierarchical
neural model, which is similar to HABCNN and achieves
the state-of-the-art result, to match the passages, questions
and candidate options from the word level to multiple sen-
tence level perspectives. But the model must be trained with
the training wheel (Trischler et al. 2016) to converge.

RACE (Lai et al. 2017) is in the same format as MCTest
but of much larger size and higher difficulty. It consists of
about 28,000 passages and 100,000 questions collected from
English exams designed for 12 to 18 years old Chinese stu-
dents. Lai et al. (2017) build a rule-based baseline (Richard-
son, Burges, and Renshaw 2013) with sliding window algo-
rithm and adapt the Stanford AR (Chen, Bolton, and Man-
ning 2016) and the GA Reader (Dhingra et al. 2017) to
RACE as strong neural baselines. The neural models build
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the representation of the passage without the hierarchical
structure and summarize the evidence from the passage with
the question. The option representation is built free of the
passage and the question independently. Then the models
conduct a match between the evidence and candidate op-
tions with the bilinear function. The neural models trained
with vanilla backpropagation outperform the sliding window
baseline.

Hierarchical Structure

Processing the passage as a single long sequence is a pop-
ular method in reading comprehension models and only a
few models incorporate the passage structure. Yin, Ebert,
and Schütze (2016) builds and combines representation at
the sentence level and the snippet (adjacent sentences) level.
But the temporal relationship is not modeled at any hier-
archical level. Trischler et al. (2016) incorporate hierarchy
to compare passages, questions and candidate options, and
model sequential information with a location-based weight.
Zhang et al. (2017) incorporate syntactic information to ex-
plore better understanding and adaptation, but limited to the
question only. Xie and Xing (2017) utilize syntactic infor-
mation to encode both the question and the passage sen-
tence. They subsequently encode the passage upon sentence
representation with RNN. We incorporate the passage hier-
archical structure to model interactions and model the tem-
poral context with RNN at word level and sentence level.

Attention Mechanisms in Reading Comprehension
Models

Attention mechanism (Bahdanau, Cho, and Bengio 2015) is
extremely popular in reading comprehension models (Her-
mann et al. 2015; Chen, Bolton, and Manning 2016; Kadlec
et al. 2016; Dhingra et al. 2017; Sordoni et al. 2016; Shen et
al. 2017; Cui et al. 2017; Seo et al. 2017; Wang et al. 2017;
Xiong, Zhong, and Socher 2017). And attention is mainly
used to model interactions and to predict the answer.

Hermann et al. (2015) and Chen, Bolton, and Man-
ning (2016) use a single question vector to summary pas-
sage. Instead of representing the question with single vector,
Wang and Jiang (2017), Wang et al. (2017), Cui et al. (2016),
Cui et al. (2017), Xiong, Zhong, and Socher (2017) and
Seo et al. (2017) utilize every word of the question to in-
teract with passage. In Wang and Jiang (2017) and Wang et
al. (2017), question words are aligned with the passage word
in every time step of the passage RNN. In Cui et al. (2017)
Xiong, Zhong, and Socher (2017)Seo et al. (2017), the at-
tention between question and passage is computed in both
direction. Despite the question and passage attention, Wang
et al. (2017) propose the self-matching attention to match the
passage against itself. Dhingra et al. (2017) propose gated-
attention to select relevant part of passage with a single ques-
tion vector via multiple hops. Sordoni et al. (2016) alter-
natively compute attention between passage and question.
Shen et al. (2017) further propose to determine the iterate
steps dynamically with reinforcement learning.

When it comes to the answer prediction, inspired by
Vinyals, Fortunato, and Jaitly (2015), Kadlec et al. (2016)

directly use attention as the pointer to predict answer for
cloze-style reading comprehension. Sordoni et al. (2016),
Dhingra et al. (2017) and Cui et al. (2017) subsequently
adopt the same method in their prediction layer. Wang
and Jiang (2017) use attention to produce the boundary of
the answer span. This is an efficient and popular setting
of the models on the SQuAD dataset. Xiong, Zhong, and
Socher (2017) propose dynamic pointing decoder to produce
answer borders iteratively. Lai et al. (2017) use the bilin-
ear function to compute matching score of each option on
RACE.

Conclusion and Future Work

In this paper, we present the hierarchical attention flow for
multiple-choice reading comprehension. Passage, question
and candidate options interact with each other via attention
at different hierarchical levels. To fully exploit candidate op-
tions, we incorporate options to boost evidence gathering
and enhance option representation with correlations, which
are not explored in previous works. At last, the proposed
model achieves overall sate-of-the-art accuracy on RACE
and significantly outperforms two neural network baselines
on both RACE-M and RACE-H subsets. We believe syntax
and discourse relations can introduce additional structures
as complementary information. In future work, we are inter-
ested in exploring the passage structure further by incorpo-
rating syntactic information or discourse relations for better
representation.
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