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Abstract

Hidden variable models are important tools for solving open
domain machine comprehension tasks and have achieved re-
markable accuracy in many question answering benchmark
datasets. Existing models impose strong independence as-
sumptions on hidden variables, which leaves the interaction
among them unexplored. Here we introduce linguistic struc-
tures to help capturing global evidence in hidden variable
modeling. In the proposed algorithms, question-answer pairs
are scored based on structured inference results on parse trees
and semantic frames, which aims to assign hidden variables
in a global optimal way. Experiments on the MCTest dataset
demonstrate that the proposed models are highly competitive
with state-of-the-art machine comprehension systems.

Introduction

Being of great practical use, open domain machine com-
prehension attracts a long lasting research interest. Both
world knowledge and linguistic analysis are important for
the task. Modern machine comprehension algorithms (es-
pecially, deep learning based algorithms) show that how to
represent and organize external world knowledge (e.g., dis-
tributed representation) is key to gain high performances.
On the other side, to establish a deeper understanding of
answer inference process, exploring linguistic structures re-
mains critical and fundamental. In this work, we focus on
answer reasoning with limited world knowledge following
the setting of MCTest (Richardson, Burges, and Renshaw
2013). Given a fictional story written for elementary school
students, MCTest is designed to test systems’ ability of nat-
ural language inference based on the given texts.

Hidden variable models are powerful tools for building
robust and interpretable machine comprehension systems.
Intuitively, it is always helpful that a system could iden-
tify some critical hidden information in text, such as the
most relevant story sentences to the question, or the most
plausible alignments between words in the question and
words in the story. In fact, although simple lexical match-
ing methods (Smith et al. 2015) are essential and com-
plex deep learning models (Yin, Ebert, and Schütze 2016;
Wang et al. 2016a) are competitive, most state-of-the-art
systems are based on hidden variables (Wang et al. 2015;
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Method Hidden Variable Inference

Direct lexical matching no no
(Sachan et al. 2015) independent direct(Wang et al. 2015)

This work dependent tractable

Table 1: Comparisons with related work.

Narasimhan and Barzilay 2015; Sachan et al. 2015; Sachan
and Xing 2016).

In existing formulations, hidden variables are assumed to
be independent. For example, Sachan et al. (2015) use hid-
den variables to describe word alignments between ques-
tions and stories. Suppose that we have two question words
qu and qv , and both of them have multiple possible align-
ments to the given story. In (Sachan et al. 2015), the align-
ments of qu, qv are assumed to be independent, which might
lose some important information. For instance, if qu is the
subject of qv in the question sentence, their correct align-
ments would also keep certain “agent-action” relation in the
story. Hence, assignments of the two hidden variables should
be correlated. The same problem also appears in (Wang et al.
2015) which uses hidden variables to describe the most rel-
evant story sentences to a question.

In this work, we try to enlarge the expressiveness of hid-
den variables by capturing dependencies among them. Two
new models are proposed based on structured inference on
syntactic trees and semantic frames. Specifically, in the tree
model, we organize hidden variables according to the de-
pendency tree structure. For each node (word) in the de-
pendency tree of a question, we associate it with a vari-
able to indicate its aligned story sentence. The tree edges
will describe the dependencies among hidden variables. In
the frame model, we group hidden variables according to
semantic frames. Each frame element is associated with a
variable. Assignments of the variables are thus guided by the
semantic frame structures. In both models, question-answer
pairs are scored according to structured inference results:
the structured inference first finds the optimal assignment
of hidden variables, then the final answer is scored based on
the assignment.

The inference algorithms of the two models are exact and
fast. Combined with the lexical matching baseline and the
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hidden variable perceptron algorithm, our models are able
to achieve state-of-the-art performances on MCTest dataset
(72.7%). To summarize, our main contributions are
• Introducing linguistic structures to describe hidden vari-

able dependencies.
• Applying effective inference algorithms for decoding the

proposed models.
• Achieving state-of-the-art performances on the MCTest

task (outperforming previous hidden variable and deep
learning models).

Related Work

There are many settings of machine comprehension tasks
which vary in corpus size (102 to 105 words), domain (open
or close), question source (synthetic or crowdsourced) and
answer form (cloze or multiple-choice). Example datasets
include CNN/Daily Mail (Hermann et al. 2015), CBT (Hill
et al. 2015), Algebra (Kushman et al. 2014), Science exam
(Clark and Etzioni 2016), and SQuAD (Rajpurkar et al.
2016). They evaluate different aspects of text understanding
systems.

In this work, we choose the MCTest (Richardson, Burges,
and Renshaw 2013) setting. Comparing with other machine
comprehension settings, the MCTest task evaluates systems
when external knowledge is absent. Taking the SQuAD for
comparison, questions in MCTest dataset are more likely to
refer to multiple story sentences (54.3% of the questions,
SQuAD is 13.6%). Hence, reasoning across sentence bound-
aries is more important in MCTest. Another difference is that
for SQuAD dataset, lexicalized features are crucial (e.g., lex-
icalized dependency path features in the logistic regression
baseline (Rajpurkar et al. 2016), embeddings of question
words and story words (Lee et al. 2016; Wang et al. 2016b;
2017)). We could think that the tighter dependency on lexi-
calized features, the more importance of the domain related
knowledge.

Early studies on MCTest task show that simple lexical
level similarity comparisons can achieve reasonable perfor-
mances. The baseline method in (Richardson, Burges, and
Renshaw 2013) uses a sliding window to count the num-
ber of overlapping words among the question, the answer
and the story, and then select the answer with the maxi-
mum count. Smith et al. (2015) show that running the slid-
ing window baseline with different window sizes can fur-
ther improve the result. It is clear that the simple matching
method could not handle complex questions, thus more ex-
pressive hidden variable models are introduced. Narasimhan
and Barzilay (2015) and Wang et al. (2015) use hidden vari-
ables to indicate candidate answer sentences. Wang et al.
(2015) incorporate syntax, frames and semantic features,
and Narasimhan and Barzilay (2015) focus on discourse re-
lation features. Sachan et al. (2015) and Sachan and Xing
(2016) propose hidden variables to represent alignments be-
tween questions and stories. They extract global features for
alignments based on rhetorical structure, coreference links
and abstract meaning representations. Our models depart
from existing work by introducing structures in the infer-
ence process rather than only using them as features.

Another line of work applies deep learning methods. In
general, due to the limited corpus size, existing deep learn-
ing models perform badly on MCTest (Yin, Ebert, and
Schütze 2016). Two exceptions are (Trischler et al. 2016;
Wang et al. 2016a). Trischler et al. (2016) combine multiple
similarity measurements based on word and sentence repre-
sentations. Wang et al. (2016a) introduce external RTE and
answer selection datasets for learning the neural networks.
It is worth noting that choosing proper initial values of pa-
rameters is crucial for above two models. In fact, according
to the experiments there, without tuning initial values, the
performances could be far below state-of-the-art models.

Among many studies on text semantic matching, the an-
swer selection task (Yih et al. 2013) is closely related to ma-
chine comprehension. Researchers have applied tree align-
ment models (synchronized grammar) (Wang, Smith, and
Mitamura 2007) and tree edit models (Wang and Manning
2010; Heilman and Smith 2010; Yao et al. 2013). Differ-
ent from existing answer selection models, we won’t align
two parse trees directly, but use tree structures for organiz-
ing hidden variables and conducting structured inference.

The Problem

Given a story in raw unstructured text, the task of machine
comprehension is to answer questions according to the con-
tent of the story. In this work, we assume that a set of can-
didate answers are provided, and the task is reduced to se-
lect a correct answer from the given set. Formally, let T =
t1, t2, . . . , t|T | represent a story, where ti is the ith sentence
in T . Define q = q1, q2, . . . , q|q| to be a question, where qi
is a question word, and a = a1, a2, . . . , a|a| be an answer,
where ai is a answer word. Denote A = {a1,a2, . . . ,a|A|}
to be a candidate answer set. For a story and a question, we
assign a score for each answer in the candidate set to mea-
sure its probability of being the correct answer. The answer
with the highest score is the model’s output. To be concrete,
let x = (T,q) and y = a ∈ A, the model assigns a score
h(x, y) ∈ R, and outputs ŷ = argmaxy∈A h(x, y).

The Approach

In hidden variable models, the scoring function h(x, y) re-
lies on some unobserved variables z. Two types of z are
often used: hidden sentence alignment and hidden word
alignment. In hidden sentence alignment models, a vari-
able z represents a story sentence which may support the
question-answer pair (Wang et al. 2015; Narasimhan and
Barzilay 2015). Being a sentence level model, various sen-
tence similarity measurements can be applied in the score
function h. The hidden word alignment models, on the
other side, are more fine-grained: for each question (or an-
swer) word, a variable z indicates which story word will
align with it (Sachan et al. 2015; Sachan and Xing 2016;
Yih et al. 2013).

In this work, we combine the two models: we aim to find
support sentences for an input question-answer pair, and
these sentences are obtained by locating support sentences
of individual question (or answer) words. Formally, for a
word qu in q (or au in a), we define a hidden variable zu
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Figure 1: Graphical model representations of hidden variable models. (a) is the model with one hidden sentence alignment
variable, (b) is the model with independent hidden word alignment variables, (c) is the proposed tree model, (d) is the frame
model and (e) is the model with two hidden sentence alignment variables. In (a) and (e), the hidden variables are allocated to
the question string (i.e., the support sentences of the question string). In (b), (c) and (d), z variables represent support words (in
(b)) or support sentences (in (c) and (d)) for each question word.

which indicates a candidate support sentence of the word.
Instead of treating hidden variables zu independently, we are
going to capture dependencies among them using syntactic
and semantic structures.

Tree Model

A natural way to capture word dependencies is by their syn-
tactic relations. If two words have close syntactic relation
in the question (or answer), the support sentences of them
might also share some information to keep the relation. Fur-
ther benefit would be obtained if we can assign zu by consid-
ering all other words and their hidden variable assignments.
However, to find the global optimum of all possible word
pairs, we need to keep the consistency among all local as-
signments, which is NP-hard (i.e., MAP inference of general
pairwise Markov random field (MRF)).

In order to develop a tractable model, we propose to
use dependency tree structures to organize hidden variables
(Figure 1.(c)). First, dependency trees (especially projective
trees) have encoded global syntactic relations properly in the
head-modifier structure: the head is a proxy of its modifiers
on their relations with other words. Second, the simple tree
structure helps to reduce model complexity and make the ex-
act inference tractable 1. We will consider both dependency
trees of questions and answers. In the following, we first take
the question as example to illustrate the model.

For question q, denote Dq to be its dependency tree, and
e = (qu, qv) ∈ Dq to be a tree edge. For a word qu, we set
candidate support sentences (i.e., the possible value of zu)
to be those story sentences containing word qu

2. Define the

1Comparing with linear chain MRF, the tree structure may help
us to capture long distance dependencies.

2We’ve experimented with larger candidate sentence sets (e.g.,
using word embedding based similarity threshold), but got negative
results. One reason might be that the vocabulary size of MCTest
data set is limited, and when we enlarge the candidate set, we al-
ways introduce random noise words rather than informative words.

linear score function ht(x, y, z):

ht(x, y, z) = αᵀϕ(x, y, z), (1)

where α is the model parameter, ϕ(x, y, z) is the feature
function. To obtain the score for the answer y, we take the
maximum score over all hidden variables

ht(x, y) = max
z

ht(x, y, z).

Following the dependency tree structure, we decompose
ht(x, y, z) (i.e., α and ϕ(x, y, z)) on Dq’s nodes and edges:

∑

qu∈q

αᵀ
nϕn(x, y, zu) +

∑

(qu,qv)∈Dq

αᵀ
eϕe(x, y, zu, zv),

where (ϕn, αn), (ϕe, αe) are feature functions and model
parameters on nodes and edges respectively. The node fea-
ture ϕn(x, y, zu) describes how plausible the support sen-
tence zu is according to qu and y. For example, the number
of words in zu also appearing in q (or y). In fact, all features
in existing hidden word alignment models (Yih et al. 2013)
are applicable in ϕn, which makes our model a superset of
those models.

The edge feature ϕe(x, y, zu, zv) is new to machine com-
prehension models. It describes dependencies between the
hidden variable zu and zv . For example, if zu, zv are the
same story sentence t, ϕe(x, y, zu, zv) could ask whether
the word qu, qv keep a similar relation in t as in q. In fact,
if all question words are aligned to a same story sentence,∑

(qu,qv)∈Dq
ϕe(x, y, zu, zv) can mimic the alignment of

two dependency trees. In another case, if zu, zv are two
different story sentences, ϕe could include features about
whether the combination of the two sentences is able to sup-
port the answer. It is helpful to tackle questions whose an-
swers are supported by multiple story sentences 3.

3Note that features in ϕe (also ϕn) fall into two types according
to whether it depends on the answer y. For those features are not
relevant to y, their weights in αe will not be updated during the
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Algorithm 1 Message passing for the tree model

1: π(u): the parent of u in Dq

2: χ(u): the children of u in Dq

3: zr: the root of Dq

4: z0: an artificial node being the parent of zr
5: S = {z0, z1, z2, . . . , z|q|}
6: repeat
7: select zu with all χ(u) are removed from S

8: mu→π(u) = maxzu

(
αᵀ
nϕn(x, y, zu)+

αᵀ
eϕe(x, y, zu, zπ(u)) +

∑
k∈χ(u) mk→u

)

9: remove zu from S
10: until S is empty
11: output ht(x, y) = maxzr mr→0

To handle syntactic structures of answers, we also include
a tree model based on dependency trees of answers Da

h′
t(x, y, z) = α′ᵀϕ′(x, y, z), (2)

where the feature function ϕ′ is based on the same ϕn, ϕe,
but decomposed according to Da, and the paramter α′ is also
decomposed to α′

n, α
′
e.

The inference problem in Equation 1 is tractable
(O(|q||T |2)) by the classical message passing algorithm on
the dependency tree Dq (Pearl 1982; Quattoni et al. 2007).
For completeness, we list it in Algorithm 1.

Frame Model

Frame semantics is another widely used linguistic structure
in text analysis. A semantic frame is a description of a sit-
uation with a trigger and several arguments. For example,
the sentence “What did Sarah buy from the shop?” contains
a frame “COMMERCE BUY”, with trigger word “buy”
and arguments “Sarah” (Buyer), “shop” (Seller) and “what”
(Goods). Frame semantics assumes that the meaning of a
sentence could be read from its frames. Previous machine
comprehension systems have included semantic frames as
features (Wang et al. 2015; Sachan and Xing 2016). But,
like the dependency tree structure, frames also provide struc-
tured information about dependencies among different hid-
den variables. We can also ask whether it is possible to use
frames as inference structures for hidden variables.

We propose a model focusing on trigger-trigger relations
in frames (Figure 1.(d)). Note that the triggers are core com-
ponents of frames, a good alignment of trigger words may
suggest a good alignment of frames, thus a large possibility
of containing the correct answer.

Given a question q, define its frames to be F =
{F1, F2, . . . , F|F|}. For the trigger or an argument qu in a
frame F , we associate it with a variable zFu to represent
its support sentence. Let zF1 always be the variable of the

learning process of answer ranking models. These features can be
seen as invariant prior knowledge: for example, one feature in ϕe

could be the distance between zu, zv in T . We would think that
the closer distance, the closer relation between them, thus we set a
negative weight for it in αe. Similar features have also been applied
in (Sachan et al. 2015; Wang et al. 2015).

trigger, and zF2 , z
F
3 , . . . , z

F
|F | be the variables of arguments.

We consider candidate support sentences of a trigger to be
those either containing the trigger word or the same type
frame. Define a feature function on hidden variables of trig-
ger words φt(x, y,F) = φt(x, y, z

F1
1 , zF2

1 , . . . , z
F|F|
1 ). Fea-

tures in φt will help searching the best alignment sentences
of different frames in q to support the correct answer. We ob-
tain the score function hf (x, y) = maxz hf (x, y, z), where

hf (x, y, z) = βᵀ
t φt(x, y,F). (3)

We also develop a model using semantic relations
within a frame. A feature function φa(x, y, F ) =
φa(x, y, z

F
1 , z

F
2 , . . . , z

F
|F |) is designed to find the best sup-

port sentences for the frame F . But it turns out that φa

does not improve the overall performances in the MCTest
dataset. (dropping about 1% of accuracy comparing with
φt). And different from the tree models, the frame model on
answers doesn’t provide improvement in experiment results.
We think that a more careful selection on frames would help
to refine the model.

The inference of the frame model is accomplished by enu-
meration. Since the number of triggers are limited for ques-
tions in MCTest dataset, the cost of time is tolerable in our
experiments.

Baseline Models

We incorporate a hidden sentence alignment model from
(Narasimhan and Barzilay 2015) (Model 2 there). Define
a feature function ϑ(x, y, z, z′) which selects two support
sentences z, z′ (Figure 1.(e)). We have a score function
hs(x, y) = maxz,z′ hs(x, y, z, z

′), where

hs(x, y, z, z
′) = γᵀϑ(x, y, z, z′). (4)

We also include the lexical matching baseline in (Richard-
son, Burges, and Renshaw 2013; Smith et al. 2015). Its scor-
ing function does not rely on hidden variables:

hg(x, y) = δᵀη(x, y), (5)

where η(x, y) contains features about lexical similarities be-
tween x and y.

Training

We can combine the score functions in previous section to
get the final h(x, y). First, to aggregate notations, denote Θ
to represent all model parameters (αn, αe, α′

n, α′
e, βt, γ, δ),

Φ to represent all feature functions (ϕn, ϕe, φt, ϑ, η) and
z to represent all hidden variables (i.e., hidden variables in
Equation 1, 2, 3, and 4). Then, we define

h(x, y)= max
z

h(x, y, z) = ht(x, y) + h′
t(x, y)

+hf (x, y) + hs(x, y) + hg(x, y), (6)

and the finial prediction ŷ = argmaxy∈Ah(x, y).
An assumption in Equation 6 is that the hidden variables

of different models are independent, thus, for example, the
tree model and the frame model could align a question word
to different story sentences. We make the assumption mainly
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Algorithm 2 Hidden Variable Perceptron

1: Input: the training set {(T i,qi, Ai,ai)}Ni=1

2: Input: the iteration number M , the learning rate C
3: Initialization: randomly set entries of Θ in [0, 1]
4: for j=1,2,. . . ,M do
5: for i=1,2,. . . ,N do
6: x � (T i,qi), y∗ � ai

7: zy � argmaxz h(x, y, z), ∀y
8: ŷ = argmaxy∈Ai h(x, y, zy)
9: if ŷ �= y∗ then

10: Θj,i = Θj,i−1 + CΦ(x, y∗, zy∗)− CΦ(x, ŷ, zŷ)
11: end if
12: end for
13: end for
14: return 1

M∗N
∑

j,i Θj,i

for simplifying the inference, and the joint inference among
different models is left for future work.

Given a training set {(T i,qi, Ai,ai)}Ni=1, where ai is the
correct answer of question qi. We estimate Θ using averaged
hidden variable perceptron (Sun et al. 2009) (Algorithm 2).
We tune the algorithm parameter on the development set,
and set C = 0.001,M = 10.

Features

Table 2 lists features used in different models. To build the
features, the key problem is to measure similarities between
two text spans σ, σ′. We use following operators:

• lex(σ, σ′): the number of overlapping unigram, bigram
and trigram between σ and σ′.

• dep(σ, σ′): the number of overlapping tree edges (and
connected tree edge bigrams) in dependency trees of σ, σ′
(applicable when σ, σ′ are sentences).

• cos(σ, σ′), the cosine similarities between vector repre-
sentations (i.e., the sum of word vectors in the text span)
of σ and σ′.

To mimic the sliding window baseline (Richardson, Burges,
and Renshaw 2013; Smith et al. 2015), we denote a symbol
σ|wd to project the text span σ onto the window wd (i.e.,
σ|wd is a subsequence of σ). We also apply heuristic rules to
combine q and a into one sentence q◦a (i.e., the hypothesis
sentence in (Sachan et al. 2015)).

Experiments

The Dataset

The MCTest dataset (Richardson, Burges, and Renshaw
2013) contains 660 stories written for elementary grade
school level students. For each story, four multiple choice
questions are posed (2640 questions), and each of them con-
tains four candidate answers. Since the stories are all fic-
tional, the answers could only be found from the stories
themselves. Questions are annotated with two types: one
(only one story sentence is sufficient to answer it) and multi-
ple (need multiple story sentences). Two subsets of MCTest
data set are MC160 (160 stories) and MC500 (500 stories).

η
∑

wd lex(q ◦ a, T |wd), ∑
wd cos(q ◦ a, T |wd)

maxti∈T lex(q ◦ a, ti)
maxti∈T lex(q ◦ a, ti ∪ ti+1)∑

ti∈T cos(q ◦ a, ti), ∑
ti∈T dep(q ◦ a, ti)

| argmaxi lex(a, ti)− argmaxi lex(q, ti)|
ϕn lex(q ◦ a, zu), lex(a, zu)

cos(q ◦ a, zu), cos(a, zu)
dep(q ◦ a, zu). dep(a, zu)
apply above 6 features to the sentence before/after zu
whether zu overlaps with both q and a

ϕe lex(q ◦ a, zu ∪ zv), lex(a, zu ∪ zv)
cos(q ◦ a, zu ∪ zv), cos(a, zu ∪ zv)
dep(q ◦ a, zu ∪ zv), dep(a, zu ∪ zv)
whether zu ∪ zv overlaps with both q and a
if zu = zv , whether qu, qv keep the same relation in zu

†

distance between zu and zv

φt lex(q ◦ a,∪iz
Fi
1 ), lex(a,∪iz

Fi
1 )

whether ∪iz
Fi
1 overlaps with both q and a

Table 2: Features. For sliding window methods (i.e., fea-
tures with wd), the window size equals to the length of q◦a.
The union “∪” of sentences concatenates their words. Fea-
tures in ϑ are similar to ϕe by setting hidden variables ac-
cordingly. All features are selected on the development set.

† If there are multiple occurrences of qu in zu, we take them as
different assignments w.r.t. the different occurrences of qu.

We use the official training, development and testing split-
ting.

For preprocessing, we use simple rules for sentence split-
ting and word segmentation, Stanford CoreNLP for corefer-
ence resolution (Lee et al. 2011). Stanford parser for depen-
dency parsing (Klein and Manning 2002), and SEMAFOR
frame-semantic parser (Kshirsagar et al. 2015) for frame
parsing. For word similarities, we use the pre-trained word
embeddings from word2vec 4.

Settings

We compare our models with following baselines (the first
eight rows of Table 3):

• lexical matching baselines (row 1, 2), which use a sliding
window to count overlapping words between q∪a and T .

• hidden sentence alignment models (row 3, 4).

• hidden word alignment models (row 5, 6).

• deep learning models (row 7, 8).

Besides the full model in Equation 6, we consider differ-
ent configurations of the proposed models. Recall that ht, h

′
t

are the question and answer tree model, hf is the frame
model, hs is the hidden sentence alignment model with two
hidden variables, and hg is the lexical matching method. We
try different combinations of them for controlled compar-
isons.
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Method MCTest-160 accuracy(%) MCTest-500 accuracy(%)

One(112) Multiple(128) All One(272) Multiple(328) All

(Richardson, Burges, and Renshaw 2013)+RTE 76.78 62.50 69.16 68.01 59.45 63.33
(Smith et al. 2015) 78.79 70.31 74.27 69.12 63.34 65.96
(Narasimhan and Barzilay 2015) 82.36 65.23 73.23 68.38 59.90 63.75
(Wang et al. 2015) 84.22 67.85 75.27 72.05 67.94 69.94
(Sachan et al. 2015) - - - 67.65 67.99 67.83
(Sachan and Xing 2016) - - - 72.05 68.90 70.33
(Wang et al. 2016a) 88.39 64.84 75.83 79.04 63.51 70.96
(Trischler et al. 2016) 79.46 70.31 74.58 74.26 68.29 71.00

hg 82.04 67.19 74.58 77.57 62.80 69.50
hg + ht 80.35 72.66 76.25 78.68 64.33 70.83
hg + h′

t 83.93 62.50 72.50 79.04 63.11 70.33
hg + ht + h′

t 83.04 65.63 73.75 78.31 63.72 70.33
hg + hf 83.82 65.63 74.58 77.57 65.55 71.00
hg + hs 80.25 67.97 74.17 76.10 64.33 69.67

hg + ht + h′
t + hf 81.25 66.41 73.33 76.84 65.55 70.67

hg + ht + h′
t + hf (VOTE) 83.04 67.19 74.58 80.88 63.72 71.50

hg + ht + h′
t + hf + hs 78.57 67.19 72.50 79.41 65.24 71.67

hg + ht + h′
t + hf + hs(VOTE) 81.25 68.75 74.58 80.15 66.46 72.67

Table 3: Experimental results on the MCTest dataset.

Results

Table 3 lists the experiment results. The proposed algorithms
are able to achieve the best performances on both MCTest-
160 and MCTest-500. The testing time is about 0.5s per
question on a single CPU with 8G RAM. The following are
some discussions.

Firstly, models with hidden variables are always better
than the lexical matching baseline hg on MCTest-500 5.
However, on the smaller MCTest-160, hg is competitive. We
think that the more expressiveness hidden models are neces-
sary for the task, and they also require more training data to
explore. On the other side, if we apply hidden variable mod-
els without the lexical matching features, their performances
will decreased 10% in average (omitted in Table 3 due to the
lack of space). Thus hidden variable models alone are also
not sufficient to achieve the state-of-the-art results. It sug-
gests that both the high level semantic similarity measure-
ments and the detailed answer inference structures analysis
are important for the reading comprehension task.

Secondly, we find that both the tree model hg+ht and the
frame model hg + hf are better than existing hidden word
alignment models (row 4, 5) and hidden sentence alignment
models (row 2, 3). Since the main difference of our models
to previous work is the appearance of dependencies among
hidden variables, we would think that they are helpful for
ranking answers, and the prior syntactic and semantic struc-
tures can be a proper way to capture these dependencies.

Thirdly, by comparing the results on MCTest-160 and
MCTest-500, we find that the tree model hg + ht is bet-
ter than the full model on the smaller dataset. Thus, the

4https://code.google.com/archive/p/word2vec/
5By introducing features from cos, dep, our implementation of

hg is better than previous work (row 1, 2).

all -lex -cos -dep -others

w/o VOTE 68.0 62.5 66.5 66.0 64.5
w/ VOTE 69.5 63.5 67.5 67.5 65.5

Table 4: Ablation analysis of model hg + ht on the develop-
ment set of MCTest-500 (200 questions). “lex”, “dep”, “cos”
represent features in η, ϕn, ϕe which involve operator lex,
dep, cos respectively (Table 2). “others” represents the
remaining features.

full model may need more training data to fit. Another ob-
servation is that, for “Multiple” questions in MCTest-500,
our models have lower scores than previous hidden word
alignment models. One reason could be that the candidate
aligned words are unconstrained there, while we need a con-
strained candidate support sentence set for controlling infer-
ence complexity.

Fourthly, although the full model hg + ht + h′
t + hf + hs

already outperforms the best previous result, we find that a
simple voting strategy could further improve the results (de-
noted by “VOTE” in Table 3). During the testing, instead
of taking ŷ = argmaxy∈A h(x, y) as the output, we com-
pute predictions of ht, h

′
t, hf , hs, hg individually, and if any

hidden variable model (i.e., ht, h
′
t, hf , hs) has the same pre-

diction with hg , we let ŷ be the prediction of hg . If predic-
tions of all hidden variable models are different with hg , we
fall back on the original h(x, y). Due to the size of MCTest
dataset, underfitting may occur in models. Empirically, the
voting could be seen as an ensemble of different hidden vari-
able models. A more thorough study of ensemble learning
for machine comprehension is left as future work.

Finally, the proposed models performs better than deep
learning based models (Trischler et al. 2016; Wang et al.
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Figure 2: An example of answer inference process in the tree model. We have two story sentences. The bottom left part shows
the correct assignment of variables, and the bottom right part shows how features in η, ϕe help to obtain the correct assignment.

1 T: The squirrel flew so high that it passed the buildings. It passed the birds, it passed the planes and stopped in the clouds.
Q: What was the second thing the squirrel passed?
A: A) the buildings B) the clouds *C) the birds D) the planes

2 T: . . . He came to a fast stop when he saw the dog. He’d seen a dog before...and he used to live with a black dog named
Henry...He jumped on his favorite chair and looked down as Maggie ran under it. She was kind of cute for a dog...
Q: What was the dog’s name?
A: *A) Maggie B) Henry C) Pester D) Linda

Table 5: Error analysis. Row 1&2 are examples that our models fail. The question in row 1 needs counting, and row 2 needs
powerful anaphora resolution.

2016a). As mentioned in (Yin, Ebert, and Schütze 2016),
learning the embedding layers for fictional stories could be
hard in neural network models, while the prior syntactic and
semantic structures could reduce the requirement on human
annotations for the proposed models. The proposed models
can also reduce the number of model parameters comparing
with deep learning algorithms. On the other side, as sug-
gested by (Sachan et al. 2015; Wang et al. 2016a), it is also
possible to learn knowledge independent features from re-
lated tasks (e.g., text entailment, answer selection), and it
might be a promising method to augment hidden variable
models with deep representation learning.

Table 4 lists ablation analysis on features (we only give re-
sults on the setting of hg + ht due to the lack of space). We
can observe that, while the lexical matching features (“lex”)
are essential for the task, “cos”, “dep” and “other” feature
groups could also provide significant performance gain. For
example, we would think that features such as whether two
question words keep the same relation in the aligned sen-
tence (in “others”) are crucial for the correct alignment.

We give an example to illustrate the answer inference in
Figure 2. In the example, we have two possible alignments
of the question word “worker” (i.e., story sentence 1 and
sentence 2). By considering the answer information (“fish”),
we may prefer to align it to the first sentence instead of the
second one (specifically, the sliding window features in η
can tell that the first sentence has more overlaps with the
hypothesis q ◦ a). Then, with the help of edge feature ϕe,

we can connect the syntactic information of the two sen-
tences (specifically, dep features in ϕe can tell that “feed”
and “work” hold the same type of dependency in sentence 2
and the question). Finally, the optimal assignment of hidden
alignment variable give a high ranking score for the correct
answer (“fish”). We also give some failed questions in Table
5. It shows that questions such as counting are still hard for
our models.

Conclusion

We studied dependencies among hidden variables for the
machine comprehension. Two novel methods based on syn-
tactic trees and semantic frames were proposed. The models
achieved state-of-the-art performances on standard MCTest
dataset. For future work, we plan to investigate the joint in-
ference of the proposed models, and also incorporate knowl-
edge and data from other related tasks.
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