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Abstract

Distant supervised relation extraction is an efficient approach
to scale relation extraction to very large corpora, and has
been widely used to find novel relational facts from plain
text. Recent studies on neural relation extraction have shown
great progress on this task via modeling the sentences in low-
dimensional spaces, but seldom considered syntax informa-
tion to model the entities. In this paper, we propose to learn
syntax-aware entity embedding for neural relation extraction.
First, we encode the context of entities on a dependency tree
as sentence-level entity embedding based on tree-GRU. Then,
we utilize both intra-sentence and inter-sentence attentions to
obtain sentence set-level entity embedding over all sentences
containing the focus entity pair. Finally, we combine both
sentence embedding and entity embedding for relation classi-
fication. We conduct experiments on a widely used real-world
dataset and the experimental results show that our model can
make full use of all informative instances and achieve state-
of-the-art performance of relation extraction.

Introduction

Relation extraction (RE), defined as the task of extracting
semantic relations between entity pairs from plain text, has
received increasing interests in the community of natural
language processing (Riedel et al. 2013; Miwa and Bansal
2016). The task is a typical classification problem after the
entity pairs are specified (Zeng et al. 2014). Traditional su-
pervised methods require large-scale manually-constructed
corpus, which is expensive and confined to certain domains.
Recently, distant supervision has gained a lot of attentions
which is capable of exploiting automatically-produced train-
ing corpus (Mintz et al. 2009). The framework has achieved
great success and has brought state-of-the-art performances
in RE.

Given an entity pair (e′, e′′) from one knowledge base
(KB) such as Freebase, assuming that the predefined seman-
tic relation on the KB is r, we simply label all sentences con-
taining the two entities by label r. This is the key principle
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Figure 1: An example dependency tree containing two en-
tities in sentence “In early 2006, he joined Khosla Ven-
tures, a silicon valley venture firm started by Vinod Khosla,
a founder of Sun Microsystems.”.

for distant supervision to produce training corpus. While this
may be problematic in some conditions, thus can result in
noises. For example, the sentence “Investors include Vinod
Khosla of Khosla Ventures, who, with the private equity
group of texas pacific group ventures, invested $20 million.”
is not for relation /business/company/founders of Khosla
Ventures and Vinod Khosla in Freebase, but it is still be re-
garded as a positive instance under the assumption of distant
supervision. Based on the observation, recent work present
multi-instance learning (MIL) to address the problem, by
treating each produced sentence differently during the train-
ing (Riedel, Yao, and McCallum 2010; Zeng et al. 2015;
Lin et al. 2016). Our work also falls into this category.

Under the statistical models with handcrafted features,
a number of studies have proposed syntactic features, and
achieved better results by using them (Hoffmann et al. 2011;
Surdeanu et al. 2012). Recently, the neural network models
have dominated the work of RE because of higher perfor-
mances (Lin et al. 2016; Ji et al. 2017). Similarly, the syntax
information has also been investigated in neural RE. One
representative method is to use the shortest dependency path
(SDP) between a given entity pair (Miwa and Bansal 2016),
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Figure 2: Workflow of entity embedding via tree-GRU.

based on which long short term memory (LSTM) can be
applied naturally to model it. This method has brought re-
markable results, since the path words are indeed good in-
dictors for semantic relation and meanwhile SDPs can re-
move abundant words between entity pairs.

The above work of using syntax concerns mainly on the
connections between entity pairs, paying much attention on
the words that link the two entities semantically, while ne-
glects the representation of entities themselves. Previous en-
tity embeddings purely based on their sequential words can
be insufficient to generalize to unknown entities. But it can
be different when we try to capture the meaning of entities
by its syntactic contexts. For example, as shown in Figure 1,
when use the subtrees rooted at Khosla Ventures and Vinod
Khosla to represent the two entities, we could capture longer
distance information than only use the entities themselves. It
indicates that the syntax roles the entities played in the sen-
tences are informative for RE.

In this paper, we propose syntax-aware entity embedding
(SEE) for enhancing neural relation extraction. As illus-
trated in Figure 2, to enrich the representation of each en-
tity, we build tree-structured recursive neural networks with
gated recursive units (tree-GRU) to embed the semantics of
entity contexts on dependency trees. Moreover, we employ
both intra-sentence and inter-sentence attentions to make
full use of syntactic contexts in all sentences: (1) attention
over child embeddings in a parse tree to distinguish infor-
mative children; (2) attention over sentence-level entity em-
beddings to alleviate the wrong label problem. Finally, we
combine all sentence embeddings and entity embeddings for
relation classification. We evaluate our model on the widely
used benchmark dataset and show that our proposed model
achieves consistently better performance than the state-of-
the-art methods.

The Baseline

Our baseline model directly adopts the state-of-the-art neu-
ral relation extraction model proposed by Lin et al. (2016),
which also employs multi-instance learning for alleviating
the wrong label problem faced by the distant supervision
paradigm.

The framework of the baseline approach is illustrated in
the left part of Figure 3. Suppose there are N sentences
S = {s1, ..., sN} that contain the focus entity pair e′ and e′′.
The input is the embeddings of all the sentences. The i-th
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Figure 3: Workflow of the baseline and our approach.

sentence embedding, i.e., embsi , is built from the word se-
quence, and encodes the semantic representation of the cor-
responding sentence. Then, an attention layer is performed
to obtain the representation vector of the sentence set. Fi-
nally, a softmax layer produces the probabilities of all rela-
tion types.

Sentence Embedding

Figure 4 describes the component for building a sentence
embedding from the word sequence. Given a sentence s =
{w1, ..., wn}, where wi is the i-th word in the sentence, the
input is a matrix composed of n vectors X = [x1, ...,xn],
where xi corresponds to wi and consists of the word em-
bedding and its position embedding. Following Zeng et al.
(2015) and Lin et al. (2016), we employ the skip-gram
method of Mikolov et al. (2013b) to pretrain the word em-
beddings, which will be fine-tuned afterwards. Position em-
beddings are first successfully applied to relation extraction
by Zeng et al. (2014). Given a word (e.g., “firm” in Figure
1), its position embedding corresponds to the relative dis-
tance (“6&-3”) from the word to the entity pairs (“Khosla
Ventures” and “Vinod Khosla”) through lookup.

A convolution layer is then applied to reconstruct the
original input X by learning sentence features from a small
window of words at a time while preserving word order
information. They use K convolution filters (a.k.a. feature
maps) with the same window size l. The j-th filter uses
a weight matrix Wf

j to map X into a j-th-view vector
Convj(X), which contains n− l + 1 scalar elements. The
i-th element is computed as follows:

Convj(X)[i] = Wf
j Xi:i+l−1

Three-segment max-pooling is then applied to map K
convolution output vectors of varying length into a vector of
a fixed length 3K. Suppose the positions of the two entities
are p1 and p2 respectively.1 Then, each convolution output

1Lin et al. (2016) treat all entity names as single words.
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Figure 4: Workflow of sentence embedding.

vector Convj(X) is divided into three segments:

[0 : p1 − 1]/[p1 : p2]/[p2 + 1 : n− l]

The max scalars in each segment is preserved to form a 3-
element vector, and all vectors produced by the K filters are
concatenated into a 3K-element vector, which is the output
of the pooling layer.2

Finally, the sentence embedding embs is obtained after
a non-linear transformation (e.g., tanh) on the 3K-element
vector.

Relation Classification

An attention layer over sentence embeddings (ATTSE) is
performed over the input sentence embeddings (embsi , 1 ≤
i ≤ N ) to produce a vector that encodes the sentence set,
as shown in Figure 3. We adopt the recently proposed self-
attention method (Lin et al. 2017). First, each sentence si
gains an attention score as follows:

αi = vsa tanh(Wsaembsi)

where the matrix Wsa and the vector vsa are the sentence
attention parameters.

Then, the attention scores are normalized into a proba-
bility for summing all sentence embeddings into the repre-
sentation vector of the sentence set S. As discussed in Lin
et al. (2016), the attention layer aims to automatically de-
tect noisy training sentences with wrong labels by allocating
lower weights to them in this step.3

2The combination of CNN and three-segment Max-pooling is
first proposed by Zeng et al. (2015) and named as piecewise con-
volutional neural network (PCNN).

3Please note that Lin et al. (2016) actually use a more com-
plicated attention schema. However, our preliminary experiments
show that the simple self-attention method presented here can
achieve nearly the same accuracy. Moreover, the same self-
attention mechanism is employed as both local and global attention
in our proposed approach.

embS =
∑

1≤i≤N

⎧⎪⎨
⎪⎩

exp(αi)∑
1≤k≤N

exp(αk)
embsi

⎫⎪⎬
⎪⎭ (1)

A softmax layer is used to produce the probabilities of
all relation types. First, we compute a output score vector as
follows:

os = WsembS + bs (2)
where the matrix Ws and the bias vector bs are model pa-
rameters, and |os| = Nr is the number of relation types.

Then, the conditional probability of the relation r for
given S is:

p(r|S) = exp(os[r])∑
1≤k≤Nr

exp(os[k])
(3)

Training Objective

Given the training data D = {(S1, r1), ..., (SM , rM )} con-
sisting of M sentence sets and their relation types resulting
from distant supervision, Lin et al. (2016) use the standard
cross-entropy loss function as the training objective.

Loss(D) = −
M∑
i=1

log p(ri|Si) (4)

Following Lin et al. (2016), we adopt stochastic gradient de-
scent (SGD) with mini-batch as the learning algorithm and
apply dropout (Srivastava et al. 2014) in Equation (2) to pre-
vent over-fitting.

Our SEE Approach

The baseline approach solely relies on the word sequence
of a given sentence. However, recent studies show that syn-
tactic structures can help relation extraction by exploiting
the dependence relationship between words. Unlike previ-
ous works which mainly consider the shortest dependency
paths, our proposed approach tries to effectively encode the
syntax-aware contexts of entities as extra features for rela-
tion classification.

Entity Embedding

Given a sentence and its parse tree, as depicted in Figure 1,
we try to encode the focus entity pair as two dense vectors.

Previous work shows that recursive neural networks
(RNN) are effective in encoding tree structures (Li et al.
2015). Inspired by Tai, Socher, and Manning (2015), we pro-
pose a simple attention-based tree-GRU to derive the con-
text embedding of an entity over its dependency subtree in a
bottom-up order.4

4In fact, Tai, Socher, and Manning (2015) propose two exten-
sions to the basic LSTM architecture, i.e., the N-ary tree-LSTM and
the child-sum tree-LSTM. However, the N-ary tree-LSTM assumes
that the maximum number of children is N , which may be unsuit-
able for our task since N = 19 would be too large for our dataset.
The child-sum tree-LSTM can handle arbitrary number of children,
but achieves consistently lower accuracy than the simple attention-
based tree-GRU according to our preliminary experiments.
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Figure 2 illustrates the attention-based tree-GRU. Each
word corresponds to a GRU node. Suppose “Vinod Khosla”
is the i-th word wi in the sentence, and take its correspond-
ing GRU node as an example. The GRU node has two input
vectors. The first input vector, denoted as xi, consists of the
word embedding, the position embedding, and the depen-
dency embedding of “started → Vinod Khosla”. It is similar
to the input in Figure 4 except for the extra dependency em-
bedding.

A dependency embedding is a dense vector that en-
codes a head-modifier word pair in contexts of all depen-
dency trees, which can express richer semantic relationships
beyond word embedding, especially for long-distance col-
locations. Inspired by Bansal (2015), we adopt the skip-
gram neural language model of Mikolov et al. (2013a;
2013b) to learn the dependency embedding. First, we em-
ploy the off-shelf Stanford Parser5 to parse the New York
Times (NYT) corpus (Klein and Manning 2003). Then,
given a father-child dependency p → c, the skip-gram model
is optimized to predict all its context dependencies. We use
the following basic dependencies in a parse tree as contexts:

gp → p c → gc1 . . . c → gc#gc

where gp means grandparent; gc means grandchild; #gc is
the total number of grandchildren.

The second input vector of the GRU node of
“Vinod Khosla” is the representation vector of all its chil-
dren ch(i), and is denoted as hch(i).

Attention over child embeddings (ATTCE). Here, we
adopt the self-attention for summing the hidden vector of
the GRU nodes of its children. Suppose j ∈ ch(i), meaning
wj is a child of wi. We use hj to represent the hidden vector
of the GRU node of wj . Then, the attention score of hj is:

αi
j = vch tanh(Wchhj)

where vch and Wch are shared attention parameters.
Then, the children representation vector is computed as:

hch(i) =
∑

j∈ch(i)

⎧⎪⎨
⎪⎩

exp(αi
j)∑

k∈ch(i)

exp(αi
k)

hj

⎫⎪⎬
⎪⎭ (5)

We expect that the ATTCE mechanism can be helpful for
producing better representation of the father by 1) auto-
matically detecting informative children via higher attention
weights; 2) whereas lowering the weights of incorrect de-
pendencies due to parsing errors.

Given the two input vectors xi and hch(i), the GRU node
(Cho et al. 2014) computes the hidden vector of wi as fol-
lows:

zi = σ(Wzxi +Uzhch(i) + bz)

ri = σ(Wrxi +Urhch(i) + br)

h̃i = tanh(W
˜hxi +U

˜h(ri ◦ hch(i)) + b
˜h)

hi = zi ◦ hch(i) + (1− zi) ◦ h̃i

(6)

5https://nlp.stanford.edu/software/lex-parser.shtml, and the ver-
sion is 3.7.0

where σ is the sigmoid function, and the ◦ is the element-
wise multiplication, W∗ and U∗ are parameter matrices of
the model, b∗ is the bias vectors, zi is the update gate vector
and ri is the reset gate vector.

Finally, we use hi as the representation vector of
the entity context of “Vinod Khosla”. In the same man-
ner, we can compute the entity context embedding of
“Khosla Ventures”.

Augmented Relation Classification

Again, we suppose there are N sentences S = {s1, ..., sN}
that contain the focus entity pair e′ and e′′. The corre-
sponding word indices that e′ occurs in S are respectively
{j′1, ..., j′N}, whereas the positions of e′′ are {j′′1 , ..., j′′N}.

As discussed above, the entity context embedding of e′ in
the i-th sentence si is the hidden vector of the GRU node of
wj′i (which is e′).

embsi,e′ = hsi
j′i

Similarly, the entity context embedding of e′′ in si is:

embsi,e′′ = hsi
j′′i

Figure 3 shows the overall framework of our proposed
approach. The input consists of three parts, i.e., the sentence
embeddings , the context embeddings of e′, and the context
embeddings of e′′:

{embs1 ... embsN }
{embs1,e′ ... embsN ,e′}
{embs1,e′′ ... embsN ,e′′}

(7)

Similar to sentence attention in the baseline system, and
for maximizing utilization the valid information in sentence
and entity context, we enhance the model by separately ap-
plying attention to both the sentence and entity context em-
beddings simultaneously.

Attention over entity embeddings (ATTEE). Similar to
the attention over sentence embeddings in Equation (1), we
separately apply attention to the three parts in Equation (7)
and generate the final representation vectors of S, e′, and
e′′ on the sentence set, i.e., embS , embe′ , embe′′ , respec-
tively. We omit the formulas for brevity.

Then, the next step is to predict the relation type based on
the three sentence set-level embeddings. Here, we propose
two strategies.

The concatenation strategy (CAT). The most straight-
forward way is to directly concatenate the three embeddings
and obtain the score vector of all relation types via a linear
transformation.

ocat = Wcat[embS ; embe′ ; embe′′ ] + bcat (8)

where the matrix Wcat and the bias vector bcat are model
parameters.

The translation strategy (TRANS). According to Equa-
tion (8), the CAT strategy cannot capture the interactions
among the three embeddings, which is counter-intuitive con-
sidering that the relation type must be closely related with
both entities simultaneously. Inspired by the widely used
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TransE model (Bordes et al. 2013), which regards the em-
bedding of a relation type r as the difference between two
entity embeddings (embr = embe′′ − embe′ ), we use the
vector difference to produce a relation score vector via a lin-
ear transformation.

osee = Wsee(embe′′ − embe′) + bsee (9)

where osee represents the score vector according to the entity
context embeddings, and the matrix Wsee and the bias vector
bsee are model parameters.

To further utilize the sentence embeddings, we compute
another relation score vector os according to Equation (2),
which is the same with the baseline. Then we combine the
two score vectors.

otrans = α ◦ os + (1−α) ◦ osee (10)

where ◦ denotes element-wise product (a.k.a. Hadamard
product), and α is the interpolation vector for balancing the
two parts. Actually, we have also tried a few different ways
for combining the two score vectors, but found that the for-
mula presented here consistently performs best.

Finally, we apply softmax to transform the score vectors
(ocat or otrans) into conditional probabilities, as shown in
Equation (3), and adopt the same training objective and op-
timization algorithm with the baseline.

Experiments

In this section, we present the experimental results and de-
tailed analysis.

Datasets. We adopt the benchmark dataset developed
by Riedel, Yao, and McCallum (2010), which has been
widely used in many recent works (Hoffmann et al. 2011;
Surdeanu et al. 2012; Lin et al. 2016; Ji et al. 2017). Riedel,
Yao, and McCallum (2010) use Freebase as the distant su-
pervision source and the three-year NYT corpus from 2005
to 2007 as the text corpus. First, they detect the entity
names in the sentences using the Stanford named entity tag-
ger (Finkel, Grenager, and Manning 2005) for matching the
Freebase entities. Then, they project the entity-relation tu-
ples in Freebase into the all sentences that contain the focus
entity pair. The dataset contains 53 relation types, including
a special relation “NA” standing for no relation between the
entity pair. We adopt the standard data split (sentences in
2005-2006 NYT data for training, and sentences in 2007 for
evaluation). The training data contains 522, 611 sentences,
281, 270 entity pairs and 18, 252 relational facts. The test-
ing set contains 172, 448 sentences, 96, 678 entity pairs and
1, 950 relational facts.

Evaluation metrics. Following the practice of previous
works (Riedel, Yao, and McCallum 2010; Zeng et al. 2015;
Ji et al. 2017), we employ two evaluation methods, i.e., the
held-out evaluation and the manual evaluation. The held-out
evaluation only compares the entity-relation tuples produced
by the system on the test data against the existing Freebase
entity-relation tuples, and report the precision-recall curves.

Manual evaluation is performed to avoid the influence of
the wrong labels resulting from distant supervision and the
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Figure 5: Comparison of the baseline and our approach un-
der two different strategies.

incompleteness of Freebase data, and report the Top-N pre-
cision P@N , meaning the the precision of the top N dis-
covered relational facts with the highest probabilities.

Hyperparameter tuning. We tune the hyper-parameters
of all the baseline and our proposed models on the training
dataset using three-fold validation. We adopt the brute-force
grid search to decide the optimal hyperparameters for each
model. We try {0.1, 0.15, 0.2, 0.25} for the initial learning
rate of SGD, {50, 100, 150, 200} for the mini-batch size of
SGD, {50, 80, 100} for both the word and the dependency
embedding dimensions, {5, 10, 20} for the position embed-
ding dimension, {3, 5, 7} for the convolution window size
l, and {60, 120, 180, 240, 300} for the filter number K. We
find the configuration 0.2/150/50/50/5/3/240 works well
for all the models, and further tuning leads to slight improve-
ment.

Held-out Evaluation

Comparison results with the baseline is presented in Fig-
ure 5. “SEE-CAT” and “SEE-TRANS” are our proposed ap-
proach with the CAT and TRANS strategies respectively. We
can see that both our approaches consistently outperform the
baseline method. It is also clear that “SEE-TRANS” is su-
perior to “SEE-CAT”. This is consistent with our intuition
that the TRANS strategy can better capture the interaction
between the two entities simultaneously. In the following re-
sults, we adopt “SEE-TRANS” for further experiments and
analysis.

The effect of self-attention components is investigated
in Figure 6. To better understand the two self-attention com-
ponents used in our “SEE” approach, we replace attention
with an average component, which assumes the same weight
for all input vectors and simply use the averaged vector as
the resulting embedding. Therefore, the “ATTCE” in Figure
2 is replaced with “AVGCE”, and “ATTEE” in Figure 3 is
replaced with “AVGEE”.

The four precision-recall curves clearly show that both
self-attention components are helpful for our model. In other
words, the attention provides a flexible mechanism that al-
lows the model to distinguish the contribution of different
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Figure 6: Effect of self-attention components.

input vectors, leading to better global representation of in-
stances.

Comparison with previous works is presented in Figure
7. We select six representative approaches and directly get
all their results from Lin et al. (2016) and Ji et al. (2017) for
comparison6, which fall into two categories:

• Traditional discrete feature-based methods: (1) Mintz
(Mintz et al. 2009) proposes distant supervision paradigm
and uses a multi-class logistic regression for classifica-
tion. (2) MultiR (Hoffmann et al. 2011) is a probabilis-
tic graphical model with multi-instance learning under
the “at-least-one” assumption. (3) MIML (Surdeanu et al.
2012) is also a graphical model with both multi-instance
and multi-label learning.

• Neural model-based methods: (1) PCNN+MIL (Zeng et
al. 2015) proposes piece-wise (three-segment) CNN to
obtain sentence embeddings. (2) PCNN+ATT (Lin et al.
2016) corresponds to our baseline approach and achieves
state-of-the-art results. (3) APCNN+D (Ji et al. 2017)
uses external background information of entities via an
attention layer to help relation classification.

From the results, we can see that our proposed ap-
proach “SEE-TRANS” consistently outperforms all other
approaches by large margin, and achieves new state-of-the-
art results on this dataset, demonstrating the effectiveness of
leveraging syntactic context for better entity representation
for distant supervision relation extraction.

Manual Evaluation

Due to existence of noises resulting from distance supervi-
sion in the test dataset under the held-out evaluation, we can
see that there is a sharp decline in the precision-recall curves
in most models in Figure 7. Therefore, we manually check
the top-500 entity-relation tuples returned by all the eight
approaches.7 Table 1 shows the results. We can see that (1)
our re-implemented baseline achieve nearly the same perfor-

6We are very grateful to Dr. Lin and Dr. Ji for their help.
7Please note that there are many overlapping results among dif-

ferent approaches, thus requiring much less manual effort.
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Figure 7: Comparison with previous results.

Accuracy Top 100 Top 200 Top 500 Average
Mintz 0.77 0.71 0.55 0.676

MultiR 0.83 0.74 0.59 0.720
MIML 0.85 0.75 0.61 0.737

PCNN+MIL 0.84 0.77 0.64 0.750
PCNN+ATT 0.86 0.83 0.73 0.807
APCNN+D 0.87 0.83 0.74 0.813

Baseline 0.86 0.84 0.73 0.810
SEE-TRANS 0.91 0.87 0.77 0.850

Table 1: Manual evaluation results.

mance with Lin et al. (2016); (2) our proposed SEE-TRANS
achieves consistently higher precision at different N levels.

Case Study

Table 2 present a real example for case study. The entity-
relation tuple is (Bruce Wasserstein, company, Lazard).
There are four sentences containing the entity pair. The base-
line approach only uses the word sequences as the input,
and learn the sentence embeddings for relation classifica-
tion. Due to the lack of sufficient information, the NA re-
lation type receives the highest probability of 0.735. In con-
trast, our proposed SEE-TRANS can correctly recognize the
relation type as company with the help of the rich contexts
in the syntactic parse trees.

Related Work

In this section, we first briefly review the early previous stud-
ies on distant supervision for RE. Then we introduce the sys-
tems using the neural RE framework.

In the supervised paradigm, relation extraction is consid-
ered to be a multi-class classification problem and needs a
great deal of annotated data, which is time consuming and
labor intensive. To address this issue, Mintz et al. (2009)
aligns plain text with Freebase by distant supervision, and
extracts features from all sentences and then feeds them into
a classifier. However, the distant supervision assumption ne-
glects the data noise. To alleviate the wrong label problem,
Riedel, Yao, and McCallum (2010) models distant supervi-
sion for relation extraction as a multi-instance single-label
problem. Further, Hoffmann et al. (2011) and Surdeanu et al.
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Tuple Sentences Syntax-aware Entities Baseline SEE-TRANS

company
(Bruce
Wasserstein,
Lazard)

1. A record profit at [Lazard], the investment bank
run by [Bruce Wasserstein], said that strength in its
merger advisory ... Bruce Wasserstein:

1. the chairman of
Lazard.
2. the current Lazard
chief executive.

Lazard:
1. the investment
bank run by Bruce
Wasserstein.

NA (0.735)

company
(0.256)

founders
(0.002)

company
(0.650)

NA (0.250)

founders
(0.028)

2. The buyout executives ... huddled in a corner, and
[Bruce Wasserstein], the chairman of [Lazard], chat-
ted with richard d. parsons , the chief executive of
time warner .
3. [Lazard], the investment bank run by [Bruce Wsser-
stein], said yesterday that strength in its merger-
advisory ...
4. Along with the deals and intrigue ... maneuverings
in martha ’s vineyard as well as the tax strategies of
the current [Lazard] chief executive [Bruce Wasser-
stein].

Table 2: Case study: a real example for comparison.

(2012) adopt multi-instance multi-label learning in relation
extraction, and use the shortest dependency path as syntax
features of relation. The main drawback of these methods is
that their performance heavily relies on a manually designed
set of feature templates which are difficult to design.

Neural networks (Bengio 2009) have been successfully
used in many NLP tasks such as part-of-speech tagging
(Santos and Zadrozny 2014), parsing (Socher et al. 2013),
sentiment analysis (Dos Santos and Gatti 2014), and ma-
chine translation (Cho et al. 2014). As for relation extrac-
tion, neural networks have also been successfully applied
and achieved advanced performance for this field. Socher et
al. (2012) uses a recursive neural network in relation extrac-
tion. Zeng et al. (2014) adopts an end-to-end convolutional
neural network in this task, and Zeng et al. (2015) further
combines at-least-one multi-instance learning and assumes
that only one sentence expresses the relation for each entity
pair, which doesn’t make full use of the supervision infor-
mation. Lin et al. (2016) proposes to use attention to select
valid sentences, which shows promising results. However,
sentence embeddings are used to represent relation between
entities, may result in semantic shifting problem, since the
relation between entities is just a small part of a sentence.

All the above work on neural networks mainly use words
to generate sentence embeddings, and use them for classifi-
cation. Besides the word-level information, syntax informa-
tion also has been considered by some researchers, for ex-
ample, Miwa and Bansal (2016) and Cai, Zhang, and Wang
(2016) model the shortest dependency path as a factor for
the relation between entities, but they ignore that the tree in-
formation can be used to model the syntax roles the entities
played. The syntax roles are important for relation extrac-
tion. Different from the above previous studies, we enrich
the entity representations with syntax structures by consid-
ering the subtrees rooted at entities.

Conclusion

In this paper, we propose to learn syntax-aware entity em-
bedding from dependency trees for enhancing neural rela-
tion extraction under the distant supervision scenario. We
apply the recursive tree-GRU to learn sentence-level entity

embedding in a parse tree, and utilize both intra-sentence
and inter-sentence attentions to make full use of syntac-
tic contexts in all sentences. We conduct experiments on a
widely used benchmark dataset. The experimental results
show that our model consistently outperforms both the base-
line and the state-of-the-art results. This demonstrates that
our approach can effectively learn entity embeddings, and
the learned embeddings are able to help the task of relation
extraction.

For future, we would like to further explore external
knowledge as Ji et al. (2017) to obtain even better entity em-
beddings. We also plan to apply the proposed approach to
other datasets or languages.
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