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Abstract

Word embedding has been widely used in many natural lan-
guage processing tasks. In this paper, we focus on learn-
ing word embeddings through selective higher-order rela-
tionships in sentences to improve the embeddings to be less
sensitive to local context and more accurate in capturing
semantic compositionality. We present a novel multi-order
dependency-based strategy to composite and represent the
context under several essential constraints. In order to real-
ize selective learning from the word contexts, we automati-
cally assign the strengths of different dependencies between
co-occurred words in the stochastic gradient descent process.
We evaluate and analyze our proposed approach using several
direct and indirect tasks for word embeddings. Experimental
results demonstrate that our embeddings are competitive to or
better than state-of-the-art methods and significantly outper-
form other methods in terms of context stability. The output
weights and representations of dependencies obtained in our
embedding model conform to most of the linguistic charac-
teristics and are valuable for many downstream tasks.

Introduction

Distributed word representations, also known as word em-
beddings, have attracted more attention and been widely
applied to many Natural Language Processing (NLP)
tasks (Mikolov et al. 2013b; Collobert et al. 2011; Jef-
frey, Richard, and Christopher 2014; Mikolov et al. 2013a;
Turian, Ratinov, and Bengio 2010; Levy, Goldberg, and Da-
gan 2015). Based on the distributed hypothesis, such mod-
els fit the co-occurrence of words using vector representa-
tions. The output vectors can be use not only to explore re-
lationships between words (Mikolov et al. 2013b; 2013a),
but also to achieve remarkable effects in many NLP tasks,
such as Part-Of-Speech (POS) tagging and Named Entity
Recognition (NER) (Bengio, Courville, and Vincent 2013;
Baroni, Dinu, and Kruszewski 2014; Collobert et al. 2011).
Most of the embedding models iteratively learn the char-
acteristics of co-occurrence, though the structures of mod-
els can be very different. For example, some models pre-
dict target word by considering its local context, such as
C&W (Collobert et al. 2011) and Continuous Bag-Of-Words
(CBOW) (Mikolov et al. 2013a), while the other methods
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S1: Dogs are usually highly variable in height and weight.
S2: Usually, domestic cats are similar in size.

BOW First-Order Second-Order

S1

Dogs nmod-advmod−1/height
are advmod−1 nsubj-advmod−1/Dogs

highly /variable cop-advmod−1/are
variable advmod-advmod−1/highly

S2 domestic
cats

advmod−1

/similar

nmod-advmod−1/size
nsubj-advmod−1/cats

cop-advmod−1/are

Table 1: First- and second-order dependency-based context
of two similar sentences (S1 and S2) for the same word
“usually.” First-order dependency-based context comes from
one-hop neighborhoods in the dependency parse tree where
second-order context comes from two-hop neighborhoods.

use target word to forecast its surrounding words, such as
Skip-Gram (SG) (Mikolov et al. 2013b) and its variants (Qiu
et al. 2014).

The above intuitions to train word embeddings have been
proven to be useful, however, some obvious issues have been
found in the composition and representation of local context.
First, though the large-scale corpus improves the learning ef-
fect of embeddings, with more diverse of a word’s context
may result in more difficulty to use one single embedding
vector to approximate the co-occurrences. Using multiple
embedding vectors of a word may be able to solve this prob-
lem (Huang et al. 2012), but how to decide the number of
vectors of a word is much more difficult.

Second, in most of the existing models, context words
are treated equally or distinguished by distances between
the context words and the target central word. However, this
does not conform to the real linguistic rules and human cog-
nition (Levy and Goldberg 2014; Komninos and Manand-
har 2016). As illustrated in Table 1, the word “cats” is more
significant than word “usually” for target word “domestic,”
because the dependency amod (between “cats” and “domes-
tic”) is more important than other dependencies.

In this paper, we generalize word embedding approaches
to context combining context-dependent weights and multi-
order dependencies. Our approach has two major contribu-
tions:

1) We propose a fast and efficient strategy to generate the
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(a) The Syntactic Dependency Tree (SDT) of the sentence.

word Second-order
Dependency

Multi-order Dependency
(sorted by scorew)

distant
amod−1/Europe

prep to−1-amod−1/go
conj and-amod−1/America

0.9384/Europe
0.9276/America
0.7719/Lation
0.4732/exports

. . .

petroleum
nn−1/exports
poss-nn−1/its

prep of−1-nn−1/rest

1.1106/exports
0.9338/processing

0.9173/rest
0.5532/further

. . .

(b) Different dependency-based context composition.

Figure 1: An instance for the composition of local context. Sentence: The rest of its petroleum exports go to distant Europe
and Latin America for further processing.

context based on the Syntactic Dependency Parse (SDP),
which not only composites the local context without losing
any important information but also ensures the stability of
semantic meaning of word embeddings when there are much
diverse context with large training corpus.

2) We determine the final representation of context by ap-
pending dependency-based parameters into our models. The
modified model updates dependency parameters in real-time
to achieve adaptive determination of the importance of the
context.

To evaluate the effectiveness of our method, we develop
our algorithm based on the Word2Vec tool, which is sim-
ple, efficient and has comparable performance to other word
embedding models (Mikolov et al. 2013b; 2013a). We can
achieve competitive experimental results in different NLP
tasks. We show that our integrated model can extract more
linguistic features from large-scale corpus through case
studies. We also conducted detailed analysis of the depen-
dency parameters with respect to several interesting phe-
nomena. Our system is publicly available at https://github.
com/RingBDStack/dependency-based-w2v.

Related Work

In this section, we briefly review the related work. As a ma-
ture grammar applied in many NLP tasks, SDP has been
also used to composite local context in recent distributed
representation learning models. Levy and Goldberg (2014)
introduced SDP into word embedding by presenting a sim-
ple arbitrary word context and obtaining specific word em-
beddings with abundant structural and functional features.
Qiu, Zhang, and Lu (2015) emphasized linguistic features
in a sentence, and confirmed the effect of SDP through an-
alyzing some representative experiments with dependency-
based word embeddings. Besides, Komninos and Manand-
har (2016) introduced the second-order dependency into the
context composition in word embeddings and verified its
ability to capture features by several tasks, such as sentence
classification, analogy, and so on. In particular, by using a
Recurrent Neural Network (RNN), Yin et al. (2016) trained

representations of multi-order dependency sequences be-
tween a target word and its context words considering the
spatial distance between them. The embeddings can signif-
icantly improve the CRF based aspect term extraction1. In
addition, the embedding with SDP based contexts can also
be used to improve neural machine translation (Eriguchi,
Hashimoto, and Tsuruoka 2016; Chen et al. 2017). There
have been also other dependency-based embeddings to im-
prove other NLP tasks, such as NER, natural language un-
derstanding, and question answering (Jie, Muis, and Lu
2017; Roy and Roth 2017; Xiang et al. 2016). However, all
the existing approaches empirically set the number of de-
pendency order of the composition context and the selected
context words are treated equally.

Improved Dependency-Based

Word Embeddings

In this section, we first briefly review the existing methods
for compositing context and then introduce our proposed
method.

Existing Methods for Compositing Context

Original word embedding uses local window to construct
a word’s context (Collobert et al. 2011; Mikolov et al.
2013a). SDP has been proposed to capture the longer-
distance dependencies that are syntactically related to the
target words (Levy and Goldberg 2014; Komninos and Man-
andhar 2016; Qiu, Zhang, and Lu 2015; Yin et al. 2016).
However, all the existing methods are based on a simple
hypothesis that the relation-strength between two words is
inversely proportional to the order of dependency between
them, which may not hold in certain circumstances. For
example, in Figure 1(b), choosing all the first-order and
second-order dependent words in SDT will lose some im-
portant information and bring lots of redundant or noisy in-

1Because we use general local linear method to composite its
context and the objective used by Yin et al. (2016) is different from
our method, we do not choose it for a comparison.
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Number 1 2 3 4 5 6 7 8 9 ≥ 10
Percentage 7.91% 8.64% 9.71% 11.56% 13.1% 13.47% 11.92% 10.13% 7.84% ≈ 5.72%

Table 2: The distribution of the number of first-order dependent words in dependency parse tree of all target words in 3.7 million
sentences from English Wikipedia (there are about fifteen words in each sentence on average). For example, The words rest,
Europe and exports in Figure 1 have 3 first-order dependencies, but Latin has only 1 first-order dependency.

formation into the context. More severely, as shown in Ta-
ble 2, the numbers of first-order dependency of each single
word distribute evenly, which means the fixed low-order de-
pendency window will cause partial target words to have too
few or too many words in their context (e.g., only a single
word or the whole sentence as the dependency-based con-
text). Second-order dependency-based context also has the
same problem. Hence, many words (nearly 30% ∼ 40%)
in the vocabulary can not get a corresponding high-quality
composite context with stable linguistic features.

Multi-Order Dependency-Based Composite
Context

Instead of simply combining the words with different depen-
dency order, we propose an adaptive approach to composite
the context.

Alternative Multi-Order Dependency Set As illustrated
in Figure 1(a), all of the syntactic dependencies among dif-
ferent words have been defined in SDT (we regard the in-
verse of a relation as a different dependency, e.g. amod and
amod−1 are treated differently). Some common prepositions
are included as special syntactic dependencies as well (e.g.
by, to, of ). Then, we derive the multi-order dependency set
as follows: for a target word w with its multi-order depen-
dency related words w1,w2,. . . ,wk, we consider all of the
units in context dw,wi

i ≤ k, where dw,wi
is the type of the

multi-order SDP between target word w and its dependency
related word wi (e.g. amod, prep to, amod-conj and−1), as
the alternative multi-order dependency set D(w).

Composite Principle In order to reserve the most valuable
words and to provide corresponding weight for each word
during the training process, the words in alternative multi-
order dependency set D(w) need to be scored based on a
comprehensive consideration of the different dependencies
and order between context word and target word. We denote
wi,1, . . . , wi,n to be the path from w = wi,1 to wi = wi,n if
wi is a nth order dependency word of w. Then the score of
wi related to w is defined as:

sdw,wi
=

n∏
j=2

ϕdwi,j−1,wi,j

λj
, (1)

where ϕdwi,j−1,wi,j
denotes the weight of dependency be-

tween wj−1 and wj and λj is the penalty coefficient for
jth-order, which is preset before training. The final word set
CD(w) can be constituted by sorting all of the elements in
D(w) according to their scores directly (as shown in Fig-
ure 1(b)).

Training Dependency-Based Word Embeddings

In this section, we introduce the CBOW based on Hierar-
chical Softmax (HS) and SG with Negative Sampling (NS),
and modify them to realize our proposed dependency-based
composite context.

Dependency-Based CBOW&HS The original CBOW
model sums 2n words surrounding target word w as its
composite context C(w), and maximizes the log-likelihood
function

∑
w log p(w|C(w)) as the training objective func-

tion. To integrate the dependency information into this
model, sdw,wi

and dependency representation v(dw,wi)
are introduced into training process. More specifically,
the dependency-based (generalized) CBOW model con-
catenates the dependency representation v(dw,wi

) with the
word vector v(wi) as a new input vector v′(wi) (as
shown in Figure 2). Then, all of the v′(wi) are aggregated
as new dependency-based context representation xw =∑cw

i=1,wi∈CD(w) sdw,wi
· v′(wi)/cw, where cw is the size of

context window.
Hence, the dependency-based CBOW, drawing on HS, re-

defines the probability p(w|CD(w)) by calculating from the
root node to the leaf node (target word w) in Huffman tree.
Then, the object function of model can be re-written as:

LDeps
CBOW&HS =

∑
w

log p(w|CD(w)) =
∑
w

lw∑
i=2

L(w, i),
(2)

where lw is the length of the path from the root node to the
leaf node, L(w, i) = (1−dwi )·log[σ(x�

wθ
w
i−1)]+dwi ·log[1−

σ(x�
wθ

w
i−1)] is the abbreviated form for the classified result

on i-th non-leaf node as the dwi ∈ {0, 1}, θwi−1 denotes the
parameter vector of i-th node, and σ(x) = 1/(1+exp(−x))
is the activation function.

Via the stochastic gradient based method, the parameters
θwi−1 and the original words w̃ ∈ CD(w) can be updated as
shown in what follows:

θwi−1 := θwi−1 + η[1− dwi − σ(x�
wθ

w
i−1)]xw (3)

and

v(w̃) := v(w̃) + ηf(
lw∑
i=2

∂L(w, i)
∂xw

), (4)

where η ∈ (0, 1) is the learning rate of the whole model,
which is inversely proportional to the number of itera-
tions (Hegde, Indyk, and Schmidt 2015), and f(·) is the
function to intercept the part of v(w̃)’s gradient.

We also update the dependency weight ϕd(w,wi) and de-
pendency representation v(dw,wi

) during the training pro-
cess. Those parameters can effectively and diacritically
identify the most useful context for target word in sentences
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v(Europe)
v(amod-1)

v(America)
v(conj_and-amod-1)

v(exports)
v(prep_of-nsubj-prep_to-1-amod-1)

Average Weighted Sum

Hierarchical Softmax

v(distant) v(amod-1)

Positive Sample Negative Samples (NEG)
Vocabulary Dependency Set

Neuron (θu )

Figure 2: The overview of proposed modified models (take distant in Table 1 as example). Left: Dependency-based CBOW&HS.
Right: Dependency-based SG&NS.

without considering any limits and supervisions (such as the
order or the distance, etc.). In dependency-based CBOW &
HS, we can obtain partial derivative of sdw,wj

as follow:

∂L(w, i)
∂sdw,wj

=
∂L(w, i)
∂xw

· ∂xw

∂sdw,wj

= [1− dwi − σ(x�
wθ

w
i−1)]θ

w
i−1 ·

v′(wj)

cw
.

(5)

Then, the dependency parameters ϕdwi,k−1,wi,k
and

v(dwi,k−1,wi,k
) can be updated as shown:

ϕdwi,k−1,wi,k
:= ϕdwi,k−1,wi,k

+ η′
lw∑
i=2

∂L(w, i)
∂sdw,wj

(6)

and

v(dwi,k−1,wi,k ) := v(dwi,k−1,wi,k ) + η′f(
lw∑
i=2

∂L(w, i)

∂xw
), (7)

where η′ = η/
∏k

wj∈CD(w),l=1 λl, cw is the size of context
window, f(·) is the function to intercept the part of depen-
dency representation’s gradient and i, j, k respectively de-
notes the ith non-leaf node, jth word in CD(w), kth-order
dependency between target word and its context word.

Dependency-based SG&NS In contrast to the CBOW,
the original SG model uses the target word to pre-
dict its contexts. Thus, its training object is to maxi-
mize the log-likelihood function

∑
w log p(C(w)|w) =∑

w

∑
u∈C(w) log p(u|w).

As shown in Figure 2, aiming to add the dependency in-
formation, we randomly select negative examples from the
whole vocabulary and dependency set according to their fre-
quencies, and concatenate them together as negative exam-
ples v′(w̃) in set NEG(w). Moreover, xw̃ = sw̃ · v′(w̃) is
treated as the final representation of negative example.

Hence, the dependency-based SG, drawing on NS, takes
g(w) =

∏
w̃∈CD(w)

∏
u∈{w}∪NEGw̃(w) p(u|w̃) as the objec-

tive function, which can be redefined as follows:

LDeps
SG&NS =

∑
w

log g(w) =
∑
w

∑
w̃∈CD(w)

∑
u∈{w}∪NEGw̃(w)

L(w, w̃, u),

(8)

where L(w, w̃, u) = Lw(u) · log[σ(x�
w̃θ

u)] + [1− Lw(u)] ·

log[1 − σ(x�
w̃θ

u)], σ(x) has the same meaning in Equa-
tion (3), θu denotes the parameter vector of NS neuron, and
Lw(u) ∈ {0, 1}, which depends that the u is a positive ex-
ample or negative example. Then, the updating functions are
also as follows:

θu := θu + η[Lw(u)− σ(x�
w̃θ

u)]xw̃ (9)
and

v(w̃) := v(w̃) + ηf(
∑

u∈{w}∪NEG(w)

∂L(w, w̃, u)
∂xw̃

), (10)

where f(·) is the function to intercept the part of v(w̃)’s gra-
dient.

In analogy to the previous section, we know that the par-
tial derivative of su are obtained with the same method,
which is shown as follow:

∂L(w, w̃, u)
∂su

=
∂L(w, w̃, u)

∂xw̃
· ∂xw̃

∂su

= [Lw(u)− σ(x�
w̃θ

u)]θu · v′(w̃).
(11)

Thus, the dependency parameters ϕdwi,k−1,wi,k
and

v(dwi,k−1,wi,k
) can be updated as shown:

ϕdwi,k−1,wi,k
:= ϕdwi,k−1,wi,k

+ η′
lw∑
i=2

∂L(w, w̃, u)
∂su

(12)

and

v(dwi,k−1,wi,k ) := v(dwi,k−1,wi,k ) + η′f(
lw∑
i=2

∂L(w, w̃, u)

∂xw̃
),

(13)

where η′ = η/
∏k

wj∈CD(w),l=1 λl, cw is the size of context
window, f(·) is the function to intercept the part of depen-
dency representation’s gradient and k denotes the kth-order
dependency between target word and its context word.

Optimization

In order to improve the overall efficiency and effectiveness
of the modified models, we introduce some optimization
tricks here. The redundant information will be increased and
the performance and output effect will be reduced indirectly,
if the size of context window is too large. Considering com-
prehensively the properties of large-scale corpus (imbalance,
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SIMLEX-999 TR-3K WS-353-SIM VERB-143 MC-30 MTurk-287 RG-65 RW YP-130
GloVe 0.2627 0.6092 0.5670 0.3171 0.4653 0.6145 0.5458 0.2641 0.4016
CBOW&HS 0.3197 0.6694 0.7068 0.3706 0.6843 0.6486 0.6789 0.3576 0.3203
SG&NS 0.3559 0.6963 0.7361 0.4041 0.7380 0.6532 0.7039 0.3730 0.4323
Deps 0.3705 0.6742 0.6899 0.3844 0.7426 0.6371 0.6713 0.3994 0.4446
EXT 0.3563 0.6814 0.7058 0.3879 0.7391 0.6406 0.6711 0.3724 0.4358
CBOWDeps&HS 0.3202 0.6732 0.7094 0.3824 0.6883 0.6533 0.6809 0.3607 0.3215(only weight)
SGDeps&NS 0.3613 0.7029 0.7393 0.4084 0.7488 0.6594 0.7267 0.3894 0.4483(only weight)
CBOWDeps&HS 0.3291 0.6775 0.7234 0.3942 0.7042 0.6524 0.6875 0.3619 0.3311
SGDeps&NS 0.3686 0.7109 0.7456 0.4122 0.7552 0.6647 0.7348 0.3964 0.4533

Table 3: Comparison of word embeddings for word similarity/relatedness (the average of several trials).

huge and complex), we dynamically adjust the context win-
dow size of target word w as follows:

cw = max (sizemax − log fw, sizemin), (14)

where fw is the frequency of word w in corpus, sizemax

and sizemin are artificial parameters for restricting the size
of window.

Meanwhile, since the distribution of dependencies, simi-
lar to that of word frequency, is greatly uneven, the balance
of training times of different dependencies is supposed to be
guaranteed during training process by the sub-sampling of
dependencies. Through several continuous experiments, the
following formula of discard probability of high-frequency
dependency has been chosen (Mikolov et al. 2013b):

P (dwi,wj ) = 1− (
√
γ + γ + γ2), (15)

where γ = sample
freq(dwi,wj

) , sample is an artificial parameter

and freq(·) is the frequency of corresponding dependency.
And when sample = 0, the sub-sampling is not performed.

The final experiments have proved that the methods out-
lined above can improve the effectiveness and efficiency sig-
nificantly2.

Experiments

In this section, we present several experiments to verify the
effectiveness and efficiency of our proposed approach.

Dataset and Training

We trained all embeddings based on partial English
Wikipdeia corpus 3, which contains 388,900,648 tokens and
555,434 unique words4. To obtain the dependency-based
corpus, the initial corpus, containing 5,784 syntactic de-
pendencies and 3.7 million sentences, is parsed by Stan-
ford neural-network dependency parser (Chen and Manning
2014).

2Due to the limited space, we only list the most important opti-
mization tricks.

3In fact, there are many phrases and abnormal sentences in cor-
pus which cannot be used. So we construct the corpus by limiting
the length of sentence (delete the sentences which is too long or
too short) and the average length of the sentences after processing
is around 15.

4The version of download file is wikidata-20161020.

As we found that various dimensions (50, 300, 600, 1000)
of word embeddings resulted in similar trends, only exper-
imental results for 300 dimension embeddings will be re-
ported. Meanwhile, we set the dimension of dependency
vector v(dwi,k−1,wi,k

) as 50 5, the initial dependency weight
ϕdwi,k−1,wi,k

= 0.9, and initialize word vector v(w), pos-
itive dependency vector v(d) and other model parameters
randomly. To remove the fluctuation of experimental results
from random initialization, we report the average of several
trials for each experiment.

Baseline Methods

We re-implement or use the existing embedding models in
the baseline methods as follows:

• GloVe (Jeffrey, Richard, and Christopher 2014): it ef-
ficiently leverages global statistical information through
factorizing a word-word co-occurrence matrix.

• Original CBOW in Word2vec (Mikolov et al. 2013a): the
original CBOW model based on HS.

• Original SG in Word2vec (Mikolov et al. 2013a): the orig-
inal SG model based on NS.

• Deps (Levy and Goldberg 2014): it improves the original
SG based on NS by incorporating first-order dependency
into it.

• EXT (Komninos and Manandhar 2016): it introduces
second-order dependency into Deps.

Quantitative Results

Now we present the quantitative results of our approach and
baselines.

Word Similarity/Relatedness Word similar-
ity/relatedness has been widely used as a task to evaluate
the effectiveness of word embeddings. We employ nine
datasets, which include SIMLEX-999, TR-3K, WS-353-
SIM, VERB-143, MC-30, MTurk-287, RG-65, RW and

5Since the dependency vector is used as parameter to assist the
prediction model to calculate the probability, we do not introduce
it into the evaluation measures of word vectors. Because there are
only 5,784 dependencies, too high dimension will only increase the
amount of calculation, without obvious effect in the results.
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GloVe CBOW&HS SG&NS Deps EXT
CBOWDeps SGDeps CBOWDeps

&HS
SGDeps

&NS&HS &NS
(only weight) (only weight)

NER 83.64 80.67 82.44 84.07 83.08 81.99 83.89 82.87 85.14
LOC 86.43 85.89 87.53 87.68 86.90 86.50 88.75 87.42 89.63
MISC 73.77 72.68 75.65 77.52 78.46 74.56 77.53 76.16 78.79
ORG 82.36 78.23 79.88 81.87 79.51 80.04 80.85 80.64 82.53
PER 88.14 85.86 86.71 89.20 87.42 86.84 88.42 87.27 89.73

Table 4: Evaluation results on the test set from the CoNLL-2002 and CoNLL-2003 English data (F1-score).

GloVe CBOW SG&NS Deps EXT CBOWDeps SGDeps

&HS &HS &NS
Prec. 74.3 72.2 74.1 72.4 73.2 73.1 74.8
Rec. 67.2 66.5 67.8 65.2 66.2 66.7 68.1
F1 70.6 69.2 70.8 68.6 69.5 69.8 71.3

Table 5: Evaluation results on the test set from the CoNLL-2012 English data (precision, recall, and F1 of MUC).

YP-130, selected by Manaal and Chris (2014) as the
evaluated data. The cosine value of two word vectors is used
to measure the degree of similarity/relatedness between
them. The Spearman’s rank correlation coefficient (Myers
and Well. 1995) is used to check the correlation of ranks
between human annotation and computed similarities. Our
embedding approach manifest its advantages with results
of the same method in different context compositions, as
shown in Table 3.

Named Entity Recognition (NER) NER is a task to lo-
cate and classify words/phrases in sentences into predefined
categories such as persons (PER), locations (LOC), orga-
nizations (ORG), and miscellaneous (MISC). Meanwhile,
NER is also taken as a downstream task to evaluate words
embeddings, and we follow the use of word embeddings
in NER (Lample et al. 2016). We use CoNLL-2002 and
CoNLL-2003 datasets (Sang 2002; Sang and Meulder 2003)
that contain independent entity labels for English to train and
test our embeddings. As shown in Table 4, the dependency-
based word embeddings significantly outperform other base-
line methods since the dependency-based context can cap-
ture most of stable and valuable syntactic features and par-
tial semantic information.

Neural Co-reference Resolution (NCR) Co-reference
Resolution is also an important NLP downstream task. Re-
cently, end-to-end neural network based model has achieved
good results through using pre-trained word embeddings
based on general methods. For example, Lee et al. (2017) di-
rectly considered all spans in a document as potential men-
tions and learn distributions over possible antecedents for
each. Then, we use the English coreference resolution data
from the CoNLL-2012 shared task (Pradhan et al. 2012) in
Lee et al.’s model to inspect the effect of our embeddings. As
shown in Table 5, our methods achieve competitive results
compared to other embedding models.

Qualitative Results

Here we present the qualitative results of our approach.

Figure 3: Distribution and quantity of words in composite
context based on different methods. The Y-axis denotes the
number of unique context words (words have been sorted ac-
cording their word frequency), the X-axis denotes the ratio
between the sum of sorted words’ frequency and total word
frequency. For example, the line of multi-order dependency
in this figure denotes that there are average 4,483 unique
words in its corresponding context, and the 2,000 most fre-
quent context words account for about 70% of the total con-
text word frequency.

Context/Compositionality Stability Caused by the vari-
ous expressions and the complex linguistic phenomena in
large-scale corpus, the original composite context used in
Word2Vec can be very diverse. To verify this, we randomly
choose 5,000 words (with different word frequency) from
the vocabulary as examples, and analyze their context com-
positions acquired from different approaches respectively
(such as Word2Vec and etc.). To balance the total frequency
of words in each target word’s context acquired from dif-
ferent approaches, we standardize the statistic data before
analysis. The results are shown in Figure 3. We can see that
the multi-order dependency-based method proposed here is
able to capture less contextual words than other methods.
As shown in Table 6, we select three contrastive words with
different word frequencies, and display their top five most
frequent words in the context acquired from different meth-
ods. We can see that the our extracted words in the context
have stronger relatedness with target word.
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N-gram BOW2 BOW5 1st-Deps 2nd-Deps mth-Deps

century

the the the the the 21th
is was a released released 20th
their studio was is was dc
a debut released their is bc
his an is a recorded released

batman

the the the robin the robin
a robin a the robin comics
to is to series a superman
was a was superman is catwomen
superman superman is catwoman series series

huffman

felicity felicity the felicity felicity trees
are the a trees was felicity
the was was coding a coding
that are felicity born the code
was coding is wilcox bill tree

Table 6: The top five frequent words in composite context
(based on different strategies) of target words.

Figure 4: The visualization of dimensionality reduction re-
sults of the top 500 highest frequent positive preposition de-
pendencies and their negative dependencies.

Analysis of Dynamic Dependency Parameters

One of the major additional value of this work is that a set of
dynamic parameters are used to measure the strength of de-
pendencies between words, which greatly changes the struc-
ture of sentence and makes the achievement of the multi-
order dependency-based context possible. Hence, words
that are really close to target word with respect to syntax
and semantics can be selected with only the dependencies
among words and target word being concerned. It is easy
to find that some dependencies are more important than
others through analyzing the experimental results, such as
conj and, conj or.

To further analyze the dependencies, we map several
trained dependency vectors to low dimensional space by
utilizing the most commonly used dimensionality reduc-
tion method Principal Component Analysis (PCA) (Jolliffe
1986). Since the number of principal components is lim-
ited to two, the dependency vector compressed by PCA al-
gorithm only saves less than 60% of the variance, which
means that a small amount of information is lost. However,
we can still observe some special characteristics from Fig-
ure 4. Due to we set the initial negative dependency vector
to 180 degrees form the random initial positive dependency,
the trained vectors still roughly retains this relationship.

In addition, as shown in Figure 4, the analogy between
words also exists between dependencies, especially between
corresponding positive and negative dependencies. More-
over, the cosine similarity between dependencies can also
reflect the correct semantic and syntactic relationships be-
tween them to a certain extent (for example, the cosine sim-
ilarity between prep though and prep although is about
0.81).

Conclusion

This paper introduces an approach which can incorporate
the multi-order dependency-based context into original word
embeddings with adaptive dependency weights. The repre-
sentations of dependencies are also integrated into the ob-
jective functions to assist the prediction during the train-
ing process. Meanwhile, the objective functions, input layer
and stochastic gradient based update functions of Word2Vec
are modified to adapt to the multi-order dependency-based
context. Experiments have shown that the proposed meth-
ods not only achieve significant improvement in both direct
word similarity/relatedness tasks and indirect downstream
NLP tasks, but also solve the problems of original word
embeddings (i.e., composite context diversity and relation-
ship confusion), especially in large-scale corpus. Neverthe-
less, whether our trained dependency parameters can be used
to improve the effect of syntax parse or not has not been
tested yet and it will be explored in future. Apart from this,
the explicit semantic meaning of different dimensions of the
dependencies embeddings is still not clear. In the future, it
would be interesting to develop a model to explain or visu-
alize the meanings of the vector elements.
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