
SKIPFLOW: Incorporating Neural Coherence Features
for End-to-End Automatic Text Scoring

Yi Tay,1 Minh C. Phan,2 Luu Anh Tuan,3 Siu Cheung Hui4
1, 2, 4 Nanyang Technological University

School of Computer Science and Engineering, Singapore
3 Institute for Infocomm Research, Singapore

Abstract

Deep learning has demonstrated tremendous potential for
Automatic Text Scoring (ATS) tasks. In this paper, we de-
scribe a new neural architecture that enhances vanilla neu-
ral network models with auxiliary neural coherence features.
Our new method proposes a new SKIPFLOW mechanism that
models relationships between snapshots of the hidden rep-
resentations of a long short-term memory (LSTM) network
as it reads. Subsequently, the semantic relationships between
multiple snapshots are used as auxiliary features for predic-
tion. This has two main benefits. Firstly, essays are typically
long sequences and therefore the memorization capability of
the LSTM network may be insufficient. Implicit access to
multiple snapshots can alleviate this problem by acting as
a protection against vanishing gradients. The parameters of
the SKIPFLOW mechanism also acts as an auxiliary mem-
ory. Secondly, modeling relationships between multiple posi-
tions allows our model to learn features that represent and
approximate textual coherence. In our model, we call this
neural coherence features. Overall, we present a unified deep
learning architecture that generates neural coherence features
as it reads in an end-to-end fashion. Our approach demon-
strates state-of-the-art performance on the benchmark ASAP
dataset, outperforming not only feature engineering baselines
but also other deep learning models.

Introduction

Automated Text Scoring (ATS) systems are targeted at both
alleviating the workload of teachers and improving the feed-
back cycle in educational systems. ATS systems have also
seen adoption for several high-stakes assessment, e.g., the
e-rater system (Attali and Burstein 2004) which has been
used for TOEFL and GRE examinations. A successful ATS
system brings about widespread benefits to society and the
education industry. This paper presents a novel neural net-
work architecture for this task.

Traditionally, the task of ATS has been regarded as a ma-
chine learning problem (Larkey 1998; Attali and Burstein
2004) which learns to approximate the marking process
with supervised learning. Decades of ATS research fol-
low the same traditional supervised text regression meth-
ods in which handcrafted features are constructed and sub-
sequently passed into a machine learning based classifier.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A wide assortment of features may commonly extracted
from essays. Simple and intuitive features may include es-
say length, sentence length. On the other hand, intricate and
complex features may also be extracted, e.g.., features such
as grammar correctness (Attali and Burstein 2004), readabil-
ity (Zesch, Wojatzki, and Scholten-Akoun 2015) and textual
coherence (Chen and He 2013). However, these handcrafted
features are often painstakingly designed, require a lot of hu-
man involvement and usually require laborious implementa-
tion for every new feature.

Deep learning based ATS systems have recently been pro-
posed (Dong and Zhang 2016; Taghipour and Ng 2016;
Alikaniotis, Yannakoudakis, and Rei 2016). A comprehen-
sive study has been done in (Taghipour and Ng 2016) which
demonstrated that neural network architectures such as the
long short-term memory (LSTM) (Hochreiter and Schmid-
huber 1997) and convolutional neural network (CNN) are
capable of outperforming systems that extensively require
handcrafted features. However, all of these neural models
do not consider transition of an essay over time, i.e., logical
flow and coherence over time. In particular, mainly semantic
compositionality is modeled within the recursive operations
in the LSTM model which compresses the input text repeat-
edly within the recurrent cell. In this case, the relationships
between multiple points in the essay cannot be captured
effectively. Moreover, essays are typically long sequences
which pushes the limits of the memorization capability of
the LSTM.

Hence, the objective of this work is a unified solution to
the above mentioned problems. Our method alleviates two
problems. The first is targeted at alleviating the inability
of current neural network architectures to model flow, co-
herence and semantic relatedness over time. The second is
aimed at easing the burden of the recurrent model. In order
to do so, we model the relationships between multiple snap-
shots of the LSTM’s hidden state over time. More specifi-
cally, as our model reads the essay, it models the semantic
relationships between two points of an essay using a neural
tensor layer. Eventually, multiple features of semantic relat-
edness are aggregated across the essay and used as auxiliary
features for prediction.

The intuition behind our idea is as follows. Firstly, se-
mantic relationships across sentences are commonly used as
an indicator of writing flow and textual coherence (Wiemer-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5948



Hastings and Graesser 2000; Higgins et al. 2004; Higgins
and Burstein 2007; Chen and He 2013; Somasundaran,
Burstein, and Chodorow 2014). As such, our auxiliary fea-
tures (generated end-to-end) aim to capture the logical and
semantic flow of an essay. This also provides a measure of
semantic similarity aside from the flavor of semantic com-
positionality modeled by the base LSTM model.

Secondly, the additional parameters from the external ten-
sor serve as an auxiliary memory for the network. As essays
are typically long sequences, modeling the relationship be-
tween distant states with additional parameters can enhance
memorization and improve performance of the deep archi-
tecture by allowing access to intermediate states, albeit im-
plicitly. The semantic relevance scores can then be aggre-
gated by concatenation and passed as an auxiliary feature to
a fully-connected dense layer in the final layer of the net-
work. As such, our architecture performs sentence modeling
(compositional reading) and semantic matching in a unified
end-to-end framework.

Our Contributions

The prime contributions of our paper are as follows:

• For the first time, we consider neural coherence features
within the context of an end-to-end neural framework.
Semantic similarity and textual coherence have a long
standing history in ATS literature (Wiemer-Hastings and
Graesser 2000; Higgins and Burstein 2007; Higgins et al.
2004). Our work incorporates this intuition into modern
neural architectures.

• Aside from modeling coherence, our method also alle-
viates and eases the burden of the recurrent model by
implicit access to hidden representations over time. This
serves as a protection against vanishing gradient. More-
over, a better performance can be achieved with a smaller
LSTM parameterization.

• We propose SKIPFLOW LSTM, a new neural architec-
ture that incorporates the intuition of logical and seman-
tic flow into the vanilla LSTM model. SKIPFLOW LSTM
obtains state-of-the-art performance on the ASAP bench-
mark dataset. We also achieve an increase of 6% in perfor-
mance over a strong feature engineering baseline. In the
same experimental configuration, we achieve about 10%
increase over a baseline LSTM model, outperforming
more advanced extensions such as Multi-Layered LSTMs
and attention-based LSTMs.

Related Work

Automated Text Scoring (ATS) systems have been deployed
for high-stakes assessment since decades ago. Early high-
stakes ATS systems include the Intelligent Essay Assessor
(IEA) (Foltz et al. 2013) and Project Essay Grade (Page
1967; Shermis and Burstein 2003). Commercial ATS sys-
tems such as the e-rater (Attali and Burstein 2004) have
been also deployed for GRE and TOEFL examinations.

Across the rich history of ATS research, supervised learn-
ing based ATS systems mainly rely on domain-specific fea-
ture engineering whereby lexical, syntactic and semantic

features are designed by domain experts and subsequently
extracted from essays. Then, a simple machine learning clas-
sifier trained on these feature vectors can be used to predict
the grades of essays. Early work (Larkey 1998) treats ATS as
a text categorization problem and uses a Naive Bayes model
for grading while the e-rater system uses linear regression
over handcrafted features. (Phandi, Chai, and Ng 2015) pro-
posed a Bayesian Linear Ridge Regression approach for do-
main adaptation of essays.

The reliance on handcrafted features is a central theme to
decades of ATS research. The complexity and ease of imple-
mentation of essay scoring features can be diverse. For ex-
ample, length-based features are intuitive and simple to ex-
tract from essays. On the other hand, there are more complex
features such as grammar correctness or lexical complexity.
Features such as readability (Zesch, Wojatzki, and Scholten-
Akoun 2015), textual and discourse coherence (Chen and
He 2013; Somasundaran, Burstein, and Chodorow 2014) are
also harder to design in which convoluted pipelines have to
be built for feature extraction to be performed. As a whole,
feature engineering is generally a laborious process, i.e.,
apart from designing features, custom code has to be written
for each additional feature. For a comprehensive review of
feature engineering in the context of ATS, we refer interested
readers to (Zesch, Wojatzki, and Scholten-Akoun 2015).

Recently, motivated by the success of deep learning in
many domains, several deep learning architectures for ATS
have been proposed. (Taghipour and Ng 2016; Dong and
Zhang 2016) empirically evaluated the performance of a
myriad of deep learning models on the ATS tasks. In
their work, models such as the recurrent neural network
(RNN) and convolutional neural network (CNN) demon-
strated highly competitive results without requiring any fea-
ture engineering. On the other hand, an adapted task-specific
embedding approach was proposed in (Alikaniotis, Yan-
nakoudakis, and Rei 2016) that learns semantic word em-
beddings while predicting essay grades. Subsequently, these
adapted word embeddings are passed as input to a LSTM
network for prediction. The attractiveness of neural text
scoring stems from the fact that features are learned end-to-
end, diminishing the need for laborious feature engineering
to be performed.

Our work extends the vanilla model and enhances with
the incorporation of neural coherence features. The concept
of semantic similarity between sentences has been used to
measure coherence in student essays (Higgins and Burstein
2007; Higgins et al. 2004). Textual coherence features have
also been adopted in (Chen and He 2013) which measures
the semantic similarity between nouns and proper nouns.
Lexical chaining (Somasundaran, Burstein, and Chodorow
2014) has also been used for measuring discourse quality in
student essays. Our work, however, is the first neural coher-
ence model that incorporates these features into an end-to-
end fashion. Different from traditional coherence features,
our neural features form a part of an overall unified frame-
work.

Our proposed approach is inspired by the field of seman-
tic matching. In semantic matching, a similarity score is pro-
duced between two vectors and is often used in many NLP

5949



and IR applications. The usage of tensor layers and bilinear
similarity is inspired by many of these works. For exam-
ple, convolutional neural tensor network (CNTN) (Qiu and
Huang 2015) and NTN-LSTM (Tay et al. 2017) are recently
proposed architectures for question-answer pair matching.
However, unlike ours, these works are mainly concerned
with matching between two sentences and are often trained
with two networks. The tensor layer, also known as the Neu-
ral Tensor Network (NTN), was first incepted as a composi-
tional operator in Recursive Neural Networks for sentiment
analysis (Socher et al. 2013b). Subsequently, it has also been
adopted for rich and expressive knowledge base completion
(Socher et al. 2013a). It has also seen adoption in end-to-end
memory networks (Tay, Tuan, and Hui 2017). The NTN is
parameterized by both a tensor and an ordinary linear layer
in which the tensor parameters model multiple instances of
second order interactions between two vectors. The adop-
tion of the tensor layer in our framework is motivated by the
strong empirical performance of NTN.

In our approach, we generate neural coherence features by
performing semantic matching k times while reading. This
can be interpreted as jointly matching and reading. These
additional parameters can also be interpreted as an auxil-
iary memory which can also help and ease the burden of
the LSTM memory. LSTMs are known to have difficulty
in modeling long term dependencies1 and due to their com-
positional nature, measuring relatedness and coherence be-
tween two points becomes almost impossible. Moreover, our
SKIPFLOW mechanism serves as an additional protection
against the vanishing gradient problem by exposing hidden
states to deeper layers. In a similar spirit, attention mecha-
nisms (Bahdanau, Cho, and Bengio 2014) learn a weighted
combination of hidden states across all time steps and pro-
duces a global feature vector. However, our approach learns
auxiliary features that are used for prediction.

Our SKIPFLOW LSTM Model

In this section, we introduce the overall model architecture
of SKIPFLOW. Figure 1 depicts the proposed architecture of
our model.

Embedding Layer

Our model accepts an essay and the target score as a train-
ing instance. Each essay is represented as a fixed-length
sequence in which we pad all sequences to the maxi-
mum length. Let L be the maximum essay length. Subse-
quently, each sequence is converted into a sequence of low-
dimensional vectors via the embedding layer. The parame-
ters of the embedding layer are defined as We ∈ R

|V |×N

where |V | is the size of the vocabulary and N is the dimen-
sionality of the word embeddings.

Long Short-Term Memory (LSTM)

The sequence of word embeddings obtained from the em-
bedding layer is then passed into a long short-term memory
(LSTM) network (Hochreiter and Schmidhuber 1997).

1Essays are typically long documents spanning 300-800 words
on average.

ht = LSTM(ht−1, xi) (1)

where xt and ht−1 are the input vectors at time t. The LSTM
model is parameterized by output, input and forget gates,
controlling the information flow within the recursive opera-
tion. For the sake of brevity, we omit the technical details of
LSTM which can be found in many related works. At every
time step t, LSTM outputs a hidden vector ht that reflects
the semantic representation of the essay at position t. To se-
lect the final representation of the essay, a temporal mean
pool is applied to all LSTM outputs.

SKIPFLOW Mechanism for Generating Neural
Coherence Features

In this section, we describe the process of generating neural
coherence features within our end-to-end framework.

Skipping and Relevance Width In our proposed ap-
proach, the relationships between two positional outputs
of LSTM across time steps are modeled via a param-
eterized compositional technique that generates a coher-
ence feature. Let δ be a hyperparameter that controls
the relevance width of the model. For each LSTM out-
put, we select pairs of sequential outputs of width δ,
i.e., {(hi, hi+δ), (hi+δ, hi+2δ), (hi+2X , hi+3δ), ..} are the
tuples from the outputs that are being composed, ht denotes
the output of LSTM at time step t. In our experiments, the
starting position2 is fixed at i = 3. For the sake of sim-
plicity, if the width δ exceeds the max length, we loop back
to the beginning of the essay in a circular fashion. The ra-
tionale for fixed length matching is as follows. Firstly, we
want to limit the amount of preprocessing required as de-
termining important key points such as nouns and pronouns
require preprocessing of some sort. Secondly, maintaining
specific indices for each essay can be cumbersome in the
context of batch-wise training of deep learning models us-
ing libraries restricted by static computational graphs. Fi-
nally, LSTMs are memory-enabled models and therefore, in-
tuitively, a slight degree of positional impreciseness should
be tolerable.

Neural Tensor Layer We adopt a tensor layer to model
the relationship between two LSTM outputs. The tensor
layer is a parameterized composition defined as follows:

si(a, b) = σ(uT f(vTa M
[1:k]vb + V [va, vb] + b)) (2)

where f is a non-linear function such as tanh. M [1:k] ∈
R

n×n×k is a tensor (3d matrix). a, b ∈ R
d are the vector

outputs of LSTM at two time steps of δ-width apart where d
is the dimensionality of LSTM parameters. For each slice of
the tensor M , each bilinear tensor product vTa Mkvb returns a
scalar to form a k dimensional vector. σ is the sigmoid func-
tion which constraints the output to [0, 1]. The other parame-
ters are the standard form of a neural network. In our model,
two vectors (outputs of LSTM) are passed through the tensor
layer and returns a similarity score si(hi, hi+X) ∈ [0, 1] that

2We set the starting position i > 0 to avoid matching against
the initial state.

5950



�� �� �� ����

�� �� ��
����

	

�����

	

	 	

	
�����

	

	
�����

�����

	

�
��

�
��

�


�


Temporal
Mean Pooling

LSTM 
Layer

Embedding
Layer

SkipFlow
Mechanism

Neural
Tensor
Layer 

Neural 
Coherence
Features

Hidden Layer
Fully-
connected
Hidden 
Layer

Linear Layer
And Sigmoid

Concat

Score

Relevance 
Width �

Relevance 
Width �

Relevance 
Width �

Figure 1: Illustration of our proposed SKIPFLOW LSTM model with width δ. Note that tensors depicted are shared parameters
and there is only one tensor parameter in the entire architecture.

determines the coherence feature between the two vectors.
The parameters of the tensor layer are shared throughout all
output pairs. The usage of bilinear product enables dyadic
interaction between vectors through a similarity matrix. This
enables a rich interaction between hidden representations.
Moreover, the usage of multiple slices encourages different
aspects of this relation to be modeled.

Fully-connected Hidden Layer

Subsequently, all the scalar values s1, s2, · · · , sn that are
obtained from the tensor layer are concatenated together to
form the neural coherence feature vector. n is the number of
times that coherence is being measured, depending on the
relevance width δ and maximum sequence length L. Recall
that the essay representation is obtained from a mean pool-
ing over all hidden states. This essay vector is then concate-
nated with the coherence feature vector. This vector is then
passed through a fully connected hidden layer defined as fol-
lows:

hout = f(Wh([e, s1, s2, ...., sn])) + bh (3)

where f(.) is a non-linear activation such as tanh or relu, Wh

and bh are the parameters of the hidden layer. e is the final
essay representation obtained from temporal mean pooling
and s1, s2, ..., sn are the scalar values obtained from the neu-
ral tensor layer, i.e., each scalar value is the matching score
from {(hi, hi+δ), (hi+δ, hi+2δ), (hi+2δ, hi+3δ), ..}.

Linear Layer with Sigmoid

Finally, we pass hout into a final linear regression layer. The
final layer is defined as follows:

yout = σ (Wf ([hout])) + bf (4)

where Wf , bf are parameters of the final linear layer, σ is
the sigmoid function and yout ∈ [0, 1]. The output at this
final layer is the normalized score of the essay. Following
(Taghipour and Ng 2016), the bias is set to the mean ex-
pected score.

Learning and Optimization

Our network optimizes the mean-square error which is de-
fined as:

MSE(z, z∗) =
1

N

N∑

i=1

(zi − z∗i )
2 (5)

where z∗i is the gold standard score and zi is the model out-
put. The parameters of the network are then optimized using
gradient descent.

Experimental Evaluation

In this section, we describe our experimental procedure,
dataset and empirical results.

Dataset

We use the ASAP (Automated Student Assessment Prize)
dataset for experimental evaluation. This comes from the
competition which was organized and sponsored by the
William and Flora Hewlett Foundation (Hewlett) and ran on
Kaggle from 10/2/12 to 30/4/12. This dataset contains 8 es-
say prompts as described in Table 1. Each prompt can be
interpreted as a different essay topic along with a different
genre such as argumentative or narrative.



Prompt #Essays Avg Length Scores
1 1783 350 2-12
2 1800 350 1-6
3 1726 150 0-3
4 1772 150 0-3
5 1805 150 0-4
6 1800 150 0-4
7 1569 250 0-30
8 723 650 0-60

Table 1: Statistics of ASAP dataset. Scores denote the range
of possible marks in the dataset.

Experimental Setup

We use 5-fold cross validation to evaluate all systems with a
60/20/20 split for train, development and test sets. The splits
are provided by (Taghipour and Ng 2016) and the experi-
mental procedure is followed closely. We train all models
for 50 epochs and select the best model based on the perfor-
mance on the development set. The vocabulary is restricted
to the 4000 most frequent words. We tokenize and lower-
case text using NLTK3, and normalize all score range to
within [0,1]. The scores are rescaled back to the original
prompt-specific scale for calculating Quadratic Weighted
Kappa (QWK) scores. Following (Taghipour and Ng 2016),
the evaluation is conducted in prompt-specific fashion. Even
though training prompts together might seem ideal, it is
good to note that each prompt can contain genres of es-
says that are very contrastive such as narrative or argumenta-
tive essays. Additionally, prompts can have different mark-
ing schemes and level of students. As such, it would be ex-
tremely difficult to train prompts together.

Evaluation Metric

The evaluation metric used is the Quadratic Weighted Kappa
(QWK) which measures agreement between raters and is a
commonly used metric for ATS systems. The QWK score
ranges from 0 to 1 but becomes negative if there is less
agreement than expected by chance. The QWK score is cal-
culated as follows. First, an N × N histogram matrix O is
constructed. Next, a weight matrix Wi,j = (i−j)2

(N−1)2 is cal-
culated that corresponds to the difference between rater’s
scores where i and j are reference ratings by the anno-
tator and the ATS system. Finally, another N × N his-
togram matrix E is constructed assuming no correlation be-
tween rating scores. This is done using an outer product
between each rater’s histogram vector and normalized such
that sum(E) = sum(O). Finally, the QWK score is calcu-

lated as κ = 1−
∑

i,j wi,jOi,j
∑

i,j wi,jEi,j
.

Baselines and Implementation Details

In this section, we discuss the competitor algorithms that are
used as baselines for our model.

• EASE - The major non deep learning system that we com-
pare against is the Enhanced AI Scoring Engine (EASE).

3http://www.nltk.org

This system is publicly available, open-source4 and also
took part in the ASAP competition and ranked third
amongst 154 participants. EASE uses manual feature en-
gineering and applies different regression techniques over
the handcrafted features. Examples of the features of
EASE include length-based features, POS tags and word
overlap. We report the results of EASE with the settings
of Support Vector Regression (SVR) and Bayesian Linear
Ridge Regression (BLRR).

• CNN - We implemented a CNN model using 1D convolu-
tions similar to (Taghipour and Ng 2016). We use a filter
width of 3 and a final embedding dimension of 50. The
outputs from the CNN model are passed through a mean
pooling layer and finally through the final linear layer.

• RNN / GRU / LSTM - Similar to (Taghipour and Ng
2016), we implemented and tested all RNN variants,
namely the vanilla RNN, GRU (Gated Recurrent Unit)
and LSTM. We compare mainly on two settings of mean
pooling and last. In the former, the average vector of
all outputs from the model is used. In the latter, only
the last vector is used for prediction. A fully connected
linear layer connects this feature vector to the final sig-
moid activation function. We use a dimension of 50 for
all RNN/GRU/LSTM models.

• LSTM Variants - Additionally, we also compare with
multiple LSTM variants such as the Attention Mecha-
nism (ATT-LSTM), Bidirectional LSTM (BI-LSTM) and
the Multi-Layer LSTM (ML-LSTM). We use the Atten-
tionCellWrapper implementation in TensorFlow with an
attention width of 10.

Our Models We compare two settings of our model,
namely the bilinear and tensor composition. They are de-
noted as SKIPFLOW LSTM (Bilinear) and SKIPFLOW
LSTM (Tensor) respectively. The bilinear setting is formally
described as s(a, b) = aT M b, where a, b are vectors of two
distant LSTM outputs and M is a similarity matrix. The bi-
linear setting produces a scalar value, similar to the output
of the tensor layer. The tensor layer, aside from the combi-
nation of multiple bilinear products, also includes a separate
linear layer along with a non-linear activation function. For
the tensor setting, the number of slices of the tensor is tuned
amongst {2, 4, 6, 8}. For both models, the hidden layer is set
to 50. There is no dropout for this layer and the bias vector is
set to 0. The relevance width of our model δ is set amongst
{20, 50, 100}. In addition, to demonstrate the effectiveness
and suitability of the LSTM model for joint modeling of se-
mantic relevance, we conduct further experiments with the
SKIPFLOW extension of the CNN model which we call the
SKIPFLOW CNN. Similarly, we apply the same procedure
on the convolved representations. Aside from swapping the
LSTM for a CNN, the entire architecture remains identical.

To facilitate fair comparison, we implemented and evalu-
ated all deep learning models ourselves in TensorFlow. We
also implemented the architectures of (Taghipour and Ng
2016) which we denote with †. For training, the ADAM op-
timizer (Kingma and Ba 2014) was adopted with a learn-

4http://github.com/edx/ease

5952



Dataset / Prompts
ID Model 1 2 3 4 5 6 7 8 Average
1 RNN (Last) 0.524 0.025 0.004 0.001 0.001 0.004 0.165 0.094 0.102
2 GRU (Last) 0.521 0.265 0.274 0.678 0.441 0.563 0.420 0.182 0.418
3 LSTM (Last) 0.319 0.200 0.317 0.690 0.389 0.522 0.423 0.189 0.467
4 RNN (Mean) 0.597 0.488 0.603 0.745 0.740 0.759 0.741 0.489 0.645
5 GRU (Mean) 0.608 0.515 0.593 0.737 0.725 0.738 0.733 0.515 0.646
6 LSTM (Mean) 0.583 0.523 0.591 0.757 0.737 0.756 0.706 0.514 0.646
7 BI-LSTM (Mean) 0.794 0.625 0.665 0.674 0.776 0.613 0.679 0.506 0.667
8 SKIPFLOW CNN (Bilinear) 0.780 0.620 0.628 0.719 0.775 0.721 0.729 0.409 0.673
9 ML-LSTM (L=2) 0.800 0.630 0.667 0.687 0.774 0.612 0.728 0.545 0.676
10 ML-LSTM (L=3) 0.700 0.554 0.641 0.753 0.780 0.764 0.752 0.558 0.688
11 SKIPFLOW CNN (Tensor) 0.782 0.657 0.666 0.727 0.781 0.756 0.757 0.440 0.696
12 EASE� (SVR) 0.781 0.630 0.621 0.749 0.782 0.771 0.727 0.534 0.699
13 EASE� (BLRR) 0.761 0.621 0.606 0.742 0.784 0.775 0.730 0.617 0.705
14 RNN† (d=300) 0.793 0.667 0.591 0.752 0.713 0.770 0.784 0.576 0.706
15 CNN 0.789 0.674 0.590 0.742 0.726 0.757 0.771 0.614 0.708
16 GRU† (d=300) 0.792 0.666 0.592 0.757 0.727 0.753 0.779 0.649 0.714
17 LSTM†,φ (d=300) 0.792 0.676 0.583 0.745 0.725 0.765 0.780 0.651 0.715
18 ATT-LSTM 0.793 0.660 0.664 0.768 0.800 0.789 0.788 0.637 0.737
19 ML-LSTM (L=4) 0.793 0.682 0.643 0.769 0.777 0.772 0.789 0.683 0.739
20 SKIPFLOW LSTM* (Bilinear) 0.830 0.678 0.677 0.778 0.795 0.807 0.790 0.670 0.753
21 SKIPFLOW LSTM* (Tensor) 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.764

Table 2: Experimental results of all compared models on the ASAP dataset. Best result is in bold and 2nd best is underlined.
Results are sorted by average performance. † denotes our implementation of a model from (Taghipour and Ng 2016), φ denotes
the baseline for statistical significance testing, ∗ denotes statistically significant improvement. � denotes non deep learning
baselines.

ing rate amongst {0.01, 0.001, 0.0001} and mini-batch size
amongst {64, 128, 256}. The gradient of the norm is clipped
to 1.0. The sequences are all padded with zero vectors up till
the total maximum length5. We use the same embeddings
from (Taghipour and Ng 2016) and set them to trainable pa-
rameters. All experiments are conducted on a Linux machine
running two GTX1060 GPUs.

Experimental Results

Table 2 reports the empirical results of all deep learning
models. First, it is clear that the mean pooling is significantly
more effective as compared to the last LSTM output. In the
last setting, the performance of RNN is significantly worse
compared to LSTM and GRU possibly due to the weaker
memorization ability. However, the performance of LSTM,
GRU and RNN are similar using the mean pooling setting.
This is indeed reasonable because the adoption of a mean
pooling layer reduces the dependency of the model’s mem-
orization ability due to implicit access to all intermediate
states. Overall, we observe that the performance of LSTM
and GRU is quite similar with either mean pooling or last
setting. Finally, we note that the performance of CNN is
considerably better than RNN-based models. We also ob-
serve that a multi-layered LSTM performs considerably bet-
ter than a single-layered LSTM. We also observe that adding
layers also increases the performance. On the other hand, the
bidirectional LSTM did not yield any significant improve-
ments in performance. The performance of ATT-LSTM is

5We used the dynamic RNN in TensorFlow in our implementa-
tion.

notably much higher than the base LSTM. The best perform-
ing LSTM model is a multi-layered LSTM with 4 layers.

Additionally, we observe that SKIPFLOW LSTM (Tensor)
outperforms the baseline LSTM (Mean) by almost 10% in
QWK score. Evidently, we see the effectiveness of our pro-
posed approach. The tensor setting of SKIPFLOW LSTM is
considerably better than the bilinear setting which could be
due to the richer modeling capability of the tensor layer. On
the other hand, we also note that the SKIPFLOW extension
of CNN model did not increase the performance of CNN.
As such, we see that the SKIPFLOW mechanism seems to
only apply to the compositional representations of recurrent-
based models. Moreover, the width of the CNN is 3 which
might be insufficient to offset the impreciseness of our fixed
width matching.

Finally, we compare SKIPFLOW LSTM with deep learn-
ing models6 of (Taghipour and Ng 2016). The key difference
is that these models (denoted with † in Table 2) have a higher
dimensionality of d = 300. First, we observe that a higher
dimensionality improves performance over d = 50. Our
SKIPFLOW LSTM (Tensor) outperforms LSTM†(d = 300)
significantly by 5%. The performance of LSTM†(d = 300)
and GRU†(d = 300) are in fact identical and are only
slightly better than feature engineering baselines such as
EASE (BLRR). We also observe that ATT-LSTM and ML-
LSTM (L=4) with both d = 50 also consistently outper-
form LSTM† and GRU†. Conversely, our SKIPFLOW LSTM
(Tensor) model outperforms the best feature engineering

6For fair comparison, we only compare against single neural
models and not against ensemble approaches.

5953



baseline (EASE) by about 6%.

Comparison against Published Results

Finally we compare with published state-of-the-art results
from (Taghipour and Ng 2016). While our reproduction of
the vanilla LSTM (d = 300)could not achieve similar re-
sults, our SKIPFLOW model still outperforms the reported
results with a much smaller parameterization (d = 50 in-
stead of d = 300). SKIPFLOW also remains competitive to
an ensemble of 20 models (CNN + LSTM) with just a single
model.

System QWK
LSTM w/o MOT 0.540

LSTM + Attention 0.731
CNN + LSTM 0.708

BiLSTM 0.699
LSTM (d=300) 0.746

10 x CNN ensemble 0.726
10 x LSTM ensemble 0.756

20 x LSTM + CNN Ensemble 0.761
SKIPFLOW LSTM (Tensor) 0.764

Table 3: Comparision against published works. Single model
of SKIPFLOW outperforms model ensembles.

Runtime and Memory

Table 4 reports the runtime and parameters of several LSTM
variants. We observe that the runtime of our models only
incur a small cost of 1-2 seconds over the baseline LSTM
model. Our model also not only outperforms LSTM† and
ML-LSTM (L=4) in terms of QWK score but also in terms
of memory footprint and runtime. SKIPFLOW is also faster
then the attention mechanism (ATT-LSTM).

Model Epoch/s # Param
LSTM 8s 13K

LSTM† (d=300) 12s 450K
BI-LSTM 18s 13K

ML-LSTM (L=4) 27s 50K
ATT-LSTM 20s 15K

SKIPFLOW LSTM (Bilinear) 9s 18K
SKIPFLOW LSTM (Tensor) 10s 25K

Table 4: Comparisons of runtime and parameter size on
prompt 1. All models are d = 50 unless stated otherwise.

Effect of Hyperparameters

In this section, we investigate the effect of hyperparameters,
namely the number of tensor slices k and the relevance width
δ. While we report the results on the test set, it is good to
note that the curves on the development set follow exactly
the same rank and pattern.

Effect of Tensor Slices on Performance

Figure 2 shows the effect of the number of tensor slices (k)
on performance. The prompts7 are separated into two graphs
due to the different ranges of results. The optimal k value is
around 4 to 6 across all prompts. Intuitively, a small k (2)
and an overly large k (8) often result in bad performance.
The exception lies in prompts 5 and 6 where increasing the
number of slices to k = 8 either improved or maintained the
QWK score.

Figure 2: Effect of tensor slices on performance with δ =
100.

Effect of Relevance Width δ on Performance

Figure 3 shows the influence of the hyperparameter rele-
vance width δ on the performance. We observe that a small
width produces worse results as compared to a large width.
This is possibly due to insufficient tensor parameters or un-
derfitting in lieu of a large number of matches is required
with a small width. For example, consider prompt 8 that has
the longest essays. Adopting δ = 20 for prompt 8 requires
about ≈ 300 to 400 comparisons that have to be modeled
by a fixed number of tensor parameters. A quick solution is
to increase the size of the tensor. However, raising both δ
and k would severely increase computational costs. Hence,
a trade-off has to be made between δ and k. Empirical re-
sults show that a value from 50 to 100 for δ works best with
k = 4.

Figure 3: Effect of relevance width δ on performance with
tensor slices k = 4.

Conclusion
In this paper, we proposed a new deep learning model for
Automatic Text Scoring (ATS). We incorporated the intu-
ition of textual coherence in neural ATS systems. Our model,

7We omit prompt 1 because it has a much higher score which
distorts the visualization of our graphs.

5954



SKIPFLOW LSTM, adopts parameterized tensor composi-
tions to model the relationships between different points
within an essay, generating neural coherence features that
can support predictions. Our approach outperforms a base-
line LSTM on the same setting by approximately 10% and
also produces significantly better results as compared to
multi-layered and attentional LSTMs. In addition, we also
achieve a significant 6% improvement over feature engineer-
ing baselines.

Acknowledgements

The authors would like to thank anonymous reviewers of
AAAI 2018, EMNLP 2017 and ACL 2017 whom have
helped improve this work.

References

Alikaniotis, D.; Yannakoudakis, H.; and Rei, M. 2016. Au-
tomatic text scoring using neural networks. In Proceedings
of the 54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers.
Attali, Y., and Burstein, J. 2004. Automated essay scoring
with e-rater R© v. 2.0. ETS Research Report Series 2004(2).
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Chen, H., and He, B. 2013. Automated essay scoring
by maximizing human-machine agreement. In Proceedings
of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A meeting of
SIGDAT, a Special Interest Group of the ACL, 1741–1752.
Dong, F., and Zhang, Y. 2016. Automatic features for essay
scoring - an empirical study. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas, USA, November
1-4, 2016, 1072–1077.
Foltz, P. W.; Streeter, L. A.; Lochbaum, K. E.; and Landauer,
T. K. 2013. Implementation and applications of the intelli-
gent essay assessor. Handbook of automated essay evalua-
tion 68–88.
Higgins, D., and Burstein, J. 2007. Sentence similarity mea-
sures for essay coherence.
Higgins, D.; Burstein, J.; Marcu, D.; and Gentile, C. 2004.
Evaluating multiple aspects of coherence in student essays.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.
Larkey, L. S. 1998. Automatic essay grading using text cat-
egorization techniques. In Proceedings of the 21st annual
international ACM SIGIR conference on Research and de-
velopment in information retrieval, 90–95. ACM.
Page, E. B. 1967. Grading essays by computer: Progress re-
port. In Proceedings of the invitational Conference on Test-
ing Problems.

Phandi, P.; Chai, K. M. A.; and Ng, H. T. 2015. Flexible
domain adaptation for automated essay scoring using corre-
lated linear regression. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, 431–439.
Qiu, X., and Huang, X. 2015. Convolutional neural tensor
network architecture for community-based question answer-
ing. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, 1305–1311.
Shermis, M. D., and Burstein, J. C. 2003. Automated essay
scoring: A cross-disciplinary perspective. Routledge.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. Y. 2013a.
Reasoning with neural tensor networks for knowledge base
completion. In Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States.,
926–934.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013b. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
Citeseer.
Somasundaran, S.; Burstein, J.; and Chodorow, M. 2014.
Lexical chaining for measuring discourse coherence quality
in test-taker essays.
Taghipour, K., and Ng, H. T. 2016. A neural approach to au-
tomated essay scoring. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016,
1882–1891.
Tay, Y.; Phan, M. C.; Luu, A. T.; and Hui, S. C. 2017.
Learning to rank question answer pairs with holographic
dual LSTM architecture. In Proceedings of the 40th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Shinjuku, Tokyo, Japan, Au-
gust 7-11, 2017, 695–704.
Tay, Y.; Tuan, L. A.; and Hui, S. C. 2017. Dyadic memory
networks for aspect-based sentiment analysis. In Proceed-
ings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, Novem-
ber 06 - 10, 2017, 107–116.
Wiemer-Hastings, P., and Graesser, A. C. 2000. Select-
a-kibitzer: A computer tool that gives meaningful feedback
on student compositions. Interactive learning environments
8(2):149–169.
Zesch, T.; Wojatzki, M.; and Scholten-Akoun, D. 2015.
Task-independent features for automated essay grading. In
Proceedings of the Tenth Workshop on Innovative Use of
NLP for Building Educational Applications, BEA@NAACL-
HLT 2015, June 4, 2015, Denver, Colorado, USA, 224–232.

5955


