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Abstract

The machine reading task, where a computer reads a docu-
ment and answers questions about it, is important in artificial
intelligence research. Recently, many models have been pro-
posed to address it. Word-level models, which have words as
units of input and output, have proven to yield state-of-the-
art results when evaluated on English datasets. However, in
morphologically richer languages, many more unique words
exist than in English due to highly productive prefix and suf-
fix mechanisms. This may set back word-level models, since
vocabulary sizes too big to allow for efficient computing
may have to be employed. Multiple alternative input granu-
larities have been proposed to avoid large input vocabular-
ies, such as morphemes, character n-grams, and bytes. Bytes
are advantageous as they provide a universal encoding for-
mat across languages, and allow for a small vocabulary size,
which, moreover, is identical for every input language. In this
work, we investigate whether bytes are suitable as input units
across morphologically varied languages. To test this, we in-
troduce two large-scale machine reading datasets in morpho-
logically rich languages, Turkish and Russian. We implement
4 byte-level models, representing the major types of machine
reading models and introduce a new seq2seq variant, called
encoder-transformer-decoder. We show that, for all languages
considered, there are models reading bytes outperforming
the current state-of-the-art word-level baseline. Moreover, the
newly introduced encoder-transformer-decoder performs best
on the morphologically most involved dataset, Turkish. The
large-scale Turkish and Russian machine reading datasets are
released to public.

1 Introduction
Natural language understanding is one of the long-standing
goals of artificial intelligence. It encompasses tasks like tex-
tual entailment (Rocktäschel et al. 2015), information ex-
traction (Dong et al. 2014), semantic textual similarity (Ken-
ter, Borisov, and de Rijke 2016), question answering (Fader,
Zettlemoyer, and Etzioni 2013) and machine reading (Her-
mann et al. 2015). In this work we focus on the latter task
of machine reading, where a machine reads a document and
answers questions about it.

On English machine reading tasks, neural word-level
models, trained end-to-end without any additional NLP
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Figure 1: Example from the Russian machine reading
dataset. Document: Dmitry worked as neuroradiologist last
year. Question: What was Dmitry’s occupation last year?
Answer: Neuroradiologist. Numbers are positions in a fre-
quency ordered vocabulary of over 950K words.

components like stemmers or parsers, yield state-of-the-art
results (Cheng, Dong, and Lapata 2016; Hermann et al.
2015; Hewlett et al. 2016). An advantage of English in
this context is its relatively limited morphology that allows
word-based models to get a broad coverage of word types
actively used, while maintaining a manageable vocabulary
size. However, in morphologically richer languages, e.g.,
Turkish, Russian, Finnish and Czech, many more word types
exist, due to highly productive prefix and suffix mechanisms,
and even very large vocabularies cannot provide extensive
coverage. To illustrate, Figure 1 shows a Russian example
in which two forms of the word neuroradiologist do not ap-
pear in a vocabulary of over 950,000 most frequent words.
In a setting like English, with less morphological transfor-
mations, a word-level model with a pointer mechanism (see,
e.g., (Wang and Jiang 2017)), that can copy strings verba-
tim from the input to the output, would be able to reproduce
the unknown word, but in this case doing so would lead
to the incorrect answer. Answering this query is therefore
impossible for a word-level model with a fixed vocabulary,
even if it contains the 950,000 most frequent words. For a
byte-level model, on the other hand, it is possible to repro-
duce the relevant word from the input and to apply the right
morphological transformation, learned from similar training
examples, even if the word itself was never observed dur-
ing training. As another example, in Turkish, kolay means
easy, kolaylaştırabiliriz means we can make it easier, while
kolaylaştıramıyoruz means we cannot make it easier. Sim-
ilarly, zor means hard or difficult, zorlaştırabiliriz means
we can make it harder, while zorlaştıramıyoruz means we
cannot make it harder. This illustrates that a lot of seman-
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tic information is shared between words in Turkish, where
in English separate words would be used. Hence, as in
the Russian case, a larger vocabulary would be needed for
Turkish compared to English to cover the same amount of
text, which would increase the number of parameters of an
embedding-based model dramatically. Learning these em-
beddings would, moreover, be hampered by fewer training
examples being available per word type.

To overcome the issues caused by a lack of vocabu-
lary coverage and sparse training data as outlined above,
models have been proposed that work at the sub-word
level, e.g., morphemes (Luong, Socher, and Manning 2013;
Botha and Blunsom 2014). Although morphemes are a nat-
ural unit for semantic composition, a drawback of these
approaches is their dependency on high-quality morpheme
segmentation algorithms, and the potential ambiguity of the
morpheme segmentation itself. To avoid these complica-
tions, methods have been proposed that take characters as
input (Zhang, Zhao, and LeCun 2015; Ling et al. 2015;
Kim et al. 2016). An alternative approach is to consider
bytes as input, which is appealing for a number of reasons.
Firstly, bytes provide a universal encoding format across lan-
guages. As such, reading bytes ties in with a long-standing
ambition to learn language from scratch (Zhang, Zhao, and
LeCun 2015). Secondly, byte input allows for a small and
fixed-size vocabulary of 256 tokens, which gives models
a small memory footprint, compared to word-level models
with tens or hundreds of thousands of words. A final ad-
vantage of using bytes over characters is that no character
vocabulary has to be decided on (which can be non-trivial
on real-world text like Wikipedia, where Chinese charac-
ters, or characters of any other alphabet, can appear in any
given article). Having an identical vocabulary across lan-
guages makes for better model comparisons since there are
fewer hyperparameters to choose (i.e., vocabularies and their
sizes). It allows for an unbiased comparison of models, with-
out introducing noise from a morphological decomposer.

In short, the question we wish to answer in this research
is: Is it advantageous, when processing morphologically rich
languages, to use bytes rather than words as input and output
in a machine reading task?

Many different machine reading architectures have been
proposed in literature (Hermann et al. 2015; Yang et
al. 2016; Jozefowicz et al. 2016). Next to standard
RNN sequence-to-sequence (seq2seq) models, convolu-
tional RNNs (Zhang, Zhao, and LeCun 2015; Xiao and
Cho 2016), word-character hybrid models (Luong and Man-
ning 2016) and memory networks (Weston, Chopra, and
Bordes 2015; Miller et al. 2016; Sukhbaatar et al. 2015;
Kenter and de Rijke 2017) have been proposed1. We im-
plement 4 byte-level models, based on these families of
models, and present a new seq2seq variant, called encoder-
transformer-decoder. We evaluate all models on three large
datasets: an already existing English dataset, and two ad-

1Fully convolutional models for encoding textual data have
been proposed (Zhang, Zhao, and LeCun 2015) in text classifica-
tion settings. Their performance in domains other than classifica-
tion is not evident and we do not consider them in our experiments.

ditional datasets in Turkish and Russian, created specifi-
cally for this purpose. The two additional datasets are pub-
licly available at http://goo.gl/wikireading. We compare results
to the strongest word-level model available, and show that
reading byte-level input is beneficial for all three languages
considered. Our main contributions are:

• We implement 4 byte-level models based on the major
families of machine reading models (vanilla RNN, convo-
lutional RNN, hybrid word-byte-level, memory networks)
and propose a seq2seq network variant, called encoder-
transformer-decoder. It is the first time, to our knowledge,
that multiple byte-level models are systematically com-
pared on a single machine reading task, across fundamen-
tally different languages.

• We provide a platform for comparing machine reading
models across different types of languages, by releasing
2 large machine reading datasets, one in Turkish, one in
Russian — next to the already existing one in English.

• We show that for all three languages considered in the ex-
periments, there are models reading bytes outperforming
the current state-of-the-art word-level model.

We describe the datasets we introduce in §2. To allow for
an in-depth discussion of existing research related to our
work, we first describe the models we use in §3, experiments
in §4, and results and analysis in §5 and §6, before we dis-
cuss related work in §7. We conclude in §8.

2 Datasets and problem motivation

In (Hewlett et al. 2016) an English reading comprehen-
sion dataset is presented, called WikiReading. The set is
constructed from Wikipedia and Wikidata (Vrandečić and
Krötzsch 2014) by constructing (document, property,
value) triples, where the property and value originate
from Wikidata triples, and the document is the original
Wikipedia article text, as linked to in Wikidata. This pro-
cess yields a challenging dataset as, unlike in other datasets,
e.g., WikiQA (Yang, tau Yih, and Meek 2015), the values
in the triples are not necessarily present in the Wikipedia
document verbatim, and may have to be inferred from the
text. In the experiments the property and document are
provided as input to a reading comprehension algorithm,
where the property is interpreted as being a query about
the document, to which the value is the correct answer.

For the experiments on Russian and Turkish, we con-
struct new datasets following the procedure described above.
The size of every dataset is proportional to the size of
the Wikipedia per language. The already existing English
dataset is split in training/validation/test according to a
85/10/5 distribution. For the new sets, which are smaller, we
choose a 80/10/10 split, to keep enough examples in the test
set. Table 1 presents an overview of the number of examples
(i.e., triples) for each dataset, where we list the numbers for
the English dataset too for comparison. The sets are publicly
available.2

2The Turkish and Russian datasets can be downloaded from
http://goo.gl/wikireading.
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Table 1: Number of examples per dataset. The bottom part
lists the percentage of answers appearing verbatim in the
document and the percentage of out-of-vocabulary tokens in
the documents.

English Turkish Russian

training 16.0M 655K 4.26M
validation 1.89M 81.6K 531K
test 941K 82.6K 533K

% verbatim 67.8 52.3 55.9
% OOV tokens 3.70 7.51 9.78

The bottom part of Table 1 indicates how the datasets dif-
fer in character. In the morphologically rich languages, only
approximately half of the answers appear in the documents.
Furthermore, the documents in these languages contain up
to three times as many out-of-vocabulary words as the doc-
uments in the English dataset. These numbers motivate ex-
ploring models that do not rely on word-level input only.

3 Models

Next to our baseline, we consider 5 encoder-decoder models
(Kalchbrenner and Blunsom 2013; Sutskever, Vinyals, and
Le 2014; Cho et al. 2014) in our experiments. We note that in
the present setting of machine reading, rather than having a
single input string, we have two, a question and a document.

The key focus of our experiments is to distinguish be-
tween different ways of encoding the question and docu-
ments. Therefore, we apply a generic setup, where the en-
coder varies, while the decoder is the same for every model.
As some building blocks are shared between models, we first
discuss preliminaries in §3.1. The encoder models are de-
tailed in §3.2 and the decoder model in §3.3.

3.1 Preliminaries

Cells At the heart of every sequence encoder is a recurrent
cell, which reads input symbol by symbol, while maintain-
ing a number of internal parameters at every time step. At
time step t, new values for the internal parameters θt are
computed from a representation of an input symbol, xt, and
the current values of the internal parameters θt−1:

θt = f(xt, θt−1) (1)

For function f , we experiment with both LSTM and GRU
cells, as both are frequently used in literature without one
consistently outperforming the other across models and
tasks. Our LSTM implementation follows (Sak, Senior, and
Beaufays 2014; Ling et al. 2015), while the GRU implemen-
tation follows (Cho et al. 2014).

Attention To give the decoder more information about the
input, an attention mechanism was proposed in (Bahdanau,
Cho, and Bengio 2014), where the decoder has access to
the hidden states of the encoder. One of the parameters in
θ in Equation 1 as maintained both in a GRU and LSTM
cell is a hidden state h. When the attention mechanism is

applied, at every time step t, the hidden state ht of a re-
current cell is replaced by h̄t, an new version of ht aug-
mented by attention. Following, e.g., (Vinyals et al. 2015;
Luong and Manning 2016) we compute h̄t as:

at = softmax(ht ·Ha) (2)

dt =

I∑

i=1

atih
i
a (3)

h̄t = tanh(W · dt||ht), (4)

where Ha are the states to attend over, typically Hencoder,
hi
a is the state in Ha at position i, W is an extra trainable

parameter, and || denotes concatenation.

3.2 Encoders

Below we describe the encoder modules used in our experi-
ments in §4.

Multi-level and bidirectional RNNs The default way of
encoding input in a sequence-to-sequence setup is to use
an RNN. We test two commonly used variants, multi-level
RNNs and bi-directional RNNs.

The multi-level RNN (Sutskever, Vinyals, and Le 2014;
Cho et al. 2014), referred to as Deep Reader in (Hermann et
al. 2015), is an extension of a single-layer RNN encoder. In-
stead of having one recurrent cell, multiple cells are stacked
and a separate set of parameters is maintained at every level.
At level i, Equation 1 becomes θti = f(x̄t

i, θ
t−1
i ), where the

input x̄t
0 = xt and x̄t

i = ht
i−1 for i > 0. I.e., at every level

but the first one, the input is replaced by the hidden state
at the previous level. The multi-layer RNN encoder is illus-
trated in Figure 2a.

Bidirectional RNNs (Figure 2b) have proven to be a ro-
bust choice in many different settings (Ling et al. 2015;
Hermann et al. 2015). The bidirectional RNN employs two
multi-level encoders as described above: one reading the in-
put from left to right, and one reading it from right to left.
They yield two final states,

−→
ht and

←−
ht, respectively. Follow-

ing, e.g., (Hermann et al. 2015), we concatenate the two
states to get the final state of the two encoders combined:
ht =

−→
ht ‖ ←−

ht, which we project down to the original state

size when appropriate: ht = Wprojection · −→ht ‖ ←−ht.

Hybrid word-byte As argued in §1, in morphologically
rich languages many words might not appear in the vocabu-
lary. An alternative to treating the input as either a stream of
words or bytes is a hybrid approach, where the input is read
word by word, and the model can resort to byte-level read-
ing when a word is out-of-vocabulary. The word-byte hy-
brid model we employ follows the model presented in (Lu-
ong and Manning 2016), specifically, the separate-path vari-
ant. Every time a word is encountered that does not appear
in the word vocabulary, a byte-level encoder is run, whose
last hidden state is used as distributed representation of the
word. As the recurrent cells following this initial layer are
unaware of the source of a word representation (i.e., a word
embedding matrix, or a byte-level encoder), the byte-level
encoder learns to map words to the same embedding space
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Figure 2: Graphical illustration of the models employed (best viewed in color). The attention mechanism of the decoder, which
is employed for all models, is left out for clarity.

the word vocabulary uses. At decoding time a similar pro-
cedure is employed, where a word-level decoder produces
output, and a separate byte-level decoder is resorted to when
a special ‘unknown word’ token is encountered. A graphical
illustration of this model is provided in Figure 2c.

Convolutional-recurrent The convolutional-recurrent
model is based on the model in (Xiao and Cho 2016). Con-
volutional filters are applied to the input byte embeddings,
or directly to one-hot encodings. After multiple levels of
convolutions a max-pooling layer is applied. This gives
a fixed-size vector with as many elements as there are
convolutional filters. Multiple of these fixed-size vectors
are obtained from the input, the exact number depending
on the input size, the receptive field of the convolutions
(the window of input symbols they observe) and the stride.
Each of these vectors is a distributed representation of a
window of input symbols. A recurrent encoder is used to
encode this sequence of representations into its final state.
Figure 2d provides a graphical representation of this model.
An alternative approach, further discussed in §7, is to take
word boundaries into account (Jozefowicz et al. 2016).
Preliminary experiments showed inferior performance and
we leave this variant out of our experiments.

Memory networks There are two main differences be-
tween memory networks (Weston, Chopra, and Bordes
2015; Miller et al. 2016; Sukhbaatar et al. 2015; Kenter and
de Rijke 2017) and the standard encoder-decoder architec-
ture: 1) a number of recurrent steps is performed between
encoding and decoding 2) there are two separate input en-
coders — one for the question and one for the document.

The final state of the document encoder, before being pre-
sented to the decoder, is modified during a number of recur-
rent steps (also referred to as memory hops), conditioned on

the final state of the question encoder. Specifically, at every
time step, a recurrent cell attends over the hidden states of
the document encoder, and is provided with the final state
of the question encoder as input (i.e., it has the same input
at every time step). That is xt in Equation 1 is hn

question,
the last hidden state of the question encoder, for a query of
length n. The states to attend over for the memory module,
Ha in Equation 2, are Hdocument, the hidden states of the
document encoder. Finally, a crucial part of the memory net-
work architecture is that the attention of the decoder is on
the memory states. Figure 2e shows a graphical illustration
of the memory network. The attention of the memory cells
is represented by grey dashed lines.

Encoder-transformer-decoder We present a variant of
the memory network architecture, which differs in that the
decoder attends over the document encoder states. Although
this is a small deviation in terms of architecture, the model
in fact now learns something crucially different. Where, in
the memory network scenario, the memory cells can copy
parts of the input document based on the question, in the
new setup, the internal states of the intermediate RNN do
not serve as memories, because the decoder is in fact agnos-
tic to them. Rather, the function of the intermediate RNN is
to optimize the final state of the document encoder for the
decoder, with respect to the question. As this model is sim-
ilar to, but different from, the recently proposed encoder-
reviewer-decoder model (Yang et al. 2016), we refer to it as
encoder-transformer-decoder model. Since the key differ-
ence between this model and the memory model is in the at-
tention of the decoder, which is not depicted in Figure 2, the
graphical depiction of these models is shared in Figure 2e.

See §7 for a discussion of differences and similarities be-
tween the models presented here and existing models.
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Table 2: Hyperparameter values tuned over

Embedding size 128/256
Internal state size 256/512
Number of RNN cells stacked 1/2
RNN cell type LSTM/GRU
Input/output embedding tying yes/no
Gradient clipping 0.1/1
Learning rate 10-5/10-4/10-3

Table 3: Filter and maxpool width per layer for the convolu-
tional RNN. For additional details, see (Xiao and Cho 2016).

# layers Filter width maxpool width

C2R1 2 5, 3 2, 2
C3R1 3 5, 5, 3 2, 2, 2
C4R1 4 5, 5, 3, 3 2, 2, 2, 2
C5R1 5 5, 5, 3, 3, 3 2, 2, 2, -, 2

3.3 Decoder

Except for the word-byte hybrid model, we use the same de-
coder for all models, a single level RNN. At every time step
a softmax over the byte vocabulary is computed, and cross
entropy loss is calculated. The decoder always applies atten-
tion to the hidden states of the document encoder, except for
the memory model, where it attends over the hidden states of
the memory cells (§3.2). In all experiments, when an LSTM
cell is used in the encoder, an LSTM cell is used in the de-
coder, and likewise for GRUs.

4 Experimental setup

Table 2 lists the values of hyperparameters tuned over on
the validation data. For the multi-level, bidirectional and
convolutional-recurrent encoder, the document is appended
to the query with a separator symbol in between. All em-
beddings are trained from scratch (i.e., no pre-trained vec-
tors are used). We experiment with either sharing input and
output embeddings, i.e., a single embedding matrix is em-
ployed, or having two separate embedding matrices (Press
and Wolf 2016). For the memory network and the encoder-
transformer-decoder model, the intermediate RNN performs
2 recurrent steps, as this yielded consistent performance in
preliminary experiments.

At most 50 bytes are read of each question, which is suf-
ficient because questions are rarely longer than this. At most
400 bytes are read from the documents. This limit is imposed
by resources — memory usage becomes an issue when we
unroll the RNNs longer for. We note that the fact that 400
bytes is enough to answer the questions in our dataset may
be due to Wikipedia being structured the way it is, i.e. the
first paragraph of a Wikipedia page is usually very informa-
tive. The word-byte hybrid model observes roughly the same
amount of input: 60 words per document, which, given the
average word length in English, is ∼ 400 characters. The
other languages have longer words, so this model might have
the advantage of reading slightly more input on average. The

Table 4: Results for multi-level RNN (RNN), bidirectional
RNN (Bidir), convolutional RNN (Conv-rnn), hybrid word-
byte (Word-byte), memory network (Memory) and encoder-
transformer-decoder (Enc-trans-dec).

Turkish Russian English

RNN 0.6956 0.5784 0.7176
Bidir 0.6627 0.5431 0.6615
Conv-rnn 0.5753 0.4123 0.5364
Word-byte 0.6654 0.5874 0.7418
Memory 0.6899 0.5612 0.7176
Enc-trans-dec 0.6956 0.5808 0.7182

Word-level 0.6365 0.5759 0.7365

maximum number of output steps is 50, which is enough for
all answers in the training and validation set. Table 3 lists the
additional hyperparameters tuned over for the convolutional-
recurrent model.

All models are trained with stochastic gradient descent.
The learning rate is adapted per parameter with Adam
(Kingma and Ba 2015). Batch size is 64. After every 50,000
batches, the learning rate is divided by 2.
Baseline model We compare the performance of our byte-
level models to the model performing strongest on the En-
glish dataset in (Hewlett et al. 2016), which is a word-level
sequence-to-sequence model with LSTM cells with state
size 1024, a word vocabulary of 100,000, and 300d em-
beddings. The model employs placeholders to handle out-
of-vocabulary words. To keep comparison between models
as clean as possible, we do not pre-train the embeddings as
in (Hewlett et al. 2016).
Evaluation An answer is considered to be correct if it is ex-
actly the same as the ground truth answer (there is no stem-
ming and no normalization, except for dates, which were
all converted to one format, like 1 January 1970). As some
questions have a set of values as an answer (e.g., Children
of person X), we compute precision and recall for every ex-
ample and use the mean F1 over all examples as evaluation
metric, following (Hewlett et al. 2016).

5 Results

Table 4 lists the main results of the experiments. The first
observation from the results is that for every language, there
is a model reading bytes that outperforms the word-level
baseline. Interestingly, there are differences between models
across datasets which can be explained by the characteristics
of the languages in the dataset.

On the dataset of the morphologically most involved lan-
guage we consider, Turkish, the difference between byte-
level and word-level models is most pronounced. Here, we
use diversity of word forms found in a given amount of text
as a proxy for measuring morphological complexity. The ra-
tio of unique word forms to total tokens illustrates the dif-
ference between languages ((number of types) / (number of
tokens), numbers × 1000 for clarity): 1.1 for English, 2.9
for Russian, and 8.1 for Turkish. On the Turkish dataset, all
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Table 5: Results per query type

Categorical Relational Dates
Turkish Russian English Turkish Russian English Turkish Russian English

RNN 0.8528 0.7388 0.8482 0.5453 0.4080 0.5752 0.7796 0.7253 0.8075
Bidir 0.8420 0.7289 0.8332 0.4906 0.3524 0.4594 0.7658 0.7142 0.7984
Conv-rnn 0.8059 0.7082 0.7794 0.3539 0.1206 0.2385 0.4857 0.1039 0.3891
Word-byte 0.8478 0.8022 0.8656 0.4903 0.3833 0.5824 0.6784 0.7507 0.8000
Memory 0.8576 0.7369 0.8595 0.5290 0.3769 0.5561 0.7740 0.7147 0.8067
Enc-trans-dec 0.8539 0.7427 0.8461 0.5437 0.4089 0.5749 0.7822 0.7276 0.8093

Word-level 0.8125 0.7513 0.8531 0.4676 0.4019 0.5875 0.6218 0.7305 0.8021

byte-level models outperform the word-level model, except
for the convolutional RNN. This result seems to corroborate
the hypothesis stated in §1, that a word-level model has trou-
ble getting enough coverage in this language.

The word-byte hybrid model lags behind on the Turkish
data, compared to the other datasets. This is likely to be
caused by the larger number of unknown words in the Turk-
ish dataset (cf. Table 1). In English, copying words from
the input document works, as demonstrated already by the
word-level placeholder model being the best performer re-
ported in (Hewlett et al. 2016). This indicates that the un-
known words might be, e.g., names and proper nouns, oc-
curring in the text. In Turkish, however, due to the morpho-
logical richness, many more words, not just proper nouns,
are out-of-vocabulary, but there is relatively little data per
word to learn from.

Russian, being highly inflective rather than agglutinative
like Turkish, has a lower ratio of word forms over word to-
kens. This is reflected in the results, where only two byte-
level models outperform the word-level model, and only
marginally. The encoder-transformer-decoder model, while
not the top performer, does beat the word-level baseline.

We should note that, although the improvements of the
byte-level models over the word-level models seem small,
the model sizes of the byte-only models are consider-
ably smaller, as they have a vocabulary of 256 rather than
100,000. As such, the strongest byte-only model across the
datasets of morphologically rich languages, the encoder-
transformer-decoder model, yields two crucial benefits over
the word-level baseline — the model performing best on the
English dataset in (Hewlett et al. 2016): 1) improved per-
formance 2) while having a substantially smaller memory
footprint. This result leads us to answer our research ques-
tion “Is it advantageous, when processing morphologically
rich languages, to use bytes rather than words as input and
output in a machine reading task?” affirmatively.

Finally, on the English data, we do not expect the byte-
level models to have an advantage over the word-level
model, which is confirmed by the results in Table 4. The
exception to this rule is the word-byte hybrid model. Most
notably, not only does it outperform the word-level model in
Table 4 — which has access to 60 words — it also outper-
forms the best performing model as reported in (Hewlett et
al. 2016) which reads 300 words, and has a score of 0.718.
This shows that having access to more information might

actually hamper a model. More importantly, it indicates that
reverting to reading bytes is a better way of dealing with
out-of-vocabulary words than using placeholders.

There are multiple unexpected results in Table 4. Most re-
markably, bidirectional models do not perform better than
uni-directional RNNs. This is a surprising deviation from
previous research, which has shown them to be consistent
performers. The results indicate that on the byte-level, an ex-
tra backward pass does not yield additional, complementary
information. Next, it is not clear from scrutiny of the data,
why the scores on the Russian data should be lower in gen-
eral (roughly 10-15% for each model). Additional analysis
is necessary to disclose the underlying reason.

To sum up, the results show that byte-level input is ben-
eficial for all three language considered. It is interesting to
see that the advantage of reading bytes versus words appears
to be proportional to morphological complexity of the lan-
guage involved. On the English dataset, only one byte-level
model outperforms the word-level baseline — the best scor-
ing model in (Hewlett et al. 2016). On the dataset of the
inflective language, Russian, multiple byte-level models im-
prove over the baseline, while on the data for the agglutina-
tive language, Turkish, all but one do.

6 Analysis

Results per query type Some properties, like gender or
instance of are category-like, while some, like mayor, are
more open-ended. We split out the results in Table 4 per
query type in Table 5. We distinguish between categorical
(few possible answers) and relational (a large set of possi-
ble answers). As dates are notoriously hard to deal with, we
also split out a separate date category.

A key observation from Table 5 is that the encoder-
transformer-decoder model is a consistent (near) top per-
former across categories. Interestingly, on the Turkish
dataset, the most pronounced difference between the well
performing byte-level models and the word-level model is
in the hardest category, the relational queries.
Visualization of encoder-transformer-decoder network
As noted above, the encoder-transformer-decoder model is
a top or near top performer on both morphologically rich
languages. To gain insight in its inner workings, we visual-
ize its attention vectors for two examples, in Figure 3. For
ease of understanding, the examples are from the English
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(a) Question: instance of. Ground truth: human. Prediction: human
Un i v e r s i t y i s a s t o p on t h e No r t hwes t L i n e ( Rou t e 201) o f t h e CT r a i n l i g h t r a i l s y s t em i n Ca l g a r y , A l b e r t a . The s t a t i o n
Un i v e r s i t y i s a s t o p on t h e No r t hwes t L i n e ( Rou t e 201) o f t h e CT r a i n l i g h t r a i l s y s t em i n Ca l g a r y , A l b e r t a . The s t a t i o n
Un i v e r s i t y i s a s t o p on t h e No r t hwes t L i n e ( Rou t e 201) o f t h e CT r a i n l i g h t r a i l s y s t em i n Ca l g a r y , A l b e r t a . The s t a t i o n
Un i v e r s i t y i s a s t o p on t h e No r t hwes t L i n e ( Rou t e 201) o f t h e CT r a i n l i g h t r a i l s y s t em i n Ca l g a r y , A l b e r t a . The s t a t i o n
Un i v e r s i t y i s a s t o p on t h e No r t hwes t L i n e ( Rou t e 201) o f t h e CT r a i n l i g h t r a i l s y s t em i n Ca l g a r y , A l b e r t a . The s t a t i o n

(b) Question: country. Ground truth: Canada. Prediction: Canada

Figure 3: Visualization of attention vectors of encoder-transformer-decoder model. Attention over the relevant part of the input
is displayed for the 2 intermediate RNN steps (first 2 lines) and the decoder steps (next 50 lines, of which only the first 3 are
shown for brevity).

dataset. Note that, since the inputs are bytes, the attention is
typically at the end of a word (when all the bytes of a word
have been read).

In Figure 3a, the answer does not appear in the document
but has to be inferred. The first transformer step focuses
on words indicating a human actor, like sculptor, painter
and he. Figure 3b shows an example of the first transformer
step solving the answer completely. The attention is on Cal-
gary, Alberta which is enough, apparently, to infer the cor-
responding country. In both cases, the intermediate RNN
steps, by focusing on the crucial parts of the input and al-
tering their internal state accordingly, appear to provide the
decoder with all the information it needs to generate the an-
swer, which results in the decoder attention being very weak.
Hyperparameters As to the hyperparameters tuned over
(Table 2) some patterns could be discerned. Most notably,
GRUs proved to be better than LSTMs in the majority of
cases. The learning rate is a crucial factor, which is less
surprising. Tying the input and output embeddings typically
helped. Embedding and state sizes did not matter greatly, nor
did the various values for gradient clipping.

7 Related work
Byte- and character-level models have been used in settings
such as classification (Zhang, Zhao, and LeCun 2015), NER
and POS tagging (Gillick et al. 2016), and language mod-
eling (Kim et al. 2016), also on morphologically rich lan-
guages (Ling et al. 2015; Chung, Cho, and Bengio 2016).

A word-based variant of the convolutional-recurrent
model we use is proposed in (Jozefowicz et al. 2016). The
key difference is that the receptive window of the con-
volutions in the model we use ranges over the entire in-
put sequence, and hence can cross word boundaries, while
in the model of (Jozefowicz et al. 2016), the convolutions
can only see single words. Preliminary experiments showed
worse performance for the word-level convolution model,
and hence we left it out of our main experiments.

The memory network we implement is based on the work
in (Weston, Chopra, and Bordes 2015; Sukhbaatar et al.
2015; Kenter and de Rijke 2017; Yang et al. 2016). How-
ever, in (Weston, Chopra, and Bordes 2015; Sukhbaatar et

al. 2015) an embedding approach is used to represent the
input and generate output, while in our setting RNNs are
used at both stages for better comparison to the other mod-
els. In (Kenter and de Rijke 2017) a hierarchical input reader
is proposed, which reads words into sentences, and trans-
forms sentence embeddings to memory, a setting we did not
try in our experiments.. The memory network we employ is
related to the reader network described in (Hermann et al.
2015) and much like the encoder-reviewer-decoder model in
(Yang et al. 2016), where a reviewer module is applied be-
tween encoding and decoding. A difference is that our mod-
els repeatedly attend over the document conditioned on the
question, while in (Hermann et al. 2015) attention is per-
formed once.

The encoder-transformer-decoder is related to the
encoder-reviewer-decoder network in (Yang et al. 2016).
There are multiple differences between the two models. The
encoder-transformer-decoder model has a separate ques-
tion encoder, which is absent from the encoder-reviewer-
decoder model. More importantly, however, the decoder
of the encoder-transformer-decoder model attends over the
document encoder states, rather than over the reviewer
states. Lastly, in (Yang et al. 2016) experiments are run with
discriminative supervision for the reviewer model at training
time, a setting we do not use on our experiments in §4.

8 Conclusion
We introduced two large-scale machine reading datasets of
morphologically rich languages, Turkish and Russian, which
we publicly release. The new datasets, together with the En-
glish dataset published previously, provide a unique collec-
tion for comparing machine reading algorithms on one task,
across principally different languages. We provide results
for byte-level implementations of four major architectures
of machine reading models. Furthermore, we introduce an
encoder-transformer-decoder network model that performs
best on Turkish data, and is competitive on the Russian data.
It is the first time, to our knowledge, that multiple byte-level
models are systematically compared on a single machine
reading task, across fundamentally different languages. We
show that on all datasets, reading input at byte level is ben-
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eficial, and that the encoder-transformer-decoder model is
top or near top performer on the morphologically more in-
volved languages. It is interesting to see that the advantage
of reading bytes versus words seems to be proportional to
the morphological complexity of the languages considered,
as pointed out in §5. More research is needed to confirm
whether this trend holds more broadly.

We hope that the new datasets encourage the development
of novel approaches for machine reading in morphologically
rich languages, especially since the results on the datasets
in these languages are still considerably lower than on the
English counterpart.
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