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Abstract

Cross-domain sentiment classification aims to leverage useful
information in a source domain to help do sentiment classifi-
cation in a target domain that has no or little supervised infor-
mation. Existing cross-domain sentiment classification meth-
ods cannot automatically capture non-pivots, i.e., the domain-
specific sentiment words, and pivots, i.e., the domain-shared
sentiment words, simultaneously. In order to solve this prob-
lem, we propose a Hierarchical Attention Transfer Network
(HATN) for cross-domain sentiment classification. The pro-
posed HATN provides a hierarchical attention transfer mech-
anism which can transfer attentions for emotions across do-
mains by automatically capturing pivots and non-pivots. Be-
sides, the hierarchy of the attention mechanism mirrors the
hierarchical structure of documents, which can help locate the
pivots and non-pivots better. The proposed HATN consists of
two hierarchical attention networks, with one named P-net
aiming to find the pivots and the other named NP-net align-
ing the non-pivots by using the pivots as a bridge. Specif-
ically, P-net firstly conducts individual attention learning to
provide positive and negative pivots for NP-net. Then, P-
net and NP-net conduct joint attention learning such that the
HATN can simultaneously capture pivots and non-pivots and
realize transferring attentions for emotions across domains.
Experiments on the Amazon review dataset demonstrate the
effectiveness of HATN.

Introduction

Users usually express opinions about products or services
on social media or review sites. It is helpful to correctly un-
derstand their emotional tendency. Sentiment classification,
which aims to automatically determine the overall sentiment
polarity (e.g., positive or negative) of a document, has raised
continuous attentions over the past decades (Pang, Lee, and
Vaithyanathan 2002; Hu and Liu 2004; Pang and Lee 2008;
Liu 2012). Supervised learning algorithms that require la-
beled data have been successfully explored to build senti-
ment classifiers for a specific domain (Wang and Manning
2012; Socher et al. 2013; Tang et al. 2015). However, there
exists insufficient labeled data in a target domain of inter-
est, where labeling data may be time-consuming and ex-
pensive. Cross-domain sentiment classification, which bor-
rows knowledge from related source domains with abun-
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dant labeled data to improve the target domain, has become
a promising direction. However, the expression of users’
emotions usually varies across domains. For example, in
the Books domain, words readable and thoughtful are used
to express positive sentiment, whereas insipid and plotless
often indicate negative sentiment. On the other hand, in
the Electronics domain, rubbery and glossy express positive
sentiment, whereas words fuzzy and blurry usually express
negative sentiment. Due to the domain discrepancy, a sen-
timent classifier trained in a source domain may not work
well when directly applied to a target domain.

To address the problem, researchers have proposed var-
ious methods for cross-domain sentiment classification.
Blitzer et al. (Blitzer, Dredze, and Pereira 2007) proposed
a Structural Correspondence Learning (SCL) method which
utilizes multiple pivot prediction tasks to infer the correla-
tion between pivots and non-pivots. Pan et al. (Pan et al.
2010) proposed the Spectral Feature Alignment (SFA) to
find an alignment between pivots and non-pivots by using
the cooccurrence between them. However, these methods
need to manually select pivots and they are based on dis-
crete feature representations such as bag-of-words with lin-
ear classifiers. Recently, deep neural models are explored
to automatically produce superior feature representations
for cross-domain sentiment classification. Stacked Denois-
ing Auto-encoders (SDA) have been successfully adopted
to learn hidden representations shared across domains (Glo-
rot, Bordes, and Bengio 2011; Chen et al. 2012). Yu and
Jiang (Yu and Jiang 2016) leveraged two auxiliary tasks
to learn sentence embeddings with a Convolutional Neural
Network (CNN) (Kim 2014) which works well across do-
mains, while they still rely on manually identifying posi-
tive and negative pivots. Ganin et al. (Ganin and Lempitsky
2015; Ganin et al. 2016) proposed the Domain-Adversarial
training of Neural Networks (DANN) which first introduces
a domain classifier incapable of discriminating representa-
tions from a source or a target domain by reversing the gra-
dient direction of the neural network. In order to improve
the interpretability of deep models, Li et al. (Li et al. 2017)
proposed an Adversarial Memory Network (AMN) to auto-
matically identity the pivots by using the attention mecha-
nism and adversarial training. Nevertheless, AMN only fo-
cuses on word-level attention and ignores the hierarchical
structure of documents, which may not accurately capture
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pivots in long documents. Besides, it cannot automatically
capture and exploit non-pivots, which may result in the de-
graded performance when source and target domains only
have few overlapping pivot features.

To simultaneously harness the collective power of pivots
and non-pivots and interpret what to transfer, we introduce a
Hierarchical Attention Transfer Network (HATN) for cross-
domain sentiment classification. The proposed HATN pro-
vides a hierarchical attention transfer mechanism, which can
automatically transfer attentions for emotions in both word
and sentence levels across domains to reduce the domain
discrepancy and provide a better interpretability of what to
transfer. Specifically, our framework consists of two hierar-
chical attention networks named P-net and NP-net, where
P-net aims to focus on pivots and NP-net is used to iden-
tify non-pivots by using the pivots as a bridge. Firstly, P-net
conducts individual attention learning to select positive and
negative pivots for NP-net. Then, P-net and NP-net conduct
joint attention learning such that the HATN can simultane-
ously identify the pivots and non-pivots and achieve trans-
ferring attentions for emotions across domains.

Our contributions are summarized as follows:

• We propose a hierarchical attention transfer mechanism,
which can transfer attentions for emotions across domains
by automatically capturing the pivots and non-pivots si-
multaneously. Besides, it can tell what to transfer in the
hierarchical attention, which makes the representations
shared by domains more interpretable.

• Empirically the proposed HATN method can significantly
outperform the state-of-the-art methods.

Related Work

Domain Adaptation Domain adaptation tasks such as
cross-domain sentiment classification have raised much at-
tention in recent years. One line of work focuses on induc-
ing a low-dimensional feature representation shared across
domains based on the cooccurrence between pivots and non-
pivots. Unfortunately, they highly rely on manually selecting
pivots based on term frequencies on both domains (Blitzer,
McDonald, and Pereira 2006), mutual information between
features and labels of a source domain (Blitzer, Dredze, and
Pereira 2007), mutual information between features and do-
mains (Pan et al. 2010), and weighted log-likelihood ra-
tio (Yu and Jiang 2016). These pivot selection methods are
very tedious and may not identify the pivots accurately.

Recently, deep learning methods form another line of
work to automatically produce superior feature representa-
tions for cross-domain sentiment classification. SDA (Glo-
rot, Bordes, and Bengio 2011) is proposed to learn to dis-
cover intermediate representations shared across domains.
In order to improve the speed and scalability of SDA
for high-dimensional data, Chen et al. (Chen et al. 2012)
proposed a Marginalized Stacked Denoising Autoencoder
(mSDA). Yu et al. (Yu and Jiang 2016) used two auxil-
iary tasks to help induce sentence embeddings with CNN
across domains. Ganin et al. (Ganin and Lempitsky 2015;
Ganin et al. 2016) proposed the DANN, which leverages
the domain adversarial training method to make the neural

network produce representations confusing a domain classi-
fier. In order to improve the interpretability of deep models,
Li et al. (Li et al. 2017) incorporated memory networks into
DANN to automatically identify the pivots.
Attention Mechanism in NLP The attention mecha-
nism has been successfully exploited in various NLP tasks
such as machine translation (Bahdanau, Cho, and Bengio
2014), question answering (Sukhbaatar et al. 2015), docu-
ment classification (Yang et al. 2016) and sentiment anal-
ysis (Tang, Qin, and Liu 2016). The intuition behind the
attention mechanism is that each low-level position con-
tributes a different importance for the high-level repre-
sentation. Moreover, the hierarchical attention mechanism
has been proved to be better than the word-level atten-
tion in various document-based tasks (Yang et al. 2016; ?;
Haoran Huang 2017), which mirrors the hierarchical struc-
ture of documents in order to extract more powerful features.

Hierarchical Attention Transfer Network

In this section, we introduce the proposed HATN model for
cross-domain sentiment classification. We first present the
problem definition and notations, followed by an overview
of the model. Then we detail the model with all components.

Problem Definition and Notations

We are given two domains Ds and Dt which denote a source
domain and a target domain, respectively. Suppose that we

have a set of labeled data Xl
s=

{
xi
s

}N l
s

i=1
and {yis}N

l
s

i=1 as well

as some unlabeled data Xu
s =

{
xi
s

}Ns

i=N l
s+1

in the source

domain Ds, where Xs = Xl
s

⋃
Xu

s . Besides, a set of unla-

beled data Xt = {xj
t}

Nt

j=1 is available in the target domain
Dt. The goal of cross-domain sentiment classification is to
train a robust classifier on labeled samples in the source do-
main Xl

s and adapt it to predict the sentiment polarity of
unlabeled examples Xt in the target domain, which is also
widely known as unsupervised domain adaptation.

An Overview of the HATN Model

In this section, we present an overview of the proposed
HATN model for cross-domain sentiment classification.

The goal of HATN is to transfer attentions for emotions
across domains, i.e, automatically capturing the pivots as
well as non-pivots. Therefore, we design two hierarchical
attention networks with different attentions for the target.
As illustrated in Figure 1, the first network is named P-
net, which aims to identify the pivots shared by the source
and target domains such as great in a sample x. The sec-
ond network is named NP-net which is used to capture the
non-pivots across domains such as readable in a transformed
sample g(x), generated by hiding all the pivots like the posi-
tive pivots great in the sample x. We realize the ‘hide’ action
by replacing the pivots with padding words.

In order to demonstrate the effects of each network
clearly, we describe the input, objective and motivation for
the P-net and NP-net, respectively.
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Figure 1: The framework of the HATN model.

P-net aims to capture the pivots, which have two attributes:
(1) They are important sentiment words for sentiment clas-
sification. (2) They are shared by both domains. In order to
achieve this goal, the labeled data Xl

s in the source domain
is fed into the P-net for sentiment classification and in the
meanwhile, all the data Xs and Xt in both domains are fed
into the P-net for domain classification that aims to predict
the domain label of the samples, i.e, coming from the source
or target domain. Here we perform the domain classification
based adversarial training by the Gradient Reversal Layer
(GRL) (Ganin et al. 2016) such that make the domain clas-
sifier indiscriminative between the representations from the
source and target domains. In this way, it guarantees repre-
sentations from the P-net are both domain-shared and useful
for sentiment classification, and can identity the pivots with
the attention mechanism.
NP-net aims to capture the non-pivots with two characteris-
tics: (1) They are the useful sentiment words for sentiment
classification. (2) They are domain-specific words. To reach
the goal, the transformed labeled data g(Xl

s) in the source
domain Ds, generated by hiding all the pivots identified by
the P-net, is fed into the NP-net for sentiment classification.
And at the same time, all transformed data g(Xs) and g(Xt)
in both domains Ds and Dt, generated by the same way, is
fed to NP-net for +(positive)/-(negative) pivot predictions.
The two tasks aim to predict whether an original sample x
contains positive or negative pivots based on the transformed
sample g (x). The transformed sample g (x) has two labels,
a label z+ indicating whether x contains at least one pos-
itive pivot and a label z− indicating whether x contains at
least one negative pivot. The intuition behind is that positive
non-pivots tend to co-occur with positive pivots and nega-
tive non-pivots tend to co-occur with negative pivots. In this
way, the NP-net can discover domain-specific features with
the pivots as a bridge and capture the non-pivots that are ex-
pected to correlate closely to the pivots with the attention
mechanism.
Training Process: Note that the NP-net needs the positive
and negative pivots as a bridge across domains. Different
from traditional methods that need to manually select piv-

ots, the P-net possesses the ability of automatically finding
the pivots. Therefore, our training process consists of two
stages:
• Individual Attention Learning: The P-net is trained for

cross-domain sentiment classification. We use the best pa-
rameters for P-net with early stopping on the validation
set, and then select a word with the highest word attention
in the sentence with the highest sentence attention in each
positive review of the source domain as a positive pivot.
The negative pivots are obtained in a similar way.

• Joint Attention Learning: The P-net and NP-net are jointly
trained for cross-domain sentiment classification. The la-
beled data Xl

s and its transformed data g(Xl
s) in the

source domain Ds are simultaneously fed into P-net and
NP-net respectively and their representations are concate-
nated for sentiment classification. Note that, the trans-
formed labeled data g(Xl

s) fed to the NP-net are used for
sentiment classification and +(positive)/-(negative) pivot
predictions simultaneously, but all transformed unlabeled
data g(Xu

s ) and g(Xt) fed to the NP-net can only be used
for the +(positive)/-(negative) pivot predictions.

Hierarchical Content Attention

In the following, we present how to build the document rep-
resentation progressively from word vectors hierarchically.

Word Attention The contextual words contribute un-
equally to the semantic meaning of a sentence, especially
when we focus on a specific task, e.g., sentiment classifi-
cation. Therefore, we introduce the word-level attention to
weight words of each sentence and output with a weighted
sum of all words’ information.

Assume that a document x is made up of nc sentences
C={co}nc

o=1. Given a sentence co={wor}nw

r=1, we first map
each word into its embedding vector as eor=Lwor through-
out an embedding matrix L, where eor ∈ R

ne×1. All con-
textual word embedding vectors {{eor}nw

r=1}nc
o=1 are stacked

to the external memory m∈R
ne×nw×nc , where free mem-

ories are padded with zeros vectors. We take each sentence
memory mo∈R

ne×nw and a word-level query vector qw as
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the input of the word attention layer. By feeding each word
memory mor into a one-layer neural network, we obtain the
hidden representation of the rth word of the oth sentence as:

hor = tanh (Wwmor+bw) .

The importance weight of this word is therefore measured
as the similarity between hor and qw, which is further nor-
malized through a mask softmax function as:

αor =
Mw(o, r) exp

(
hT
orqw

)
∑nw

k=1 Mw(o, k) exp (hT
okqw)

,

where Mw(o, r) is a word-level mask function in order to
avoid the effect of padding vectors. When the word memory
mor is occupied, Mw(o, r) equals 1 and otherwise 0. The
sentence vector voc is finally output as a weighted sum of all
hidden representations {hor}nw

r=1:

voc =

nw∑
r=1

αorhor.

Note that the word-level query vector qw is expected to be
a high level representation of the query “what is the impor-
tant word over the sentence for the task”. qw is randomly
initialized and jointly learned during the training process.

Sentence Attention Similarly, contextual sentences do
not contribute equally to the semantic meaning of a docu-
ment. In light of this, we introduce the sentence-level at-
tention to weight sentences of each document and output
with a weighted sum of all sentences’ embedding vectors.
We calculate the document vector vd in the same manner
upon the sentence vectors {voc}nc

o=1 we have obtained. We
use a sentence-level query vector qc to acquire the impor-
tance weights of sentences. This yields,

ho = tanh (Wcv
o
c+bc) ,

βo =
Mc(o) exp

(
hT
o qc

)
∑nc

a=1 Mc(a) exp (hT
a qc)

,

vd =

nc∑
o=1

βoho,

where Mc(o) is a sentence-level mask function for avoiding
the effect of padding sentences. When the sentence memory
mo is completely free, Mc(o) equals 0 and otherwise 1. The
sentence-level query vector qc is expected to be a high-level
representation of the query “what is the important sentence
over the document for the task”. qc is randomly initialized
and jointly learned during the training process.

Hierarchical Position Attention

The hierarchical content attention model we have described
above, however, involves no recurrence and no convolution.
To fully take advantage of the order in each sequence, we
add positional encodings to our model. Researchers have
explored various types of positional encodings (Sukhbaatar
et al. 2015; Tang, Qin, and Liu 2016; Gehring et al. 2017;
Vaswani et al. 2017), including fixed and learned ones, for
different tasks. Different from previous works, we propose
a hierarchical positional encoding scheme consisting of a

word positional encoding pw and a sentence positional en-
coding pc. Such hierarchical positional encodings stay con-
sistent with the hierarchical content mechanism and con-
sider the order information of both words and sentences.
In terms of the word positional encoding, we update each
piece of memory by adding a vector, i.e., mor = eor +
prw, ∀r ∈ [1, nw]. As for the sentence positional encoding,
we add a vector to each sentence’s embedding vector, i.e.,
voc =

∑nw

r=1 αorhor + poc , ∀o ∈ [1, nc]. pw and pc shared by
the P-net and NP-net are all randomly initialized and jointly
learned during the training process.

Individual Attention Learning

In this section, we introduce loss functions for training the
P-net and NP-net, respectively.

P-net: P-net is used to learn the domain-shared feature
representations that contribute to sentiment classification.
Formally, we parameterize the P-net by H(x; θP ) which
maps a sample x to a high-level document representation
vP . The loss used to train the P-net is made up of two parts:

Lp−net = Lsen(H(Xl
s; θP )) + Ldom.

The sentiment loss Lsen(H(Xl
s; θP )) is to minimize the

cross-entropy for the labeled data Xl
s in the source domain:

Lsen(H(Xl
s; θP ))=− 1

N l
s

Nl
s∑

i=1

yi ln ŷi+(1−yi) ln (1−ŷi),

where yi∈{0, 1} , ŷi are the groundtruth and sentiment pre-
diction for the ith source labeled sample x, respectively.

The domain adversarial loss Ldom enforces the P-net to
produce such domain-shared representations that the domain
classifier cannot discriminate between domains via the Gra-
dient Reversal Layer (GRL) (Ganin et al. 2016). Mathe-
matically, we define the GRL as Qλ(x)=x with a reversal
gradient ∂Qλ(x)

∂x =−λI . As such, the domain classifier can
be denoted as f (Qλ(H (x; θP )); θD) parameterized by θD.
Learning with a GRL is adversarial: on one hand, the rever-
sal gradient enforces f to be maximized w.r.t. θP for all the
data from both domains; on the other hand, θD is optimized
by minimizing the cross-entropy domain classification loss:

Ldom = − 1

Ns+Nt

Ns+Nt∑
i=1

di ln d̂i+(1−di) ln
(
1−d̂i

)
,

where di∈{0, 1} , d̂i are the groundtruth and the domain
prediction for the ith sample.

NP-net: NP-net is used to discover the domain-specific
feature representations for both domains and project them
into the domain-shared feature space. We parameterize the
NP-net as H(g(x); θNP ) where θNP maps a transformed
sample g(x) to a high-level document representation vNP .
The loss function to train the NP-net consists of three terms:

Lnp−net = Lsen(H(g(Xl
s); θNP )) + Lpos + Lneg.

The sentiment loss Lsen(H(g(Xl
s); θNP )) is formulated to

minimize the cross-entropy loss for all the transformed la-
beled data g(Xl

s) in the source domain:

Lsen(H(g(Xl
s); θNP ))=− 1

N l
s

Nl
s∑

i=1

yi
′ ln ŷi

′+(1−yi′) ln (1−ŷi
′),
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Table 1: Statistics of the Amazon reviews dataset including
the number of training, testing, and unlabeled reviews for
each domain as well as the portion of negative samples in
the unlabeled data.

Domain #Train #Test #Unlab. % Neg.

Books 5600 400 9750 12.70%
DVD 5600 400 11843 12.31%

Electronics 5600 400 17009 12.04%
Kitchen 5600 400 13856 8.08%
Video 5600 400 30180 8.74%

where yi′∈{0, 1} , ŷi′ are the groundtruth and prediction for
the ith transformed labeled sample g(x) in the source do-
main, respectively. Moreover, Lpos and Lneg denote the loss
functions to minimize the cross-entropy of positive and neg-
ative pivot predictions, respectively:

Lpos=− 1

Ns+Nt

Ns+Nt∑
i=1

zi
+ ln ẑ+i +(1−zi

+) ln (1−ẑ+i ),

Lneg=− 1

Ns+Nt

Ns+Nt∑
i=1

zi
− ln ẑ−i +(1−zi

−) ln (1−ẑ−i ),

where zi
+∈{0, 1} , ẑ+i are the groundtruth and positive

pivot prediction for the ith transformed sample, respectively,
and zi

−∈{0, 1} , ẑ−i are the groundtruth and negative pivot
prediction for the ith transformed sample, respectively.

Joint Attention Learning

Since the representations of P-net and NP-net are comple-
mentary, we conduct joint attention learning for them. For
the source labeled data Xl

s and its transformed data g(Xl
s),

the representation H(Xl
s; θP ) produced by the P-net and the

representation H(g(Xl
s); θNP ) produced by the NP-net are

concatenated together for sentiment classification. We com-
bine the losses for both the P-net and NP-net together with a
regularizer to constitute the overall objective function:

L = Lsen(H(Xl
s; θP )⊕H(g(Xl

s); θNP ))

+ Ldom + Lpos + Lneg + ρLreg,

where ρ is a regularization parameter to balance the reg-
ularization term and other terms. The regularization term
Lreg is responsible of avoiding the overfitting by placing
the squared �2 regularization on parameters for the senti-
ment classifier, domain classifier, and +(positive)/-(negative)
pivot predictors. The goal of the joint attention learning is to
minimize L with respect to all the model parameters except
the adversarial training part which will be maximized. All
the parameters are optimized jointly with the standard back-
propagation algorithm.

Experiments

In this section, we empirically evaluate the performance of
the proposed HATN model.

Experimental Settings

We conduct the experiments on the Amazon reviews dataset
(Blitzer, Dredze, and Pereira 2007), which has been widely
used for cross-domain sentiment classification. This dataset
contains reviews from five products/domains: Books (B),
DVD (D), Electronics (E), Kitchen (K) and Video (V). There
are 6000 labeled reviews for each domain with 3000 posi-
tive reviews (higher than 3 stars) and 3000 negative reviews
(lower than 3 stars), as well as 9750 unlabeled reviews for
B, 11843 for D, 17009 for E, 13856 for K and 30180 for V.
Note that unlabeled data, which are imbalanced, consist of
more positive but less negative reviews. Table 1 summarizes
the statistics of the dataset. By following (Pan et al. 2010),
we construct 20 cross-domain sentiment classification tasks
like A→B, where A corresponds to the source domain and
B denotes the target domain. For each pair A→B, we ran-
domly choose 2800 positive and 2800 negative reviews from
the source domain A as the training data, the rest from the
source domain A as the validation data, and all labeled re-
views (6000) from the target domain B for testing.

Implementation Details

For each transfer pair A→B, we split documents into sen-
tences and tokenize each sentence by NLTK (Bird, Klein,
and Loper 2009). The memory size nc and nw are set to
20 and 25 respectively. We use the public 300-dimensional
word2vec vectors with the skip-gram model (Mikolov et al.
2013) to initialize the embedding matrix L. They are shared
by P-net and NP-net and fine-tuned during the training pro-
cess. The hidden dimensions of the word attention layer
and sentence attention layer are 300. The weights in net-
works are randomly initialized from a uniform distribution
U [−0.01, 0.01]. The regularization weight ρ is set to 0.005.
For the pivots learned by P-net, we extract only adjectives,
adverbs, and verbs with a frequency of at least 5 and remove
stop words and negation words.

For training, the model is optimized with the stochas-
tic gradient descent over shuffled mini-batches with mo-
mentum rate 0.9. Due to different training sizes for differ-
ent classifiers, we use a batch size bs=50 for the senti-
ment classifier, a batch size bd=100 for the domain clas-
sifier with a half coming from the source and target do-
mains, respectively, a batch size bs of source labeled data,
and a batch size bd of unlabeled data from both domains
in turn for the +(positive)/-(negative) pivot predictors. Gra-
dients with the �2 norm larger than 40 are normalized to
be 40. We define the training progress as p= t

T , where t
and T are current epoch and the maximum one, respec-
tively, and T is set to 100. The learning rate is decayed
as η= max( 0.005

(1+10p)0.75
, 0.002) and the adaptation rate is

increased as λ= min( 2
1+exp(−10p)−1, 0.1) during training.

We perform early stopping on the validation set during the
training process.

Performance Comparison

The baseline methods in the comparison include:

• Source-only: it is a non-adaptive baseline method based
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Table 2: Classification accuracy on the Amazon reviews dataset
S T Source-only SFA DANN DAmSDA CNN-aux AMN P-Net NP-Net HATN HATNh

B D 0.8057 0.8285 0.8342 0.8612 0.8442 0.8562 0.8685 0.8098 0.8687 0.8707
B E 0.7163 0.7638 0.7627 0.7902 0.8063 0.8055 0.8453 0.7833 0.8545 0.8575
B K 0.7365 0.7810 0.7790 0.8105 0.8338 0.8188 0.8567 0.8042 0.8668 0.8703
B V 0.8145 0.8295 0.8323 0.8498 0.8443 0.8725 0.8648 0.8127 0.8758 0.8780

D B 0.7645 0.8020 0.8077 0.8517 0.8307 0.8453 0.8665 0.8215 0.8720 0.8778
D E 0.7312 0.7600 0.7635 0.7617 0.8035 0.8042 0.8480 0.7865 0.8607 0.8632
D K 0.7343 0.7750 0.7815 0.8260 0.8168 0.8167 0.8570 0.8102 0.8700 0.8747
D V 0.8275 0.8262 0.8595 0.8380 0.8587 0.8740 0.8857 0.8222 0.8845 0.8912

E B 0.6887 0.7235 0.7353 0.7992 0.7738 0.7752 0.8295 0.7608 0.8348 0.8403
E D 0.7260 0.7593 0.7627 0.8263 0.7907 0.8053 0.8202 0.7843 0.8425 0.8432
E K 0.8463 0.8650 0.8453 0.8580 0.8715 0.8783 0.8965 0.8307 0.8955 0.9008
E V 0.7248 0.7565 0.7720 0.8170 0.7878 0.8212 0.8412 0.7648 0.8455 0.8418
K B 0.7153 0.7397 0.7417 0.8055 0.7847 0.7905 0.8353 0.7727 0.8398 0.8488
K D 0.7332 0.7567 0.7532 0.8218 0.7907 0.7950 0.8292 0.7773 0.8437 0.8472
K E 0.8315 0.8538 0.8553 0.8800 0.8673 0.8668 0.8752 0.8342 0.8900 0.8933
K V 0.7608 0.7797 0.7637 0.8147 0.7882 0.8215 0.8542 0.7575 0.8432 0.8485
V B 0.7703 0.7948 0.8003 0.8300 0.8148 0.8350 0.8652 0.8062 0.8703 0.8710
V D 0.8243 0.8365 0.8415 0.8590 0.8525 0.8688 0.8723 0.8147 0.8773 0.8790
V E 0.7187 0.7593 0.7572 0.7767 0.8232 0.7968 0.8432 0.7562 0.8463 0.8598
V K 0.7133 0.7478 0.7522 0.7952 0.8128 0.8098 0.8565 0.7880 0.8577 0.8645

Average 0.7592 0.7869 0.7900 0.8236 0.8198 0.8279 0.8556 0.7949 0.8620 0.8661

on neural networks and uses the most frequent 5000 uni-
grams and bigrams between domains as features.

• SFA (Pan et al. 2010): it is a linear method, which aims to
align non-pivots and pivots by spectral feature alignment.

• DANN (Ganin et al. 2016): it is based on the adversarial
training. DANN performs domain adaptation on the rep-
resentation encoded in a 5000-dimension feature vector
of the most frequent unigrams and bigrams between do-
mains.

• DAmSDA (Ganin et al. 2016): it applies DANN on the
feature representation generated by the mSDA (Chen et
al. 2012). The new representation is the concatenation of
the output of the 5 layers and the original input. Each ex-
ample is encoded as a vector of 30000 dimensions.

• CNN-aux (Yu and Jiang 2016): it is based on the CNN
(Kim 2014) and makes use of two auxiliary tasks to help
induce sentence embeddings.

• AMN (Li et al. 2017): it learns domain-shared representa-
tions based on memory networks and adversarial training.

• P-net: it is the first component of the proposed HATN
model without any positional embedding and makes use
of the domain-shared representations.

• NP-net: it is the second component of the proposed
HATN model without any positional embedding and
makes use of the domain-specific representations.

• HATN & HATNh: they are the proposed models that do
not contain the hierarchical positional encoding and con-
tain the hierarchical positional encoding, respectively.

Table 2 reports the classification accuracies of different
methods on the Amazon reviews dataset. We evaluate our
method over 20 transfer pairs, totally 120,000 testing re-
views. The proposed HATNh model consistently achieves

the best performance on almost all the tasks. Source-only
performs poorly with 75.92% on average due to no adap-
tive methods applied. SFA only achieves 78.69% on aver-
age due to its poor discrete features and a linear classifier
used. Besides, SFA highly depends on manual pivot selec-
tion methods which may not capture pivots accurately. On
the contrary, HATNh can automatically learn to capture piv-
ots using the P-net attentions. Compared to the adversarial
training based approaches, HATNh outperforms DANN by
7.61%, DAmSDA by 4.25% and AMN by 3.82% on aver-
age, respectively. Besides, HATNh exceeds CNN-aux which
still needs to manually select positive and negative pivots by
4.63%. Possible reasons are that HATN can automatically
exploit better domain-shared representations with hierarchi-
cal attentions and make use of both pivot and non-pivot fea-
tures which contribute more to the domain-shared represen-
tations than those only using the pivot features.

In order to validate the effectiveness of each component,
we compare with variants of the proposed HATNh. First, we
can see that P-net even outperforms the AMN that considers
only word attention by 2.77% on average. which proves that
hierarchical attention is more suitable for learning domain-
shared representations. To further show the effectiveness of
hierarchical attention, we also compare P-net with its vari-
ant that considers only sentence attention. P-net with hierar-
chical attention surpasses P-net with only sentence attention
(83.66%) by 1.9% on average. Second, it is reasonable that
NP-net only achieves 79.49% on average since the input for
NP-net removes all pivots that contribute more to domain-
shared features and it is insufficient to do sentiment classifi-
cation. Third, HATN can get 86.20% on average better than
both P-net and NP-net, which proves that the representations
of P-net and NP-net are complementary. Moreover, HATNh

can further improve the performance of HATN by 0.41% on
average, which also validates that P-net and NP-net can be-
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Figure 2: Visualization of attention of the HATNh in the B→E task. Label 1 denotes positive sentiment and label 0 denotes
negative sentiment. NP-net assigns zero attention weights to the pivots due to hiding them.
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Figure 3: Samples of pivots and non-pivots captured by the
HATNh in the B→E task.

have better with hierarchical positional encoding.

Visualization of Attention

In order to validate that our model is able to identity piv-
ots and non-pivots simultaneously with hierarchical atten-
tions, we visualize the word and sentence attention layers of
the P-net and NP-net in Figure 2. Figure 2 shows that P-net
tends to pay higher word attentions to the pivots between
domains, such as positive pivots best, excellent, good and
negative pivots disappointed, poor, annoying. The sentences

that contain these pivots also get higher sentence attentions
in the P-net. Different from P-net, NP-net aims to pay higher
word attentions to the non-pivots in the two domains, such
as source non-pivots readable, insipid in the Books domain
and target non-pivots pixelated, fuzzy, distorted in the Elec-
tronics domain. The sentences that contain these non-pivots
also get higher sentence attentions in the NP-net. Overall,
the visualization of attentions illustrates that our model can
achieve transferring attentions between domains. As showed
in Figure 3, we list some examples of pivots and non-pivots
captured based on the attention weights of P-net and NP-net
respectively in the B→E task. These pivots and non-pivots
are crucial for cross-domain sentiment classification.

Conclusion
In this paper, we propose the HATN method for cross-
domain sentiment classification. The proposed HATN can
transfer attentions for emotions in both word and sentence
levels across domains by automatically capturing pivots and
non-pivots, which provides a better interpretability of what
to transfer for emotions. Experiments on the Amazon review
dataset show the effectiveness of HATN. The proposed hier-
archical attention transfer mechanism could be adapted to
other domain adaptation tasks such as text classification (Li,
Jin, and Long 2012) and machine comprehension (Golub et
al. 2017), which are the focus of our future studies.
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