
Content and Context: Two-Pronged Bootstrapped
Learning for Regex-Formatted Entity Extraction

Stanley Simoes
Indian Institute of Technology Madras

stanley@cse.iitm.ac.in

Deepak P
Queen’s University Belfast

deepaksp@acm.org

Munu Sairamesh
Indian Institute of Technology Madras

musram@gmail.com

Deepak Khemani
Indian Institute of Technology Madras

khemani@iitm.ac.in

Sameep Mehta
IBM Research - India

sameepmehta@in.ibm.com

Abstract

Regular expressions are an important building block of rule-
based information extraction systems. Regexes can encode
rules to recognize instances of simple entities which can then
feed into the identification of more complex cross-entity rela-
tionships. Manually crafting a regex that recognizes all pos-
sible instances of an entity is difficult since an entity can
manifest in a variety of different forms. Thus, the problem
of automatically generalizing manually crafted seed regexes
to improve the recall of IE systems has attracted research at-
tention. In this paper, we propose a bootstrapped approach to
improve the recall for extraction of regex-formatted entities,
with the only source of supervision being the seed regex. Our
approach starts from a manually authored high precision seed
regex for the entity of interest, and uses the matches of the
seed regex and the context around these matches to identify
more instances of the entity. These are then used to identify
a set of diverse, high recall regexes that are representative of
this entity. Through an empirical evaluation over multiple real
world document corpora, we illustrate the effectiveness of our
approach.

Introduction

Notwithstanding recent advancements in learning-based IE
systems, rule-based IE systems remain more popular in the
industry simply because rules are easier to understand and
maintain (Chiticariu, Li, and Reiss 2013). A core task in IE
systems is entity extraction, which involves identifying in-
stances of entities in unstructured and semi-structured text.
In rule-based IE systems, regular expressions (regexes) pro-
vide an elegant means of characterizing entities since most
entities have an underlying pattern. Phone numbers, email
addresses, and social security numbers are some examples.

A good regex for a chosen entity would accurately match
most, if not all, of its instances, but manually designing such
a regex is often laborious. A human expert tasked with coin-
ing a good regex for an entity would typically think of a
few of its instances and try to generalize them to a regex.
While such a regex would likely match a large chunk of
instances, it might miss out on some rather intuitive vari-
ants. For example, a human expert would typically author

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1-\d{3}-\d{3}-\d{4} for extracting phone numbers in the
US. However, this regex misses out on phone number instances
such as 1-800-FOR-SALE and 1-800-COMPANY which are phone
number representations of the kind regularly used by marketing
agencies (Murthy, P., and Deshpande 2012). Brauer et al. (2011)
cite a scenario involving invoice numbers from a particular domain,
where the human would think of instances such as 2010.08338
and 2000.348 as examples, to author the regex 20\d{2}\.\d+.
But this regex does not extract other valid invoice numbers such
as 2008-035465 and 11-093, as pointed out therein. Additionally,
they observe that entity types that are relevant to IE within industry
settings often follow a strict underlying syntactical pattern.

Further, regexes also need to be refined continuously to cover
new variants of entities that did not previously exist. For example,
until a few years ago, the regex 9\d{9} was appropriate to extract
mobile numbers in India. Today, these mobile numbers also start
with 7 or 8, necessitating the generalization of the first digit. Micro-
processor product identifiers form another such example. Until the
end of the last decade, the regex i\d-\d{3} would identify ev-
ery Intel Core i5 and i7 microprocessor. Since then, newer models
such as i5-3340S1 and i7-4770TE2 have been released, necessitat-
ing regex refinement through generalization to cover them. In such
cases, it would prove beneficial to have a system that assists the
human by automatically learning and suggesting (i) instances that
may have been overlooked, or better yet, (ii) meaningful regexes
themselves. The human can then author regexes that better cover
the entity using her domain knowledge in conjunction with the
learned instances or refined regexes.

One direction towards finding high precision and high recall
regexes would be to infer such regexes from labeled data (Brauer
et al. 2011; Bartoli et al. 2016). Alternatively, a seed regex can be
progressively specialized (Li et al. 2008) or generalized (Murthy,
P., and Deshpande 2012), optionally soliciting user feedback in the
process. Among such refinements, generalization is harder since it
requires taking a call on new/unseen matches. Thus, it has attracted
research attention, mainly employing active learning (Murthy, P.,
and Deshpande 2012; Bartoli et al. 2017).To the best of our knowl-
edge, our work is the first approach that does not require explicit
instance labeling for the regex generalization problem.
Our Contribution: This paper presents a two-stage approach for
enhancing the recall of regex-based entity extraction systems. In
the first stage, we take a high precision seed regex as input, and

1https://en.wikipedia.org/wiki/List of Intel Core i5
microprocessors

2https://en.wikipedia.org/wiki/List of Intel Core i7
microprocessors

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5924

INPUT OUTPUT METHOD
RX INS-POS INS-NEG RX INS

Riloff and Jones (1999) � � � � � iterative pattern-based bootstrapping
Thelen and Riloff (2002) � � � � � iterative pattern-based bootstrapping
Sarmento et al. (2007) � � � � � co-occurrence based set expansion
Li et al. (2008) � � � � � greedy hill climbing
Babbar and Singh (2010) � � � � � iterative regex relaxation & clustering
Brauer et al. (2011) � � � � � prefix and suffix automata
Murthy, P., and Deshpande (2012) � � � � � best-first search, active learning
Bartoli et al. (2014) � � � � � genetic programming
Gupta and Manning (2014) � � � � � iterative pattern-based bootstrapping
Gupta and Manning (2015) � � � � � iterative pattern-based bootstrapping
Qadir et al. (2015) � � � � � non-iterative pattern-based set expansion
Bartoli et al. (2016) � � � � � genetic programming
Bartoli et al. (2017) � � � � � genetic programming, active learning

Our Approach � � � � � iterative bootstrapping
RX (INS) stand for regex (instances).
INS-POS and INS-NEG denote explicit instance supervision, standing for positive and negative instances respectively.
� indicates presence, � absence, and � optional.

Table 1: Overview of related work.

employ bootstrapping to learn new instances similar to the matches
by the seed, leveraging a specified document corpus. In the sec-
ond stage, we use these learned instances to recommend a set of
high precision, high recall regexes from the generalization space of
the seed regex, thus equipping the human with regex refinements
that are more representative of the entity in question. With minimal
manual tuning, these regexes can be deployed in entity extraction
systems. We illustrate, through a variety of empirical analyses, that
our method outperforms current methods appropriate for the task.
Roadmap: We first review related work relevant to our task, fol-
lowed by the formal problem statement. We then introduce relevant
background, followed by a description of our proposed approach.
Next, we detail our empirical evaluation, followed by conclusions.

Related Work
A high-level overview of representative related work categorized
according to input and output specifications appear in Table 1. All
techniques either start with a seed regex or a set of labeled instances
or both. It may be noted that a seed regex implies a set of labeled
instances, since the matches of the seed regex are indicative of the
entity to be modeled. Similarly, a regex output consistently implies
a set of their matches in the output. It is however worth noting that
literature differs slightly in the treatment of seed regex matches
in the input side; while all seed regex matches are considered as
correct entity instances in Murthy, P., and Deshpande (2012), Li
et al. (2008) allows for the possibility that some of the seed regex
matches are not valid instances of the entity. Thus, we indicate re-
quirement of explicit (i.e., not implied by the input regex, if any)
positive and negative instance supervision in Table 1, denoted by
INS-POS and INS-NEG respectively.
Regex Refinement Techniques: The techniques that make use of
a seed regex differ in the type of adaptation they apply on the seed
regex, with all existing methods using labeled instances in addi-
tion to the seed regex. Li et al. (2008) specializes the seed regex,
whereas Babbar and Singh (2010) and Murthy, P., and Deshpande
(2012) use generalization as the adaptation technique. Apart from
the adaptation method, the techniques differ in the way they exploit
the reference document dataset used to guide the search process. In

contrast to methods that require labeled instance data in addition to
the seed regex, our approach is modeled to work without such in-
stance labelling, and thus requires no extra information other than
the seed regex and a reference document dataset.
Regex Learning Techniques: A second group of techniques, all of
which employ supervision, consider learning a regex from scratch
using a set of positive and negative entity instances in text; these
methods expect more comprehensive supervision to offset the non-
usage of seed regexes. While Brauer et al. (2011) use automata to
characterize prefix and suffix patterns of positive instances, Bartoli
et al. (2014) use genetic programming to infer a regex from posi-
tive and negative instances. Bartoli et al. (2016) improve the regex
learning by learning regexes with disjunctions and lookaround op-
erators. In a recent work, they consider usage of limited supervision
in an active learning approach (Bartoli et al. 2017). Our problem
differs from this family of techniques too in the non-usage of su-
pervision in the form of labeled instances.
Non-regex Match Set Expansion Techniques: The third category
of methods do not use regexes in the input or output, and instead
start with a set of labeled instances and output a larger set of in-
stances that better characterize the entity. Riloff and Jones (1999)
introduced bootstrapping as an approach for accurate identification
of entity instances using context around labeled instances, later ex-
tended in Thelen and Riloff (2002). On the other hand, Sarmento
et al. (2007) use co-occurrence as a heuristic to formulate a solu-
tion. Gupta and Manning (2014) leverage unlabeled data to model
and score patterns for accurate instance identification. This was ex-
tended in Gupta and Manning (2015) to perform collective instance
identification of a set of unrelated entities through mutual supervi-
sion. It may be noted that this work considers instances of other en-
tities as negative supervision to facilitate learning of instances for
a particular entity, and is thus not applicable to scenarios that focus
on a single entity at a time. Qadir et al. (2015) propose a pattern-
based set expansion method using an external semantic similarity
oracle, targeting short texts from sources such as microblogs. In
general, this oracle may not always be available. In the interest of
comparing our match set expansion module against the state-of-
the-art for semi-supervised (single) entity instance identification,

5925

.

\w

\d _ [a-zA-Z]

[a-z] [A-Z]

\W

[-.\:/*|] \s all other
characters

Figure 1: Character class hierarchy

we use Gupta and Manning (2014) as the baseline method in our
empirical evaluation.

Problem Statement

Consider a document corpus D and a manually crafted seed regex
rseed that is intended to capture instances of a particular entity. We
use M(r,D) to denote the set of all matches of the regex r within
the document corpus D; thus, M(rseed ,D) denotes the set of seed
regex matches in D. We are interested in two tasks:

1. Expansion of Matches: Identifying a larger set of entity in-
stances than the matches by the seed, i.e., M(rseed ,D). We will
use Mexp to denote the expanded set of matches.

2. Regex Recommendation: Identifying generalizations of rseed ,
as R, each of which can more comprehensively characterize the
entity in question, by way of their matches covering more entity
instances than M(rseed ,D) while maintaining a high precision.
The human user can then choose from among regexes in R for
more accurate entity extraction.

In both the above tasks, our intent is to ensure a broader coverage
of the entity while retaining a high precision (i.e., ensuring that very
few incorrect instances get covered in the process). As in Murthy,
P., and Deshpande (2012), we assume that rseed is highly precise in
that, all its matches are correct. This is intuitively true of manually
crafted regexes since they are meant to capture the correct instances
that the regex author is able to recollect.
Evaluation: It is desired and expected that Mexp and
M(r,D) (∀r ∈ R) would cover more correct matches3 (i.e.,
correct instances of the entity) than M(rseed ,D); our evalua-
tion focuses on quantifying the enhancement in coverage of cor-
rect matches and ensuring the exclusion of incorrect matches.
Since we are more interested in evaluating the more general
task, our full comparative evaluation is performed on the set ex-
pansion task. As stated previously, we expect recall(Mexp) >
recall(M(rseed ,D)), given the nature of the set expansion task.
To ensure exclusion of incorrect matches, we would like Mexp

to contain as few incorrect matches as possible. Thus, our quality
measure is simply the precision, recall, and F-score of Mexp when
compared against a gold standard set of correct entity instances.

Background

Our method, much like previous work (e.g., Murthy, P., and Desh-
pande (2012)), uses a regex generalization space to guide the set

3We consistently use the term matches to refer to text fragments
that are matched by a regex. Since we expect the regex to charac-
terize an entity of interest, these matches are highly correlated with
entity instances as well.

\d\w?

\w{1,2}

\d?\w?

\d{1,2}\w?

\d.?

\d\w{0,2}
A1

A2,1 A2,3 A2,4 A2,5

\w{0,2}

\d{0,2}\w?

\d?.?

\d?\w{0,2}
A2,2

Figure 2: Generating regexes in G2
\d\w?

expansion and recommendation tasks. We now illustrate the gen-
eralization space, being essential background to describe our ap-
proach.

A regex is made up of two basic units: the character class,
and the quantifier. The character class specifies the domain of
characters, while the quantifier specifies the number of times a
character in the preceding character class occurs. For example,
in the regex \d{2,4}, the character class is \d and the quan-
tifier is {2,4}, with 2 being the lower bound and 4 the upper
bound. This regex matches all sequences of digits of lengths 2, 3,
or 4. As in previous literature (Murthy, P., and Deshpande 2012;
Li et al. 2008), we restrict ourselves to the class of regexes that are
sequences of character class - quantifier pairs.

Our approach for generalization follows the framework in
Murthy, P., and Deshpande (2012), where each generalization step
is modeled as replacing a single regex unit (which is either a char-
acter class or a quantifier) by its generalization. In a slight departure
from the framework, we first flatten the seed regex to form a regex
with just {1,1} or {0,1} quantifiers. Accordingly, \d{1,2} is
flattened to \d{1,1}\d{0,1}. This flattening allows for more
fine-grained generalizations due to the design of the generalization
space. This quantifier flattening at each character class level is not
feasible in the case of grouped character class sequences, such as
those in (\d[a-z]){1,3} or ([a-z]|[0-9]){5}. In those
cases, we retain the grouping in the generalization process while
generalizing the character classes within them individually. The
actual generalization step design is as follows: if the choice of the
regex unit is a character class, the generalization involves replacing
it by its parent in the hierarchy shown in Figure 1. As evident from
this hierarchy, every character class has at most one generalization,
and the root character class . cannot be generalized any further.
The quantifier is generalized either by decreasing its lower bound
by 1, or increasing its upper bound by 1. Thus, a single generaliza-
tion of \d{1,1}\d{1,1} would produce \d{1,2}\d{1,1}
if the choice of regex unit is the first quantifier and the choice of
generalization is rightward (a leftward generalization of the same
quantifier would yield \d{0,1}\d{1,1}), whereas a general-
ization on the second character class would yield \d{1,1}. A
regex can be generalized multiple times, each generalization step
involving a regex unit which itself may be the output of a previous
step. This leads us to the generalization space.
Definition 1 d-Depth Generalization Space (Gd

r): All regexes that
can be arrived at by at most d generalization steps from a regex r
form the d-depth generalization space of r.

5926

For example, \w{0,2} is in \d\w? since two generalization
steps can affect the transformation in question. Figure 2 illustrates
the generation of regexes in the 2-depth generalization space of the
regex \d\w?. To avoid clutter in the illustration, we re-aggregate
the flattened parts as and when possible, using standard regex nota-
tion. The regexes in A1, along with the root regex are in the 1-depth
generalization space G1

\d\w?. Each of the five regexes in A1 are fur-
ther generalized yielding A2,1, A2,2, A2,3, A2,4, and A2,5, from
which the regexes in A2,2 are shown in the figure. The 2-depth
generalization space of \d\w? is the collection of every regex in
A2,1, A2,2, A2,3, A2,4, and A2,5, as well as \d\w?. It may be
noted that r itself is contained in every generalization space, i.e.,
∀d, r ∈ Gd

r holds.

Our Approach

We now present our method4 for match set expansion and regex
recommendation. Our technique first addresses the match set ex-
pansion task, forming an expanded set of matches Mexp , which
is in turn used to identify a ranked list of regexes that maximizes
the coverage of matches within the expanded set using a diversity-
conscious greedy formulation. Accordingly, we first describe our
core method, that for match set expansion, followed by the greedy
approach for regex recommendation.

Overview of Match Set Expansion

Our method starts with the set of seed regex matches, i.e.,
M(rseed ,D), and progressively builds the expanded set Mexp over
the course of many iterations, without using any supervision in the
form of labeled instances. The technique starts with two sets of
matches, denoted as P and N meant to contain correct matches
of the entity (i.e., positives) and incorrect matches (i.e., nega-
tives) respectively. P is initialized to M(rseed ,D) while N covers
matches of all other regexes in Gd

rseed (i.e.,
(∪r∈Gd

rseed
M(r,D)

)−
M(rseed ,D)), reflecting the initial belief that the regex author ac-
curately characterized the entity to kick-off the bootstrapped ap-
proach. Over iterations, P is progressively enlarged by eating into
matches from N . Specifically, each iteration selects a small num-
ber of matches that are judged to be ‘similar’ to instances in P
based on both content of the matches as well as their context, to be
included in P . Thus, two elements are central to our method:

• Modeling: The representation of each match as a combination
of content and context features.

• Similarity Judgment: The assessment of P-likeness of
matches, to decide on which of the matches would get included
in P in each iteration. We accomplish this using a logistic re-
gression model.

The third element, the quantum of the change (from N to P) in
each iteration, is modeled as a parameter to allow the user to choose
an appropriate trade-off in the aggressive-conservative spectrum.
We now detail the modeling and similarity judgment parts in sepa-
rate subsections herein, followed by the overall algorithm.

Modeling Matches

We represent each match in N ∪P using a vector of four features,
of which two model the content of the match and the other two
model the lexical context of the match. Each feature uses a different
way of quantifying the P-likeness of each match.
Content Modeling: Both the content features use edit distance
modeling (Levenshtein 1966) to score a match against the cur-
rent estimates of P and N (at the iteration). Consider a match

4Source code available at https://github.com/stanleyts/
ContentNContext

m ∈ (N ∪ P); we define Et(m) as the set of matches in N ∪ P
that are within t edit distance of m. For example, CS402 would
be part of E2(CS413) since two character changes can transform
CS413 to CS402. The P-likeness feature of m via t-edit distance
modeling is specified as the fraction of Et(m)s that are within the
current estimate of P . Thus:

Content-Scoret(m) =
|Et(m) ∩ P|
|Et(m)| (1)

Our two content features are simply Content-Score2(m) and
Content-Score3(m).
Context Modeling: For most entities, the context or the lexical
neighborhood on either side of a match provides critical evidence
to help determine the correctness of the match. For example, in a
text fragment “... please do call me on 0123456789 or leave a text
therein, ...”, the few words in the left and right of the actual phone
number instance (i.e., 0123456789) hold valuable evidence in sup-
port of the correctness of the match. In a way, even if the actual
phone number were redacted in the document, it would be easy
for a human user to guess that the redacted fragment was a phone
number instance making use of the left and right contexts. Our con-
text modeling within each iteration takes the matches in the current
state of the P set and builds language models (Jurafsky and Martin
2000, Chapter 6) to characterize the left (i.e., pre) and right (i.e.,
post) context of these matches. Accordingly, we build two unigram
language models LP and RP . LP is built over the five tokens5 to
the left of each match in P . In the earlier example, each of the
words {please, do, call,me, on} contribute to building the lan-
guage model LP . Similarly, {or, leave, a, text, therein} all feed
into building RP . We perform add-one smoothing on both LP and
RP for better generalizability. The two context features for each
match is then just the scoring of the left (right) context of the match
m (∈ (N ∪ P)) against LP (RP).

Context-ScoreL(m) =
∑

w∈LC(m)

ln(LP(w)) (2)

Context-ScoreR(m) =
∑

w∈RC(m)

ln(RP(w)) (3)

where LC(m) and RC(m) denote the left and right contexts of the
match m. The log-sum (instead of product) prevents floating-point
underflow that is likely while multiplying small unigram probabil-
ities.

With the log-sum quantifying context support, we have one
score for each context, and two content scores. In short, the P-
likeness of each match m is represented as a vector of four fea-
tures:

[Content-Score2(m),Content-Score3(m),

Context-ScoreL(m),Context-ScoreR(m)] (4)

Similarity Judgment and P/N Memberships

We would now like to learn a model based on the four-feature rep-
resentation to characterize the current estimates (i.e., estimates at
the start of the iteration) of positive and negative matches (i.e., P
and N). Given the binary nature of the variable of interest (i.e.,
P/Nmembership) to characterize, we learn a logistic regression
model (Hosmer, Jr., Lemeshow, and Sturdivant 2013) since that is
well suited to the task of modeling a binary dependent variable. It
may be noted that we use pseudo-supervision in learning a logistic
regression model since we use the current estimates of P and N

5Qadir et al. (2015) uses six tokens for creating contextual pat-
terns, but we found five to be empirically sufficient.

5927

as labelings, with P corresponding to label 1, and N to label 0. In
particular, these labels derived from the current P/N estimates re-
flect the current belief, and are different from labeled information
in supervised learning tasks where they reflect the ground truth.

The logistic regression model takes 5-tuples in the form of the
four features along with the P/Nmembership, and learns a model
that can quantify the P-likeness of any match specified using the
four features. In simple terms, the logistic regression model learns
a weight wf for each feature f and a bias b (together forming the
model parameters) such that the P-likeness of a match can be quan-
tified using its features as:

P-likeness(m) =
1

1 + e−(b+
∑

f∈F wf×f(m))
(5)

where F denotes the set of four features and f(m) denotes the
value of feature f for the match m. It may be noted that unlike
supervised tasks, we do not distinguish between training and test
sets. The model parameters are learned across matches in N ∪ P ,
followed by a quantification of P-likeness over all matches in
[(N ∪ P)−M(rseed ,D)].

At each iteration, the top-k P-like matches from [(N ∪ P) −
M(rseed ,D)] are chosen for inclusion in the P set for the next
iteration. All the seed regex matches (i.e., M(rseed ,D)) remain
within P; this fixation reflects the assumption that the manually
crafted regex is highly precise. All the remaining matches form the
estimate of N for the next iteration. At each iteration, k is steadily
increased, leading to a progressive enlargement of P with respect
to N as indicated earlier. The usage of a simple model such as
logistic regression along with avoidance of large values of k make
the method reasonably robust to model overfitting.

Match Set Expansion Approach
We now outline the match set expansion approach in entirety in Al-
gorithm 1. As described earlier, our approach uses a bootstrapped
iterative approach to expand the set of matches from the initial set
(i.e., M(rseed ,D)) to progressively include matches from other
regexes in the generalization space of rseed . Lines 5-11 indicate
the steps within each iteration, following the description presented
earlier. While we omit describing the details again, it may be noted
that the k within each iteration is enlarged by a fixed fraction (de-
noted by p) of the seed matches; this ensures that P increases
within each iteration. A low-value of p adopts a cautious expansion
approach, whereas a high-value of p leads to a more aggressive ap-
proach. The quantum of overall expansion may also be controlled
by the number of iterations num .

Regex Recommender
Having built an expanded set of matches Mexp , we would like to
use that to construct a ranked list of generalized regexes from Gd

rseed
to cater to scenarios where the human user can choose regexes in-
stead of simply using the expanded set of matches. Our idea is to
choose regexes from Gd

rseed that cover a lot of matches in Mexp ,
while covering very few other matches, to reflect the estimation
that Mexp is the set of correct matches of the intended entity. At
the same time, however, we would also want to avoid a lot of very
similar regexes at the top of the ordered output list. Consequently,
we choose a popular diversity conscious ranking framework, Maxi-
mum Marginal Relevance (MMR) (Carbonell and Goldstein 1998),
to model our regex recommender on. MMR offers a simple recipe
to progressively choose items in a ranked output, which, adapted to
our context, is as follows:

Nxt = argmax
r∈Gd

rseed
−R

[
λ · Sim1(r,Mexp)

− (1− λ) · Sim2(r,R)
]

(6)

Algorithm 1 MATCH-SET-EXPANSION

Input: rseed , D, Gd
rseed

Parameters: p, num
Output: Mexp

1: P ← M(rseed ,D)
2: N ← (∪r∈Gd

rseed
M(r,D)

)−M(rseed ,D)

3: k = |M(rseed ,D)| × p
4: repeat
5: Learn LP and RP using current P
6: Use LP , RP , and current P and N to estimate the

four-feature representation of all matches in N ∪ P
7: Train a logistic regression model and estimate the

model parameters
8: top-k = top-k P-like non-seed matches using the lo-

gistic regression model
9: N ← (N ∪ P)− (top-k ∪M(rseed ,D))

10: P ← top-k ∪M(rseed ,D)
11: k += |M(rseed ,D)| × p
12: until num iterations are not completed
13: Mexp = P

where R is the set of regexes already chosen for the output. λ is
a weighting parameter controlling the trade-off between relevance
and diversity, which we set to 0.7 as recommended in Carbonell
and Goldstein (1998) to emphasize relevance over diversity. We
start with R = φ and progressively find the next result, Nxt , and
add it to R, forming an ordered result set in the process. Sim1(., .)
is a relevance function that estimates the goodness of r, whereas
Sim2(., .) feeds into a penalty term that ensures that regexes simi-
lar to already chosen ones are not picked, thus forming the diversity
criterion. We model the Sim functions as follows:

Sim1(r,Mexp) =
|M(r,D) ∩Mexp |

|Mexp | (7)

Sim2(r,R) =
|M(r,D)

⋂
(∪r′∈RM(r′,D))|

|M(r,D)
⋃
(∪r′∈RM(r′,D))| (8)

Informally, Sim1(., .) measures the recall of r against Mexp ,
whereas Sim2(., .) is modeled as the Jaccard similarity between
the matches of r and the collective matches across the regexes in
R. The result set cardinality can be controlled easily by stopping
after choosing the desired number of regexes in the output.

Computational Costs

In contrast to online tasks such as IE that benefit from real-time
responses, the match set expansion and regex recommender tasks
are offline tasks that enable fine tuning the rule-based IE system
at design time. However, it may be noted that such a setting as-
sumes that the character of document data that the system needs to
be tested over remains similar in character to that of the reference
document dataset used in the match set expansion and regex rec-
ommender tasks. We now briefly discuss the computational costs
of our methods. With typical seed regexes only containing up to
tens of regex units, computing the regex set Gd

rseed takes up to a few
thousands of operations, making it a very lightweight step. Iden-
tifying matches (and associated left/right contexts) for all regexes
in Gd

rseed in D, denoted by M (= ∪r∈Gd
rseed

M(r,D)), takes time
linear in the size of the document corpus with the aid of an au-
tomaton. Learning the language models over the fixed-size left and
right contexts of matches in M is evidently linear in |M|; so is the

5928

ENTITY rseed TASK D |D| |M(rseed ,D)|
DATEMIDEAST talk.politics.mideast 1k 7

DATE \d{2}/\d{2}/\d{2} DATEWEBKB WebKB 2k 86
DATEENRON Enron 100k 25654

PHONE NUMBER \(\d{3}\)\d{3}-\d{4} PHONEFORSALE misc.forsale 1k 88
COURSE NUMBER CS\d{3} COURSEWEBKB WebKB 2k 1348
PHONE NUMBER \d{3}-\d{3}-\d{4} PHONEENRON Enron 100k 28994

Table 2: Extraction Tasks Overview. The seed regex for DATE is common on all corpora.

TASK
PRECISION RECALL F-SCORE

FREQ GM10 GM1% OURS M(rseed ,D) GM10 GM1% OURS M(rseed ,D) FREQ GM10 GM1% OURS

DATEMIDEAST 0.009 0.009 0.045 0.351 0.072 0.072 0.072 0.948 0.135 0.017 0.016 0.055 0.513
DATEWEBKB 0.032 0.186 0.479 1.000 0.251 0.436 0.330 0.857 0.402 0.063 0.261 0.391 0.923
DATEENRON 0.038 0.982 0.965 0.913 0.608 0.619 0.624 0.887 0.756 0.072 0.759 0.758 0.900
PHONEFORSALE 0.462 0.224 0.517 0.984 0.169 0.257 0.236 0.483 0.289 0.621 0.239 0.324 0.648
COURSEWEBKB 0.070 0.672 0.633 0.994 0.342 0.348 0.349 0.855 0.509 0.131 0.459 0.450 0.919
PHONEENRON 0.118 0.977 0.970 0.766 0.684 0.687 0.687 0.830 0.812 0.211 0.807 0.805 0.796

Table 3: Comparative evaluation of accuracies of match set expansion algorithms

estimation of context features using the learned language models.
The Levenshtein automaton from Schulz and Mihov (2002) makes
Et(m) estimation over all matches in M linear in |M|. The linearity
in |M| holds for the logistic regression training as well as the partial
sort (Martınez 2005) in Line 8; note that k is a fraction of the size
of the seed regex matches, which is much smaller than M. With
all the intra-iteration steps being linear, the sequence of iterations
for the match set expansion is in O(num × |M|). Given the regex
matches identified in the match expansion phase, the final regex
recommender phase is much simpler and is in O(|Gd

rseed |) for fixed
output sizes. We search over the generalization space Gd

rseed much
like in Murthy, P., and Deshpande (2012); heuristically limiting the
size of Gd

rseed by excluding unpromising generalization sub-trees
would help scale the search to higher values of d.

Experiments

Experimental Setup

Extraction Tasks: We perform our empirical evaluation on a vari-
ety of extraction tasks over multiple real-world document corpora
as shown in Table 2. The talk.politics.mideast and misc.forsale cor-
pora are taken from the 20 Newsgroups dataset6, whereas the En-
ron corpus is a random subset of 100k documents from the Enron
Email Dataset7. The WebKB corpus8 is another popular document
dataset.
Baselines: Our empirical evaluation uses three baseline methods.
A simple baseline, FREQ, labels all matches by regexes in Gd

rseed
as correct. GM10 is the approach from Gupta and Manning (2014)
using the recommended expansion rate of 10 instances per itera-
tion. GM1% is the adaptation of the same method, using the same
expansion rate as our method, which is 1%. As stated earlier, the
method from Gupta and Manning (2014) requires a set of positive
instances to start the learning; we set it to M(rseed ,D).
Gold Standard: Our evaluation requires instances labeled as cor-
rect, for each extraction task. Since manual annotation of each to-
ken over thousands of documents is prohibitively expensive, we

6http://qwone.com/∼jason/20Newsgroups/
7https://www.cs.cmu.edu/∼./enron/
8http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

51/www/co-training/data/

got labelings done by human annotators in two phases. In the first
phase, our annotators labeled every regex in Gd

rseed as either correct
or incorrect with respect to the entity being considered. In the sec-
ond phase, all matches of these correct regexes were shown to the
annotators for getting labelings at the level of matches. Regexes
labeled correct in the first phase and then found to have incor-
rect matches were specialized to regex(es) that span only correct
matches. Thus, all correct regexes match only correct instances;
these regexes are listed in the supplementary material. The matches
by such correct regexes are used as the gold standard instances
for evaluation purposes. The annotators also labeled the instances
learned by the baselines, and the correct ones were added to the
gold standard instances.
Parameters used: Our method uses three parameters: d, num , and
p. We set these to 4, 150, and 1%, unless otherwise stated. We
separately study the performance of our method across variations
in these parameters.

Comparison of Match Set Expansion Stage

Table 3 illustrates the results from our comparative evaluation. As
outlined earlier, we are interested in a good trade-off between pre-
cision and recall, and thus, a high F-score. FREQ peaks on recall
with very low precision, whereas just considering M(rseed ,D) as
the results results in the reverse behavior; since these were observed
to achieve 1.0 on recall and precision respectively, those metrics are
not shown in the table for brevity. Our method (OURS) beats the
baselines on five of six extraction tasks, posting F-scores as much
as 0.9 on three of them. On the sixth, it is seen to trail the leading
method very closely. This illustrates the effectiveness of our mod-
eling and establishes our method as the preferred method for the
task.
Discussion: The baseline approach from Gupta and Manning
(2014) identifies patterns of context words to characterize cor-
rect matches. This coarse-grained pattern-based framework does
not allow discriminating between matches that bear context differ-
ences, but fall within the same pattern(s). Our context modeling is
more fine-grained, with scoring depending on all words in the con-
text window. We believe the enhanced effectiveness of our method
is explained by the nature of our context modeling and blending
it with content modeling in a logistic regression framework, as
against just averaging the scores as Gupta and Manning (2014).

5929

Parameter Sensitivity Analysis

We now study the trends across variations on the various parame-
ters, varying one parameter at a time, with others fixed.
Generalization Depth (d): The space of regexes and their
matches, and consequently the search space of candidates from
which our result set is constructed, increases with generalization
depth. Figure 3a plots the F-score over varying generalization
depths, showing that the F-score is quite stable over varying values
of d, with a notable increase in the COURSEWEBKB F-score when d
is increased to 4. This indicates that our method is able to leverage
the increased search space to identify more of the correct instances.
Number of Iterations (num): Figure 3b indicates the F-score
trends over varying number of iterations. The high-level trend is
that of increasing F-score with increasing number of iterations, un-
til a point at which incorrect matches start getting labeled as cor-
rect resulting in a snowball effect that incentivizes labeling incor-
rect matches as correct. The peak F-score is reached in the 150-
300 iterations window, whereas the DATEMIDEAST is seen to peak
much earlier. This was found to be so since most correct matches
were learned within the first few iterations, largely due to the very
small number of seed regex matches (Ref: Table 2) that encom-
passes very little evidence about the correct entity instances for the
bootstrapped approach to exploit.
Expansion Rate (p): Figure 3c shows how our method fares over
iterations for expansion rates of 0.5%, 1.0%, 1.5%, 2.0%, 5.0%,
and 7.5% on the COURSEWEBKB task. Other tasks were seen to
show similar trends, and have been omitted for brevity. This param-
eter is semantically similar to the number of iterations parameter in
that it determines the amount of learning; p determines the quantum
of learning within an iteration, whereas num controls the overall
quantum across iterations. Further, trends on p convey trends on k
as well, k being a function of p (Algo 1 Lines 3, 11). The variations
between expansion rates starts declining at low values, indicating
that it is best to select an expansion rate lesser than 2%.
Discussion: It is notable from Figure 3b that F-score > 0.9 -
i.e., high precision along with high recall - was achieved on all
but one task (PHONEFORSALE’s peak F-score was 0.85) for some
value of num , indicating that a heuristic to identify an ideal task-
customized stopping point would lead to a virtually thorough so-
lution to the match set expansion task. Notwithstanding the possi-
bility that such an ideal stopping point heuristic might be elusive,
the high F-score peaks are illustrative of the effectiveness of our
modeling.

Regex Recommender Results

Table 4 shows the regex output of our method. The regexes may
be seen as largely meaningful; for example, our method is able to
generalize the two digit day and month fields of the regex to cover
single digit values as well. The seed for the PHONEFORSALE task
was meant to recognize only those phone numbers that have the
area code within brackets; this bracket requirement is seen to be
relaxed in the first and the third output regexes. The generaliza-
tions to encompass alphanumeric phone numbers outlined in the
Introduction section were seen to appear slightly lower down in the
list (we restricted the table to the top-3 regexes for brevity). The
COURSEWEBKB task seed regex which matches only CS courses
are seen to be generalized to regexes that capture other department
courses. Our generalization method is limited to make generaliza-
tions one regex unit at a time, and thus needs to generalize on the
pair brackets - for example, the \(and \) in the PHONEFORSALE-
separately. While such issues can be solved by engineering the gen-
eralization space with domain knowledge to force synchronized
generalization of corresponding pairs of units, our method’s gen-
eralizations are broadly in the correct direction nevertheless.

Conclusions and Future Work
We considered the task of enhancing the coverage of entity in-
stances for regex-based rule IE systems, where the only user in-
put is in the form of a high precision seed regex. In particular, we
attempt to perform the learning in the absence of instance supervi-
sion (besides that implicitly provided by the seed regex) as used in
previous work for the task. We designed an iterative method that
leverages signals from the content as well as the lexical context of
the matches of the seed regex in correlation with the generaliza-
tion space of the seed regex, in identifying newer instances of the
entity. Our empirical analyses over multiple real-world document
corpora confirm the effectiveness of our method over techniques
from literature, in identifying correct instances more accurately.

Our method assumes that the input seed regex is 100% precise;
it would be interesting to study the effectiveness of our method
with this assumption relaxed. The natural next step for this work
is to broaden the generalization approach to address higher-level
IE tasks such as rule-driven relationship discovery where the seed
patterns would straddle token and even sentence boundaries. A fu-
ture direction for extending this algorithm is to enrich the logistic
regression model with features exploiting context pattern motifs
(Gupta and Manning 2014), distributed representation of words
(Mikolov et al. 2013), and the graph nature of the generalization
space. We are considering expanding this framework to cover sim-
ple entities that span multiple tokens involving POS tags, such as
noun phrases comprising one or more contiguous nouns.

Acknowledgments
Special thanks to Prof. Hema Murthy (Dept. of CSE, IIT Madras)
for providing us with server facilities. We also thank the anony-
mous reviewers for their insightful comments.

References
Babbar, R., and Singh, N. 2010. Clustering based approach to
learning regular expressions over large alphabet for noisy unstruc-
tured text. In Proceedings of the Fourth Workshop on Analytics for
Noisy Unstructured Text Data, AND 2010, 43–50. Association for
Computing Machinery.
Bartoli, A.; Davanzo, G.; De Lorenzo, A.; Medvet, E.; and Sorio, E.
2014. Automatic synthesis of regular expressions from examples.
IEEE Computer 47(12):72–80.
Bartoli, A.; De Lorenzo, A.; Medvet, E.; and Tarlao, F. 2016.
Inference of regular expressions for text extraction from exam-
ples. IEEE Transactions on Knowledge and Data Engineering
28(5):1217–1230.
Bartoli, A.; De Lorenzo, A.; Medvet, E.; and Tarlao, F. 2017. Ac-
tive learning of regular expressions for entity extraction. IEEE
Transactions on Cybernetics PP(99):1–14.
Brauer, F.; Rieger, R.; Mocan, A.; and Barczynski, W. M. 2011.
Enabling information extraction by inference of regular expres-
sions from sample entities. In Proceedings of the 20th ACM Inter-
national Conference on Information and Knowledge Management,
CIKM 2011, 1285–1294. Association for Computing Machinery.
Carbonell, J. G., and Goldstein, J. 1998. The use of mmr, diversity-
based reranking for reordering documents and producing sum-
maries. In Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 1998, 335–336. Association for Computing Ma-
chinery.
Chiticariu, L.; Li, Y.; and Reiss, F. R. 2013. Rule-based infor-
mation extraction is dead! long live rule-based information extrac-
tion systems! In Proceedings of the 2013 Conference on Empiri-

5930

0.4

0.6

0.8

1

2 3 4

F
-s

co
re

Generalization Depth

DateMidEast
DateWebKB
DateEnron

PhoneForSale
CourseWebKB

PhoneEnron

(a)

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

F
-s

co
re

Number of Iterations

DateMidEast
DateWebKB
DateEnron

PhoneForSale
CourseWebKB

PhoneEnron

(b)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 50 100 150

F
-s

co
re

Number of Iterations

0.5%
1.0%
1.5%

2.0%
5.0%
7.5%

(c)

Figure 3: Effect of (a) generalization depth, (b) number of iterations, and (c) expansion rate on the F-score of Mexp

TASK DATEMIDEAST DATEWEBKB DATEENRON

rseed \d{2}/\d{2}/\d{2} \d{2}/\d{2}/\d{2} \d{2}/\d{2}/\d{2}

R
\d{1,2}/?\d{1,2}/?\d{2} \d{1,2}/\d{1,2}/\d{2} \d{1,2}[-.\:/*|]\d{1,2}[-.\:/*|]\d{2}
\d{1,2}/?\d{2}[-.\:/*|]\d{2,3} \d{2}/\d{1,2}/\d{2} \d{1,2}/\d./?\d{2}
\d{2}/?\d{2}\W\d{2} \d{1,2}/\d{2}/\d{2} \d{1,2}/\d{1,2}/\d{1,2}

TASK PHONEFORSALE COURSEWEBKB PHONEENRON

rseed \(\d{3}\)\d{3}-\d{4} CS\d{3} \d{3}-\d{3}-\d{4}

R
\(?\d{3}\W\d{3}\W\d{4} C?[a-zA-Z]{1,2}\d{3} \d{3}\W{1,2}\d{3}[-.\:/*|]\d{4}
\(\d{3}\)\W?\d{3}\W\d{4} [a-zA-Z]{1,2}S?\d{3} \d{1,3}-?\d{3}-?\d{4}
\(?\d{1,3}\W\d{3}-\d{4} CS\w{1,3}\d\w \d{3}\W{1,2}\d{3}-\d{3,4}

Table 4: Top-3 recommended regexes. The generalized units are boldfaced and underlined.

cal Methods in Natural Language Processing, EMNLP 2013, 827–
832. Association for Computational Linguistics.
Gupta, S., and Manning, C. D. 2014. Improved pattern learn-
ing for bootstrapped entity extraction. In Proceedings of the Eigh-
teenth Conference on Computational Natural Language Learning,
CoNLL 2014, 98–108. Association for Computational Linguistics.
Gupta, S., and Manning, C. D. 2015. Distributed representation of
words to guide bootstrapped entity classifiers. In Proceedings of
the 2015 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2015, 1215–1220. Association for Computa-
tional Linguistics.
Hosmer, Jr., D. W.; Lemeshow, S.; and Sturdivant, R. X. 2013. Ap-
plied Logistic Regression. Wiley Series in Probability and Statis-
tics. Hoboken, New Jersey: John Wiley & Sons, Inc., third edition.
Jurafsky, D., and Martin, J. H. 2000. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing, Compu-
tational Linguistics, and Speech Recognition. Prentice Hall Series
in Artificial Intelligence. Upper Saddle River, New Jersey: Prentice
Hall, 1st edition.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics – Doklady
10(8):707–710.
Li, Y.; Krishnamurthy, R.; Raghavan, S.; Vaithyanathan, S.; and
Jagadish, H. V. 2008. Regular expression learning for information
extraction. In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2008, 21–30.
Association for Computational Linguistics.
Martınez, C. 2005. Forty years of quicksort and quickselect: a per-
sonal view. In Algorithms Seminar, 2002–2004, 101–104. INRIA.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J.

2013. Distributed representations of words and phrases and their
compositionality. In Proceedings of the 27th Annual Conference on
Neural Information Processing Systems, NIPS 2013, 3111–3119.
Curran Associates, Inc.
Murthy, K.; P., D.; and Deshpande, P. M. 2012. Improving recall
of regular expressions for information extraction. In Proceedings
of the 13th International Conference on Web Information Systems
Engineering, WISE 2012, 455–467. Springer-Verlag.
Qadir, A.; Mendes, P. N.; Gruhl, D.; and Lewis, N. 2015. Semantic
lexicon induction from twitter with pattern relatedness and flexible
term length. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI 2015, 2432–2439. AAAI Press.
Riloff, E., and Jones, R. 1999. Learning dictionaries for infor-
mation extraction by multi-level bootstrapping. In Proceedings
of the Sixteenth National Conference on Artificial Intelligence and
Eleventh Conference on Innovative Applications of Artificial Intel-
ligence, AAAI/IAAI 1999, 474–479. AAAI Press / The MIT Press.
Sarmento, L.; Jijkoun, V.; de Rijke, M.; and Oliveira, E. 2007.
“more like these”: Growing entity classes from seeds. In Proceed-
ings of the Sixteenth ACM Conference on Information and Knowl-
edge Management, CIKM 2007, 959–962. Association for Com-
puting Machinery.
Schulz, K. U., and Mihov, S. 2002. Fast string correction with
levenshtein automata. International Journal on Document Analysis
and Recognition 5(1):67–85.
Thelen, M., and Riloff, E. 2002. A bootstrapping method for learn-
ing semantic lexicons using extraction pattern contexts. In Pro-
ceedings of the ACL-02 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2002, 214–221. Association
for Computational Linguistics.

5931

