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Abstract

Medical concept normalization is a critical problem in
biomedical research and clinical applications. In this paper,
we focus on normalizing diagnostic and procedure names in
Chinese discharge summaries to standard entities, which is
formulated as a semantic matching problem. However, non-
standard Chinese expressions, short-text normalization and
heterogeneity of tasks pose critical challenges in our problem.
This paper presents a general framework which introduces a
tensor generator and a novel multi-view convolutional neural
network (CNN) with multi-task shared structure to tackle the
two tasks simultaneously. We propose that the key to address
non-standard expressions and short-text problem is to incor-
porate a matching tensor with multiple granularities. Then
multi-view CNN is adopted to extract semantic matching pat-
terns and learn to synthesize them from different views. Fi-
nally, multi-task shared structure allows the model to exploit
medical correlations between disease and procedure names
to better perform disambiguation tasks. Comprehensive ex-
perimental analysis indicates our model outperforms existing
baselines which demonstrates the effectiveness of our model.

Named Entity Disambiguation (NED), which links men-
tions in text to entities in knowledge bases, is an impor-
tant research topic in natural language processing (Bunescu
and Pasca 2006; Alhelbawy and Gaizauskas 2014). Chinese
medical concept normalization is a typical problem of NED
in biomedical domain, which aims to normalize ambiguous
medical mentions into concepts in a controlled vocabulary
such as International Classification of Disease 10th revision
(ICD-10). This problem has wide-ranging applications in
clinical research (Leaman, Khare, and Lu 2015), statistical
analysis for hospitals, epidemiological research (Pakhomov,
Buntrock, and Chute 2006), and diagnosis-related group
(DRG) (Hoelzer, Schweiger, and Dudeck 2003), and con-
sequently, the solutions to it benefit a wide range of people
and generate great societal and technical impacts.

The major issue of Chinese medical concept normaliza-
tion is the variety of the data sources, which brings multiple
different expressions of the same entity due to diverse writ-
ing habits, experiences of physicians, requirements of med-
ical institutions, etc. For example, the dataset used in this
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Figure 1: Illustration of three challenges

paper comes from the discharge summaries, an overview of
hospitalization for patients, from 153 triple-A hospitals in 31
provinces and regions in China. Each record in the dataset
includes a primary diagnosis of disease and a correspond-
ing procedure both in ambiguous short texts. For clarity, we
denote the short-text statement written by doctors as men-
tion and the medical concept from standard library as en-
tity. This paper focuses on normalizing disease mentions and
procedure mentions to standard entities, respectively, which
is formulated as a semantic matching task.

In general, there exist three major challenges in the two
tasks: 1) Short text normalization. Unstructured medical
texts such as electronic medical records (EMRs) can pro-
vide critical context information in entity linking. However,
for our problem, Chinese diagnostic statements and proce-
dure names are mention-level short texts whose informa-
tion is limited. By statistic analysis, there are only 7.8 and
15 characters in average for disease and procedure men-
tions, respectively. Figure 1 shows some examples. To al-
leviate this issue, it’s necessary to concentrate on how to ex-
pand the content of short texts and how to utilize the subtle
distinctions between semantic matching patterns. 2) Non-
standard expressions. Different from English medical text
which has been widely researched (Friedman et al. 2004;
Aronson et al. 2007), non-standard expressions in Chinese
have its own linguistic features which needs to be consid-
ered in our task. In Figure 1, two different disease men-
tions in the second column match to the same disease entity,
where reversing word orders occurs such as ‘C1a’1 (Fracture
of left humerus upper-end) and ‘C1b’ (Fracture of upper-

1See Chinese statements in Table 1.
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end humerus) with same meaning. Besides, words in Chi-
nese sentences are not separated by delimiters and many
words textually different may share similar meanings such
as ‘C2a’ (leg) and ‘C2b’ (lower limbs) in Figure 1 which
adds difficulties to semantic analysis. Hence, how to incor-
porate Chinese linguistic features to help to evaluate match-
ing similarity is critical. 3) Correlations between heteroge-
neous tasks. Previous works which study encoding diagno-
sis into standard coding systems (Ning, Yu, and Zhang 2016;
Pakhomov, Buntrock, and Chute 2006) fail to pay attention
to possible correlations between disease and procedure. We
claim that the two heterogeneous tasks possess either strong
relation of keyword overlapping such as ‘C1a-1’ (humerus)
of case 1 or weak relation involving the designated map-
ping such as case 2 in Figure 1. Further, a clear name of
one task may facilitate disambiguating the other task. For
instance, procedure mention ‘C3a’ (partial removal of stom-
ach) indicates that the injured body part is stomach, which
helps disambiguate diagnostic statement ‘C3b’ (malignant
lymphoma) to ‘C3c’ (stomach malignant lymphoma). Thus,
the correlations between the two tasks can be utilized to bet-
ter normalize both disease and procedure mentions.

To address the three challenges, we propose a general
framework which introduces a tensor generator and a novel
multi-view deep architecture with multi-task scheme for dis-
ease/procedure concept normalization. First, to tackle the
short-text problem, a tensor generator is introduced to ex-
pand the short-text comparison to a matching tensor with
4 granularities, including string, character, word, and sen-
tence matchings. String matching provides superficial in-
formation; character, word, and sentence matchings provide
semantic information, which are like 4 views for one ob-
ject from different angles. Second, we originally employ
the multi-view CNN to extract meaningful matching signals
from different angles of the tensor separately, and then ag-
gregate them with view-pooling strategy. Thus, the superfi-
cial and semantic information of the matching patterns is in-
tegrated sufficiently. Finally, a multi-task learning scheme is
introduced to the deep architecture, which utilizes the corre-
lations between disease and procedure to disambiguate and
normalize them simultaneously. We propose a multi-task
layer on top of the model with shared structures, and train
the model for two tasks jointly. The disease and procedure
mentions can be better normalized by leveraging the under-
lying commonality and prior knowledge between them. We
conduct extensive experiments, and the results show that our
model outperforms existing baselines including both tradi-
tional string-matching methods and deep models.

Overall, our main contributions are as follows:

• We propose a multi-task framework in the clinical setting
to normalize the disease and procedure mentions jointly.

• We design a tensor generator and a novel multi-view deep
architecture, which capture and integrate the meaningful
matching signals from different views to solve the short-
text normalization and non-standard Chinese expression
problems.

• We conduct detailed experimental analysis on comparing
our model against single-task/single-view models and ex-

isting baselines to validate the superiority of our model.

Related Work

For normalizing medical concepts, traditional methods in-
volve dictionary lookup and string matching (Aronson 2005;
Kang et al. 2012; Dogan and Lu 2012). However, these ap-
proaches cannot tackle mention-entity pairs with different
semantic meanings but closer forms. Works that apply ma-
chine learning methods to this task are limited due to spar-
sity of available annotated clinical datasets (Leaman, Khare,
and Lu 2015). DNorm (Leaman, Doan, and Lu 2013) is the
first to propose pairwise learning to rank method to learn
the similarity from mentions and entities in training data.
However, this model does not sufficiently take context infor-
mation into consideration. And it ignores unknown tokens,
which may not apply to noisy texts containing many mis-
spellings (Leaman and Lu 2014). In our problem, seman-
tic matching within context could be achieved by interac-
tions in matching tensor and multi-view CNN. The character
level matching in our model could handle out-of-vocabulary
words since Chinese characters possess its own basic mean-
ings. Recent research introduces semantic matching idea to
normalization. CNN and RNN have been applied to model
concept representation to classify medical terms in social
media texts into concepts in ontology (Limsopatham and
Collier 2010). This work uses deep models to learn a sim-
ple mapping from social media message to formal entities,
but it does not dig the complicated interaction features from
multiple semantic levels.

Another area related to our work is text matching,
which has been researched in many settings, including query
document matching (Li and Xu 2014), question answer-
ing (Xue, Jeon, and Croft 2008) and paraphrase identifica-
tion (Dolan, Quirk, and Brockett 2004). Many researchers
have recently focused on exploiting deep learning models
to capture semantic matching patterns with embeddings in
matching texts, either from single representation or multi-
ple granularities, including DeepMatch (Lu and Li 2013),
CLSM (Shen et al. 2014), LSTM-RNN (Palangi et al. 2015;
Mueller and Thyagarajan 2016), MatchPyramid (Pang et al.
2016), MV-LSTM (Wan et al. 2015). The most similar mod-
els to ours are MatchPyramid (MP) and MV-LSTM. MP
adopted CNN on matching matrix of words, and convolu-
tions on it layer by layer can extract higher level match-
ing patterns in phrases and sentences. MV-LSTM used posi-
tional sentence representation from Bi-LSTM states to cap-
ture contextualized local information in semantic matching
process. The two models studied matching texts but did not
apply to clinical data for normalization purpose and thus
did not consider related tasks. Besides, MP relying on hi-
erarchical matching structure fails to capture long distant
dependency (Wan et al. 2016). Our model, however, could
take long-term memory into consideration by incorporating
sentence-matching view in matching tensor. Additionally,
both models may not sufficiently tackle short-text problem
whereas our model enriches the content and forms a more
comprehensive match from different perspectives.
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Figure 2: Our proposed architecture for multi-task medical concept normalization. Two tasks have their own matching tensor
and multi-view CNN to extract features. Shared structure is used to reinforce the normalization result of both tasks.

ID Chinese Words Translation ID Chinese Words Translation

C1a Fracture of left 
humerus upper-end C6a Interstice 

nephritis

C1b Fracture of upper-end
humerus C6b Interstitial 

nephritis
C2a Leg C7a Chronic mastitis
C2b Lower limbs C7b Acute mastitis

C3a Partial removal of 
stomach C7c Mastitis

C3b Malignant lymphoma C1a-1 Humerus

C3c Stomach malignant 
lymphoma C4a-1 Sprain

C4a Sequelae of sprain in 
leg C4b-1 Injury

C4b Sequelae of injury of 
lower limb C4b-2 Sequelae with

pain

C5a Benign tumor of bone C5d-1 Finger

C5b Excision of lesion of
finger C7a-1 Chronic

C5c Benign tumor of rib C7b-1 Acute
C5d Benign tumor of finger

Table 1: Chinese words and translations in our paper

Model Formulation

The main idea of this work is based on introducing a ten-
sor generator, and then embedding the multi-view architec-
ture and the multi-task framework to a deep network. Given
two mention-entity pairs for disease and procedure, the ten-
sor generator yields two matching tensors separately. Then
for each task, interaction representation vector is produced
by multi-view CNN. Finally a matching score for normal-
ization is generated in the multi-task module utilizing both
shared information and task-specific features. The proposed
framework is shown in Figure 2 and all the Chinese words in
this paper are translated in Table 1. The details of the model
are shown as follows:

• Matching Tensor. To tackle short-text problem, for both

tasks, a matching tensor is formulated to model interac-
tion between mention-entity pair from both string and
semantic aspects in character, word and sentence lev-
els. Particularly, to incorporate context information and
solve word-order problem, Bi-LSTM is utilized to inte-
grate sentence level semantics into character vectors.

• Multi-view CNN model. We aim to do semantic match-
ing to address non-standard expression problem. CNN is
capable of capturing higher level of meaningful matching
patterns such as n-grams when convolving across match-
ing matrix (Pang et al. 2016). In our model, four matrices
in matching tensor represent different views of matching
patterns rather than channels of a picture, where a single
CNN can hardly capture all the information sufficiently.
Therefore, we adopt multi-view CNN idea to first extract
and then effectively aggregate matching signals from four
views with a view-pooling strategy.

• Multi-task learning framework. Disease and corre-
sponding procedure name for each patient could provide
useful information such as body parts to the two related
tasks which single task learning may fail to capture. To
gain insights from heterogeneous data sources, we design
multi-task architecture with constraints to combine the
commonalities and differences between medical names in
the clinical record.

Matching tensor

The design of matching tensor aims to enrich short-text com-
parison into string and semantic matching. It resembles hu-
man judgement when matching text pairs. Intuitively string
matching relying on morphological features is the first to
consider. Besides, in Chinese, the meaning of a word is cor-
related with its composing characters and for unknown to-
ken, we may even infer its meaning from the meanings of its
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characters (Chen et al. 2015). Internal rich structures within
Chinese short texts are useful in matching pairs. There-
fore, three semantic levels from basic to contextual are con-
structed in semantic matching hierarchy, namely character
level, word level and sentence level.

Both mention and entity are truncated to maximum length
l for the convenience of computation and the dimension of
matching tensor is l× l× k where k is the number of views.
In our problem, we set k to be 4. It is worthy to note that our
architecture could be easily extended in other settings, not
limited to four views. Matching tensor could include mul-
tiple views according to the needs of different tasks, and
multi-view CNN scheme could also be adjusted to achieve
the objective of learning and aggregating.

Each element in matrix is computed by the similarity of
corresponding character pairs of mention and entity respec-
tively. In string level matching, the value is binary reflecting
whether character pairs are textually the same. In character
level matching, it is the cosine similarity of character em-
bedding vectors. In word level matching, for word level ma-
trix M , we assign the semantic similarity of two words (w
in mention m, v in entity n) to the interaction of character
pairs constituting those words.

Mpq = φ(w)⊗ φ(v) mp ∈ w, nq ∈ v (1)

where mp, nq stand for p-th character in mention m, q-th
character in entity n, φ is embedding dictionary look-up pro-
cedure and ⊗ is cosine operation.

In sentence level matching, the goal is to encode con-
text semantics into each local positional vector and resolve
word-order problem. Due to the ability to capture long-term
memory in two directions and deal with variable-length se-
quences, Bi-LSTM is employed to do sentence embedding.
We pre-train a Siamese Bi-LSTM model and use two Bi-
LSTMs to encode mentions and entities into semantic vec-
tors. Sentences are represented as a series of positional vec-
tor which is concatenation of hidden states forward and
backward for each character. In constructing the matrix, co-
sine similarity of character vectors from Bi-LSTM states is
adopted to evaluate the relevance of character pairs in the
context of corresponding sentences.

When producing sentence vectors (see Figure 3), Bi-
LSTM takes each sentence (a sequence of character embed-
dings) as input and updates hidden vectors by rules. Here
we design an IDF-weighted strategy to dynamically control
the influence of character in sentence modeling. Intuitively,
meaningful words such as body parts are expected to be
more important in later matching process and thus should
be assigned with bigger weights in sentence modeling. The
final vector si for character mi is computed as follows:

si = hi × idfmi (2)

where hi stands for the output of Bi-LSTM at i-th timestamp
and idfmi is normalized to be in [0,1].

Multi-view CNN

Many works (Hu et al. 2014; Pang et al. 2016) demon-
strate the power of CNN in extracting semantic features
in interaction matrices of text pairs. Thus CNN is utilized

IDF-strategy

character

 embedding

Bi-LSTM

output

m1 m2 m3 m4 m5 m6

c1 c2 c3 c4 c5 c6

h1 h2 h3 h4 h5 h6

s1 s2 s3 s4 s5 s6

Leg Sprain Sequela

Figure 3: Illustration of sentence modeling

in our model to facilitate semantic matching but traditional
CNN can hardly capture matching signals from four views
sufficiently. The need to consider the dissimilarity among
four different view-spaces motivates us to employ multi-
view learning into our problem. We obtain distinct views
of matching signals by using four CNNs on interaction ma-
trices. This method functions like multiple-kernel-learning
approach, a typical paradigm in multi-view learning. Each
CNN performs like a kernel with respect to certain view, and
in later stage multiple information sources are integrated by
combining outputs of kernels (Xu, Tao, and Xu 2013).

In convolution layers, several filters w convolve over in-
teraction matrix x to generate multiple activation maps and
semantic matching patterns within certain windows are cap-
tured. Each feature ci,j of activation map is computed by:

ci,j = g(
r−1∑

s=0

r−1∑

t=0

ws,t · xi+s,j+t + b) (3)

where g is an activation function, r is the size of kernel w
and b is a bias. Then a max-pooling layer is used to obtain
the most important matching signals. The final fully con-
nected layer reduces the dimensionality of high-level feature
vector yielding a fixed-length semantic vector pi ∈ Rd, i =
1, 2, 3, 4 where d is the dimension of vector.

To achieve a unified representation from perspectives,
view pooling layer aggregates four semantic vectors p =
[p1, p2, p3, p4] ∈ Rd×4 of views by weighting strategy.

q = p× w (4)

The weights are updated during training and can be adjusted
with different datasets. This allows the model to automat-
ically learn a weight vector w ∈ R4 of these four views
and then the final vector q ∈ Rd is produced synthesizing
those features. In this way, matching patterns from string-
matching and character, word and sentence level semantic
matching can be captured more sufficiently.

Multi-task learning framework

Multi-task learning (MTL) is capable of learning sev-
eral tasks simultaneously for mutual benefit. It is typi-
cally achieved by common representations of related tasks.
Though disease and procedure mentions have different con-
tents, two tasks are highly correlated: 1) both tasks normal-
ize non-standard medical expressions in short texts; 2) both
share similar matching patterns; 3) the procedure designed
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for a patient is to cure his/her disease in diagnosis, and this
relationship may lead to massive shared information, such
as identical words in diagnosis and procedure. Therefore,
introducing MTL is promising in our architecture.

As shown in Figure 2, the input of our model is heteroge-
neous and after multi-view CNN extracts matching features
for tasks, a shared layer is designed to allow the model to ex-
ploit meaningful information from other task to predict the
matching score more accurately. Given two semantic vec-
tors R1, R2 from multi-view CNN for two tasks, the mutual
information is gained with weighting strategy (see Equation
5) yielding a shared representation vector Rs.

Rs = αR1 + (1− α)R2 (5)

where α is the coefficient regulating the contributions of
two source vectors. Then, in task-specific layer, given shared
vector Rs and the semantic vector from multi-view CNN,
the model uses non-linear transformation to combine the
two vectors into a fixed-length task-specific vector Rt. Fi-
nally, utilizing information within Rt, a multi-layer percep-
tron (MLP) generates final matching score, indicating how
much the mention and entity are relevant.

In MTL architecture, two tasks are trained together and
at each step, all parameters for two tasks are updated. The
global joint loss Loss (see Equation 6) consists of the bi-
nary cross-entropy loss L for two tasks, a regularization term
and a constraint term, which leverages prior knowledge, the
probability of co-occurrence of a disease type and related
procedure on a patient among all medical records.

Loss =
1

n

n∑

i=1

(L(fd(xi), ydi) + L(fo(xi), yoi))+

λ
n∑

i=1

δ(edi , e
o
i )(fd(xi)− fo(xi))

2 + β||ξ||2
(6)

where fd(xi), fo(xi) are softmax output for disease and
procedure respectively, ydi, yoi are labels for two tasks,
edi , e

o
i are disease entity and procedure entity for normaliz-

ing record xi, δ denotes co-occurrence probability of disease
and procedure entities, λ is regularization parameter, β is the
parameter controlling sparsity and ||ξ|| denotes the L2-norm
of all weights in fully-connected layers.

The assumption is that if disease and procedure entities
co-occur in high probability, in both normalization tasks, it
is more likely that both (or neither) mention-entity pairs for
the disease and the procedure are normalized correctly (or
incorrectly). This leads to similar matching scores of the dis-
ease and the procedure, i.e. the outputs of two tasks. Other-
wise, if the disease entity edi and procedure entity eoi rarely
co-occur in a record which indicates low δ(edi , e

o
i ), dissimi-

lar matching scores are expected.

Experiment

The dataset used in this paper comes from Information Cen-
ter of a cooperative Chinese hospital including discharge
summaries from 153 triple-A hospitals in 31 provinces and
regions. It has 3125 types of disease and 3154 of procedures.

Task Conv1 Pool1 Conv2 Pool2
Disease 4 3 3 2

Procedure 3 2 3 3

Table 2: Kernel sizes of CNN for both tasks

Each record contains a primary diagnosis and main proce-
dure for a patient. Annotations are performed by medical
experts producing initial dataset of 7000 entries. Each diag-
nosis/procedure text is paired with several medical concepts
from ICD-10 and annotators mark the normalization correct
or incorrect. Thus, each entry consists of two mention-entity
pairs for two tasks and two labels.

Due to limited annotated data, we adopt data augmenta-
tion techniques to enlarge the dataset. The best way to aug-
ment text data is to paraphrase sentences, but is usually un-
realistic and labor-intensive due to large volume of samples.
It is appropriate to replace words with their synonyms in
text augmentation (Zhang, Zhao, and LeCun 2015). Here we
use this method with synonyms from medical expert dictio-
nary and Synonym Word Forest of HIT-SCIR2. Moreover, as
mentioned above, reversing order of certain words does not
interfere with the expression of written diagnosis. Conse-
quently, replacing words with their synonyms and reversing
words orders are utilized in our text augmentation. To vali-
date the reliability of generated entries, the final dataset with
58031 records for training and 6899 for testing is carefully
examined by two medical undergraduates.

In the experiments, we implement four baselines:

• Edit-distance: a basic method focusing on the number of
procedures transforming one string to another.

• BM25 (Robertson et al. 1995): a popular baseline for in-
formation retrieval.

• MatchPyramid (Pang et al. 2016): applies CNN on match-
ing tensor to capture matching patterns in a hierarchy.

• MV-LSTM (Wan et al. 2015):uses Bi-LSTM to get posi-
tional sentence representations forming interaction matrix
and adopts k-max pooling and multi-layer perceptron to
get similarity score.

Experimental Settings

We trained word2vec model (Mikolov et al. 2013) on over
10 million Chinese clinical narrative corpora with word and
character vector dimension of 100. For tensor size l, we set
it to be 10, 20 for disease and procedure respectively by ex-
perimental statistics. For sentence modeling we conduct a
Siamese Bi-LSTM model with 15-dimensional hidden vec-
tors ht and memory cells ct. The kernel sizes for CNN model
are summed up in Table 2 and 8, 16 feature maps are pro-
duced in two convolutional layers. We choose rectifier linear
unit (ReLU) (Nair and Hinton 2010) as activation functions
and apply droupout (Srivastava et al. 2014) strategy.

For training, we use stochastic gradient descent (SGD)
Adam (Kingma and Ba 2014) method with shuffled mini-
batches of size 128 and adopt early-stopping strategy. The

2http://www.ltp-cloud.com/download/
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Data Method Accu F1

Disease

Edit-distance 60.00 48.11
BM25 59.00 45.36

MP 80.16 83.89
MV-LSTM 80.34 83.76

MTMV-CNN 85.59 87.96

Procedure

Edit-distance 79.00 75.76
BM25 75.00 79.47

MP 83.51 87.38
MV-LSTM 85.78 88.40

MTMV-CNN 91.69 93.09

Table 3: Performance comparison on normalization tasks

learning rate is 0.001 and all trainable parameters are initial-
ized randomly with truncated normalization. We use coeffi-
cient α of 0.5. In joint loss, the regularization term λ and β
controlling sparsity are set to be 0.1 and 0.001 respectively.

For experimental design, we compare our multi-task
multi-view CNN model, namely MTMV-CNN, with four
baselines. BM25 and Edit-distance are chosen to represent
classic methods, and MatchPyramid (MP) and MV-LSTM
are popular methods in semantic matching. Besides, to vali-
date the effect of our model, single-task multi-view (STMV)
CNN is used to prove the usefulness of multi-task learning.
To discover impacts of various views, multi-task single-view
(MTSV) models and MTMV-CNN combining certain views
are also implemented as contrast experiments. In our study,
accuracy and F-score are chosen as evaluation metrics.

Experimental Results

We compare the performance of our proposed model with
other baselines. Several findings can be obtained from the
experiment results listed in Table 3.

1) Traditional methods perform worse than deep models
due to its incapability of tackling semantic matching cases.
Specifically, edit-distance performs worst since it relies on
string form too much and can not deal with word order prob-
lem. BM25, based on word-bag model, capable of tackling
order problem has relatively better results.

2) For baselines using deep models, MP and MV-LSTM
have similar results in matching disease pairs but MV-LSTM
outperforms MP for procedure by near 2%. It may because
that procedure names usually possess more characters with
more context information and MV-LSTM can capture this
contextualized local information (Wan et al. 2015) to better
facilitate the task.

3) Our MTMV-CNN model provides the best accuracy
and F1 score among existing baselines. Specifically, our
model achieves about 5% and 8% improvement in accuracy
for disease and operation respectively over MP. This sug-
gests the power of matching tensor over matching matrix
in obtaining rich information and the superiority of multi-
view CNN over single CNN in MP. And, in sentence-level
matching, contextual semantics could be encoded into char-
acters of the mention and overcome the word-order problem
which often occurs in our dataset. Moreover, our model ob-
tains improvements over MV-LSTM. Part of the reason lies

Data Method View Accu F1

Disease

STMV All 83.61 86.13

MTSV

String 81.08 84.95
Char 82.99 86.00
Word 75.76 80.35

Sentence 82.83 85.61

MTMV
Str+Char 84.20 86.82

Str+Char+Word 85.00 87.57
All 85.59 87.96

Procedure

STMV All 90.75 92.25

MTSV

String 87.11 89.82
Char 87.63 90.20
Word 83.11 86.76

Sentence 90.17 91.89

MTMV
Str+Char 87.30 89.97

Str+Char+Word 87.83 90.10
All 91.69 93.09

Table 4: Performances of model variations

in the superiority of matching tensor over interaction matrix.
Additionally, more complete and complicated matching sig-
nals are extracted by multi-view CNN than k-max pooling
strategy in MV-LSTM.

Model Analysis

MTL effect We examine the results of single-task multi-
view (STMV) and MTMV model with all views in Table 4.
It demonstrates that our MTMV model reaches 85.59% in
accuracy with an improvement over STMV by about 2%, 1
% for disease and procedure. This validates our assumption
that massive shared information of diseases and procedures
can be leveraged in the disambiguation. We also note that
MTL improves disease normalization task more. This may
because disease mentions are more non-standard with more
term variations than the counterpart and the relatively clear
procedure mention can provide useful information through
shared structure in our model.

Multi-view effect To verify the effect of incorporating
multiple views, we compare single view model with multi-
task (MTSV) model and MTMV in Table 4. MTSV with
character view achieves 82.99% for disease better than
MTSV with other views, whereas for procedure MTSV-
Sentence reaches the best. This suggests that the charac-
ter and sentence views are essential for matching Chinese
text pairs of disease and procedure respectively. Addition-
ally, for both tasks, word view perform worst and it is likely
because the non-standard and short-text attributes lead to
frequent occurrence of incorrect word segmentation causing
inaccurate embeddings. Furthermore, when combining cer-
tain views, integration of more views results in better perfor-
mance in both tasks, which validates the strength of match-
ing tensor and multi-view CNN. For procedure, however, the
enhancement with more views is limited in string, character
and word levels but it is significant when adding sentence
view. It may because procedure normalization already per-
forms relatively well in the three levels but sentence level
information with IDF-weighted strategy enables the model
to notice certain important words.
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Figure 4: Sensitivity analysis on constraint parameter λ

Parameter Sensitivity Analysis We investigate the influ-
ence of constraint parameter λ in the MTMV-CNN model
when varying λ from 0.001 to 100 in Figure 4. Procedure
normalization remains relatively stable with the variation of
λ between 0.001 to 10 whereas for disease F1 scores fluc-
tuate more. We may infer that because disease names con-
tain more complicated cases, the constraint term in MTL has
more influence on it than the counterpart. Besides, the model
achieves best for disease when λ is close to 1, indicating
prominent results at the point.

Cases Analysis We exemplify the results of our model and
baselines. All methods can deal with lexically similar cases
such as mention-entity pair ‘C6a’ (interstice nephritis) and
‘C6b’ (interstitial nephritis). However, for complicated cases
such as ‘C7a’ (chronic mastitis), traditional methods cannot
accurately match to entity ‘C7c’ (mastitis). Instead, string-
based approaches will output ‘C7b’ (acute mastitis) which
has higher string similarity. Our model can tackle this prob-
lem from semantic matching since ‘C7a-1’ (chronic) and
‘C7b-1’ (acute) are opposite in semantics.

MTL model outperforming STL model proves that shared
structure provides more information useful in normalization.
For instance, for a record with disease ‘C5a’ (benign tumor
of bone) and procedure ‘C5b’ (excision of lesion of finger),
other baselines tend to map disease mention to ‘C5c’ (be-
nign tumor of rib) due to similar forms and semantic mean-
ing. But it is supposed to be mapped to ‘C5d’ (benign tumor
of finger) since it contains key word ‘C5d-1’ (finger) as the
procedure mention does. Our MTL model is capable of ex-
ploiting this information to do the normalization.

Visualization

We visualize the matching matrices of four views, the repre-
sentative kernels, and related feature maps of the first con-
volutional layer in Figure 5. The input is the pair of dis-
ease mention ‘C4a’ (sequelae of sprain in leg) and entity
‘C4b’ (sequelae of injury of lower limb). In this case, ‘C4a-
1’ (sprain) and ‘C4b-1’ (injury) are semantic related and
the two names both contain ‘C4b-2’ (sequelae with pain).
From three views of semantic matching, we can observe that
the white square areas indicate strong matching signals be-
tween ‘C4a-1’ (sprain) and ‘C4b-1’ (injury). Additionally, in
four views, the larger blue square areas reflect raw matching
signals between two same segments ‘C4b-2’ (sequelae with
pain) in the brightest color.
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Figure 5: Visualization of matching matrices of four views,
kernels, and feature maps

Convolution kernels are served as feature extractors to de-
tect the matching signals along the comparison map. Here
for each CNN of multi-view CNN, two representative ker-
nels in the first convolutional (Conv 1) layer are shown mod-
eling matching similarity with different evaluation strate-
gies. The semantic relationship between ‘C4a-1’ (sprain)
and ‘C4b-1’ (injury) is captured by different kernels for each
view producing activation maps with emphasis on different
parts. In this way, the rich and comprehensive matching sig-
nals of various views can be utilized in matching tasks.

Conclusion

In this paper, we present a general multi-task framework
for medical concept normalization. It overcomes three chal-
lenges in our setting and can be extended to incorporate
multiple views in different settings. Our model designs a
matching tensor to enrich short-text comparisons, and in-
corporates multi-view CNN to well capture and synthesize
semantic matching signals from various views. Multi-task
learning structure is employed to incorporate shared infor-
mation within heterogeneous data sources. Experimental re-
sults demonstrate the superiority of our model over base-
lines and verifies the rationality of using multi-task learn-
ing and multi-view CNN. Normalizing medical concepts are
meaningful and fundamental in many clinical applications,
such as information sharing between medical institutions
and policy making. Thus we hope that our work could pro-
vide insights in relative domains for researchers. In future,
we hope to discover more correlations between homoge-
neous tasks, namely primary and associate diagnostic state-
ments/procedures in normalization, which may shed light on
hidden links between diseases/procedures.
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