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Abstract

To understand narrative text, we must comprehend how peo-
ple are affected by the events that they experience. For ex-
ample, readers understand that graduating from college is a
positive event (achievement) but being fired from one’s job
is a negative event (problem). NLP researchers have devel-
oped effective tools for recognizing explicit sentiments, but
affective events are more difficult to recognize because the
polarity is often implicit and can depend on both a predicate
and its arguments. Our research investigates the prevalence of
affective events in a personal story corpus, and introduces a
weakly supervised method for large scale induction of affec-
tive events. We present an iterative learning framework that
constructs a graph with nodes representing events and initial-
izes their affective polarities with sentiment analysis tools as
weak supervision. The events are then linked based on three
types of semantic relations: (1) semantic similarity, (2) se-
mantic opposition, and (3) shared components. The learning
algorithm iteratively refines the polarity values by optimiz-
ing semantic consistency across all events in the graph. Our
model learns over 100,000 affective events and identifies their
polarities more accurately than other methods.

Introduction

When people discuss events, people understand not only the
literal meaning of the event but they also infer the probable
affective state of the person who experienced the event. For
example, if someone says that they got a job, broke a record,
or went to Disneyland, then most people assume these were
desirable experiences and offer congratulations or shared ex-
citement. Conversely, if someone says that they were fired
from their jobs, broke their arms, or went to a funeral, then
most people assume these were undesirable experiences and
offer sympathy or assistance. Understanding the affective
state associated with an event is essential for many NLP
tasks including narrative text understanding (Goyal, Riloff,
and Daumé III 2013; Lehnert 1981), opinion analysis (Deng,
Wiebe, and Choi 2014), and sarcasm recognition (Riloff et
al. 2013). We refer to events that typically affect people in
positive or negative ways as affective events.

Many NLP tools have been developed for sentiment anal-
ysis, and some research has begun to focus specifically on
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affective events, but prior methods still do not consistently
or accurately recognize them. Our research aims to improve
affective event recognition by extracting a large collection
of stereotypically affective events from a personal story cor-
pus. This paper offers several contributions to this topic:
(1) we present a manual annotation study of randomly sam-
pled events, which demonstrates the prevalence of affective
events (nearly 40% of all events), (2) we represent events
as rich structures that include a predicate, agent, theme, and
prepositional phrase, and (3) we present a novel weakly su-
pervised method for inducing a large set of affective events
(> 100,000) from an unannotated text corpus.

This paper introduces an iterative learning framework that
automatically induces a large collection of affective events
from a personal story corpus. First, the corpus is parsed and
events are extracted into a predicate-argument structure and
incorporated into a graph, where each node represents a dis-
tinct event. The events are then linked based on three types
of semantic relations: (1) semantic similarity, (2) semantic
opposition and (3) shared components. Next, initial polarity
values are assigned to events using sentiment analysis tools.
Although sentiment tools are not very accurate for many af-
fective events, they can recognize events that have explicitly
affective language (e.g., “I had fun” or “I yelled in anger”).
Consequently, the initialization step serves as noisy super-
vision. The learning algorithm is then tasked with inferring
more accurate event polarities by iteratively refining the po-
larity values to optimize for the overall semantic consistency
in the graph. Intuitively, the algorithm encourages semanti-
cally similar events to have similar polarity, semantically op-
posing events to have opposite polarity, and events to have
polarity values consistent with their components. We applied
this model to a corpus of nearly 1.4 million personal sto-
ries and induced a collection of >175,000 affective events,
which achieved higher recall and precision on our affective
event data set than existing affective lexicons and learning
models.

Related Work

Many resources for sentiment analysis have been created,
including the MPQA Subjectivity Lexicon (Wilson, Wiebe,
and Hoffmann 2005), SenticNet (Cambria, Olsher, and Ra-
jagopal 2014; Cambria et al. 2015), SentiWordNet (Bac-
cianella, Esuli, and Sebastiani 2010), the NRC Emotion
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Lexicon (Mohammad and Turney 2010), and many oth-
ers. Most of this work has focused on recognizing senti-
ments and emotions explicitly expressed in text. However,
there has been growing interest in recognizing other types
of affective indicators. Research closely related to affec-
tive events includes bootstrapped learning of patient polar-
ity verbs, which impart affective polarity to their patients
(Goyal, Riloff, and Daumé III 2010; 2013), research on the
connotation of words and word senses (Kang et al. 2014),
and connotation frames (Rashkin, Singh, and Choi 2016)
which infer connotative polarities for a verb’s arguments
from the writer’s and entity’s perspective. These works fo-
cus on individual verbs, in contrast to our richer event struc-
tures. Another related line of work is on +/- effect events
(Choi and Wiebe 2014) that have a positive/negative effect
on their entities, but the effect does not need to be “affective”
per se (e.g., baking a cake is considered to be positive for
the cake because the cake is created). This work is focused
on opinion analysis through implicature rules (Deng, Wiebe,
and Choi 2014), rather than the effects of events on people.
Recently, Reed at al. (2017) learned patterns associated with
first-person affect, which improved recognition of affective
sentences when used alongside supervised learners.

Our work is also related to work on identifying “emotion-
provoking events” (Vu et al. 2014) and “major life events”
extraction work (Li et al. 2014) although their work did not
identify polarity. We previously (Ding and Riloff 2016) de-
signed an Event Context Graph (ECG) model to induce a
set of affective events. However, our previous model is fun-
damentally different from the one in this paper. The ECG
model used a traditional label propagation algorithm to learn
affective events. In this paper we designed a new optimiza-
tion framework to enforce semantic consistency. In addition,
the ECG model was constructed based entirely on discourse
properties and event co-occurrence. In contrast, the graph in
this paper is built based on three types of semantic relations.
We compare these two models in the Evaluation section.

Graph based learning methods have been previously used
for sentiment lexicon induction (e.g., (Rao and Ravichan-
dran 2009; Velikovich et al. 2010)). Most of this work aims
to learn the prior polarity for individual words. In contrast,
we use a rich event representation that includes a verb and its
arguments to distinguish between specific types of events.

Affective Event Data

The goal of our research is to study the prevalence of affec-
tive events in narrative text and to develop a weakly super-
vised method to learn a large collection of affective events.
As the text corpus, we used the ICWSM 2009 and 2011
Spinn3r data sets1, which together contain over 177 mil-
lion blog posts. To focus our efforts on narrative text about
events in people’s daily lives, we extracted personal blog
posts by applying a personal story classifier (Gordon and
Swanson 2009). We further removed stories with no first per-
son mentions and then removed near-duplicates using Spot-
Sigs (Theobald, Siddharth, and Paepcke 2008). This process
resulted in 1,383,425 personal blog posts.

1http://www.icwsm.org/data/

Extracting Event Structures

Most previous affective resources and methods identify the
polarity of individual words or short phrases. Our research
focuses on events, so we wanted to create an event rep-
resentation that is specific enough to distinguish between
event expressions that have substantially different seman-
tics. We settled on a frame-like event structure that has 4
components: 〈Agent, Predicate, Theme, PP〉. The Predi-
cate is a simple verb phrase, which typically corresponds to
an action or state. We require that an event must also have
an Agent or a Theme2. Some previous work has used an
Agent/Predicate/Object representation (namely (Ding and
Riloff 2016)), but our event structure additionally includes
a prepositional phrase (PP) argument, which we believe is
essential to distinguish between dramatically different event
types. For example, “go to beach” is a very different kind
of event than “go to prison”. Similarly “get into college” is
fundamentally different from “get into argument”. Although
multiple PPs are common and can be important, we allow
only a single PP to prevent the representation from becom-
ing overly specific. If multiple PPs are attached to the VP,
we include only the closest one.

To create the event structures, we used StanfordCoreNLP
(Manning et al. 2014) for POS and NER tagging and Syn-
taxNet (Andor et al. 2016) for parsing. A Predicate is ex-
tracted for each finite verb and can also include a particle,
infinitive verb, and negator, if they are present. For example,
the Predicate could be “eat” or “not want to take off”. The
Agent and Theme are extracted from the dependency rela-
tions. We use the term “Theme” loosely and allow an ad-
jective to fill the Theme role in predicate adjective construc-
tions (e.g., “dad is brave”). We extract minimal noun phrases
for the Agent, Theme, and PP, which could be named enti-
ties, nominals with noun premodifiers, or pronouns.3 Active
and passive voice constructions are normalized. For exam-
ple, “I was killed by him” and “he killed me” are both rep-
resented by the structure: “〈he, kill, me, -〉”. For the verbs
“be” and “have”, we require both an Agent and Theme. All
words are lemmatized in the event structures.

Our goal is to analyze affective events from the perspec-
tive of the experiencer (i.e., the blogger). So we only keep
events that satisfy at least one of the following criteria. (1)
The event has a first person reference (e.g., “I”, “my”). (2)
The event mentions a family member (e.g., “mom”). We as-
sume that the affective state of the blogger usually parallels
that of family members (e.g., “mom is sick” is undesirable
for both mom and the blogger). We manually compiled a
list of 92 family terms. (3) The event does not mention any
other people4. In this case, we assume that the event pertains
to the blogger (e.g., “the computer died”).5 We do not extract

2These are approximated using syntax rules, not SRL.
3Our Agent and Theme representation also differs from (Ding

and Riloff 2016) in that they only extract single words.
4An entity is identified as “other people” if it is a second or

third person pronoun, a PERSON Named Entity, or nominal person
mention based on WordNet (e.g. “plumber”).

5This simple approach could undoubtedly be improved with
discourse analysis, but we leave that for future work.
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events that only mention other people because they may be
describing someone else’s experience, not the blogger’s.

This process resulted in 19,794,187 unique events. Fi-
nally, we filtered events with frequency < 5 and obtained
571,424 unique events as our affective event data set.

Manual Analysis of Affective Events

A key question for research on this topic is: how prevalent
are affective events? To answer this question and to create
a test set for evaluation, we conducted a manual annotation
effort to label a random set of events from our personal story
data with affective polarities. We defined four categories:

Positive: An event that is desirable, enjoyable, pleasant or
beneficial.
Negative: An event that is undesirable, unenjoyable, un-
pleasant or detrimental.
Neutral: An event that most people would not consider to
be positive or negative.
Mixed: An event that is rarely neutral but is often consid-
ered positive by some people and negative by others.

Our work focuses on recognizing the prior polarities of
events, that are stereotypical, independent of context. There-
fore, we randomly selected 1,500 events from our affec-
tive event data and asked three people to manually label
them. We measured their pairwise inter-annotator agreement
(IAA) using Cohen’s kappa (κ), which were κ=.76 κ=.70,
and κ=.69. We then assigned the majority label to each event
as the gold standard polarity. Only one event was labeled
as Mixed, so we concluded that mixed polarity events are
rare and abandoned this category. We discarded the 1 Mixed
event, and also 9 events that received three different labels
from the annotators, which resulted in a gold standard data
set of 1,490 events labeled as Positive, Negative, or Neutral.
The distribution of the polarities is shown below.

POS NEG NEU

295 (20%) 264 (18%) 931 (62%)

We see that 38% of the randomly selected events have a posi-
tive or negative affective polarity, with slightly more positive
events. These results suggest that affective events are perva-
sive, comprising nearly 4 of every 10 events, which illus-
trates the importance of being able to recognize the affective
polarity of events for narrative text understanding.

Table 1 shows examples of annotated events. Of these
1,490 manually annotated events, we randomly selected
1,000 as our test set for evaluation and use the remaining
490 events as a development set for tuning parameters.

Semantic Consistency Model

The goal of our work is to design a weakly supervised
method to automatically learn a large set of affective events.
The key idea is to define a graph of events and semantic rela-
tions between events, with noisy supervision providing ini-
tial affective polarities. Using an optimization framework,
we can then learn the correct polarity values by enforcing
semantic consistency across the relations in the graph.

Figure 1 shows an illustration of the semantic relations
graph. The graph contains nodes for events and components
and three types of edges: semantic similarity edges that link

POSITIVE: 〈I, play, music, -〉
〈kid, look up, -, to me 〉 〈cost, be, low, -〉
〈I, go, -, to block party〉 〈someone, save, me, -〉
〈my confidence, rise, -, -〉 〈I, attend, show, -〉
〈I, dance, -, with my friend〉 〈I, kiss, her, -〉
NEGATIVE: 〈girl, laugh, -, at me〉
〈I, get, -, into argument〉 〈I, be, bummed, -〉
〈I, drop, my phone, in toilet〉 〈dog, pass away, -, -〉
〈house phone, not work, -, -〉 〈my face, look, pale, -〉
〈I, wake up, -, at 3 am〉 〈tear, pour, -, from eye〉
NEUTRAL: 〈I, pack up, my bag, -〉
〈I, decide to rent, car, -〉 〈trunk, be, open, -〉
〈tour bus, pull up, -, -〉 〈I, scribble, -, -〉
〈I, read, -, over post〉 〈I, have, staple, -〉
〈I, wake up, -, around 6 〉 〈I, look, -, at sentence〉

Table 1: Examples of Gold Standard Affective Events

semantically similar event pairs, semantic opposition edges
(dotted line) that link semantically opposing event pairs, and
event-component edges that connect an event with its com-
ponents individually. The learning model will prefer that se-
mantically similar events have similar affective polarities,
semantically opposing events have opposing affective polar-
ities. Event-component relations are used by the learner to
infer that the polarity of an event is related to the polarity of
its individual components.

Although existing affective resources often fail to rec-
ognize many affective events, they do well at recogniz-
ing events that contain explicit emotions or strong posi-
tive/negative terms (e.g., “I had fun” or “the experience was
a disaster”). So we take advantage of previously developed
affective tools to provide initial polarity values for each node
as noisy supervision for our model.

The basic flow of our method contains 3 steps. First, we
build a graph containing event and component nodes using
the semantic relations among events. Second, we obtain ini-
tial polarities for events and components using existing sen-
timent analysis tools. Finally, we design an iterative learning
algorithm to infer the polarities of events by optimizing the
semantic consistency in the graph.

Semantic Relations Graph

We create a graph G = (V , E) where V consists of event
nodes (vi) and component nodes (ck). The event nodes cor-
respond to the 571,424 unique events extracted from our
personal story data. The component nodes are created by
decomposing each event structure into its parts: a predicate
and up to 3 arguments6. If a predicate is negated, then the
negation is also attached to all of the event’s arguments. For
example, the event 〈I, not get, award, -〉 will yield two com-
ponent nodes: “not get” and “not award”.7 A polarity vector

6We do not create component nodes for pronouns.
7This strategy for handling negation is overkill because the

negation usually only applies to one part of an event. But determin-
ing the best scope for the negation is challenging (e.g., “not have
beer” is roughly equivalent to “have no beer” but for our model “no
beer” is more useful semantically than “not have”). More sophisti-
cated negation handling is a worthwhile avenue for future work.
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Figure 1: Semantic Relations Graph

is associated with each node, which denotes a distribution
over 3 polarity values <POSITIVE, NEUTRAL, NEGATIVE>
for the associated event or component.

The edge set consists of three types of edges: similarity
edges, opposition edges, and event-component edges.

Similarity Edges: Our model assumes that events with
similar semantic meaning will usually have similar affec-
tive polarity (e.g. “have party” and “have celebration”). We
use semantic embeddings to assess the similarity of events.
We compute an event embedding as the average of the
GloVe vectors (Pennington, Socher, and Manning 2014) of
its words8. For each event node i, we create an edge be-
tween i and its five most similar events. The edge weight
W sim

ij between nodes i and j is the cosine similarity of their
embedding vectors.

Opposition Edges: Our model also assumes that events
with opposite meanings often have opposite polarities (e.g.
“I win” and “I was defeated”). To construct opposition
edges, we identify events with a negated predicate. We re-
fer to non-negated events as “affirmative”. For each negated
event i, we remove the negator and compute its embedding
as described above. Then, we compute the cosine similarities
between event i and all affirmative events and select the 10
most similar affirmative events as its opposition neighbors.
The opposition edge weight W opp

ij between nodes i and j is
the cosine similarity of their embedding vectors.

Event-Component Edges: Many event expressions re-
fer to the same or just slightly different activities (e.g., 〈I,
have, birthday party, -〉 and 〈I, attend, birthday party, -〉).
We hypothesized that learning the affective polarity of in-
dividual concepts could help to generalize beyond specific
event expressions. For example, if “birthday party” has pos-
itive polarity, then events mentioning a birthday party will
often have positive polarity too. Of course, many events in-
clude words that have different affective polarities. But if
we link an event node with nodes for all of its components,
then all of this information can be taken into account during
the learning process. To explore this idea, we create edges
between event node i and all of the nodes corresponding to
its components. For example, the event 〈phone, fall, in toi-
let, -〉 will be connected with 3 component nodes: “phone”,
“fall”, and “in toilet”. The edge weight between event i and
component k is set to be W cmp

ik = 1.

Learning by Optimizing Semantic Consistency

This section presents our algorithm for learning the affective
polarities of events.

8We use GloVe vectors (200d) pretrained on 27B tweets.

Initialization

Each event node i and component node k are assigned initial
polarity vectors, which are obtained from external sentiment
resources. Intuitively, the idea is to initialize the model with
noisy supervision, which the learner uses in combination
with the semantic relations, graph structure, and optimiza-
tion function to infer the correct polarity for each node. For
polarity initialization, we experimented with a variety of af-
fective lexicons and classification models and found that the
MPQA lexicon (Wilson, Wiebe, and Hoffmann 2005) com-
bined with an aggregated contextual classifier performed
best (this “Combo” method is described in the Evaluation
section).

Semantic Consistency Metrics

Our model infers polarity values by optimizing the semantic
consistency in the graph (i.e. minimizing the inconsistency
in the graph). We use KL-divergence to measure the incon-
sistency between polarity vectors.

We will refer to the initial polarity vector for event i as
v0
i . The model iteratively updates an estimated polarity vec-

tor, vi, which is encouraged to remain similar to the ini-
tial vector by minimizing the inconsistency between them.
The initial polarity values never change and serve as an an-
chor to prevent thrashing during the learning process. For-
mally, the inconsistency between vi and v0

i is computed as:
D(vi||v0

i ) =
∑L

l vi(l) log
vi(l)
v0
i (l)

, where L is the set of polar-
ity labels. The inconsistency between the estimated polarity
vector for a component node k and its initial polarity vector
is similarly measured as D(ck||c0k).

Inconsistency is also measured across all three types of
semantic relation edges. For similar event pairs i and j, their
inconsistency is measured as the difference between their
polarity vectors: D(vi||vj). For opposing event pairs i and
j, the inconsistency is computed as D(vi||vjH). We use
the exchange matrix H =

[ 0 0 1
0 1 0
1 0 0

]
to switch the positive and

negative values of the polarity vector. The indices of H rep-
resent: 0(pos), 1(neu), 2(neg). Finally, we measure the in-
consistency between an event and each of its components.
Since KL-divergence is asymmetric, the inconsistency be-
tween an event i and component k needs to be decomposed
into two parts: D(vi||ck) and D(ck||vi). This maintains the
symmetric property of the final objective, which allows us
to directly derive closed form update equations.

Weight Normalization

In our graph, some nodes are highly connected but others are
not. To account for this, we normalize the semantic similar-
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ity weight matrix as W̃ sim = A−
1
2W simA−

1
2 where A

is a diagonal matrix and Aii =
∑n

j=1 W
sim
ij . We similarly

normalize the semantic opposition weight matrix W opp. For
the event-component edges, different events may link to dif-
ferent numbers of components, and vice versa. To normalize
the weights, we first obtain the transpose W cmp′

of W cmp,
and then obtain W̃ cmp and W̃ cmp′

by performing row nor-
malization on W cmp and W cmp′

.

The Objective and Update Functions

Our complete semantic consistency (SC) model incorporates
all of the previously mentioned inconsistency measures with
a single objective function, shown in Eq.1.

Jsc = β
n∑

i=1

D(vi||v0
i ) +

∑
(i,j)

W̃ sim
ij D(vi||vj)

+
∑
(i,j)

W̃ opp
ij D(vi||vjH) + γ

∑
(i,k)

W̃ cmp
ik D(vi||ck)

+ γ
∑
(k,i)

W̃ cmp′
ki D(ck||vi) + η

m∑
k=1

D(ck||c0k) (1)

This objective computes the overall inconsistency in the
graph, and our goal is to minimize the objective to obtain
the best polarity estimates. The n and m are the numbers of
event and components nodes, and (i, j) denotes connected
node pairs. The hyperparameters control the relative impor-
tance of each corresponding term. In our experiments, our
full model uses the following values: β = 0.6, γ = 0.8,
η = 0.1, which were selected on our development data.

Since KL-divergence is convex, the objective in Eq.1 is
convex when the parameters are non-negative. This guar-
antees that our model will converge at a global minimum.
We designed an iterative algorithm that alternately updates
v and c. Let vt

i and ctk denote polarity vectors for event i
and component k at iteration t. We first optimize the objec-
tive over vi, given vt

i and cti by computing the derivative for
vt+1
i . The update for vt+1

i is shown in Eq.2

vt+1
i ∝ exp

1

Oi

(
β log v0

i +
∑
j

W̃ sim
ij log vt

j+

∑
j

W̃ opp
ij log vt

jH + γ
∑
k

W̃ cmp
ik log ctk

)
(2)

where Oi = β +
∑

j W̃
sim
ij +

∑
j W̃

opp
ij + γ

∑
k W̃

cmp
ik .

Given vt+1
i , we obtain the update equation for ct+1

k by
computing the derivative for ct+1

k . The update equation is
shown in Eq.3.

ct+1
k ∝ exp

η log c0k + γ
∑

i W̃
cmp′
ki log vt+1

i

η + γ
∑

i W̃
cmp′
ki

(3)

The learning algorithm is shown below, which iteratively
updates the polarity vectors on event nodes and component
nodes. In our final experiments, the learning process con-
verged after 52 iterations. When the learning is finished, for
each event i we infer its polarity to be the polarity class with
the highest score: argmaxl vi(l).

Algorithm 1 Iterative Learning Algorithm
1: Input: W sim, W opp, W cmp, v0, c0
2: Output: v ∈ Rn×|L|
3: while v has not converged do
4: Update vt using Eq. 2
5: Update ct using Eq. 3
6: end while
7: return vt

Improved Component Initialization

We hypothesized that we could improve the initial polarity
values of the components through an independent learning
process that exploits semantic similarities between compo-
nent terms. We create a graph in which each component is
connected to its 5 most similar components with edge weight
Uij , set to be the cosine similarity between their embed-
dings using GloVe vectors. The total inconsistency (Jcmp)
is shown in Eq.4 where m is the number of components.

∑
(i,j)

ŨijD(ci||cj)+
ml∑
i=0

D(ci||csi )+μ
m∑
i=0

D(ci||c0i ) (4)

The first term of Eq.4 measures the inconsistency between
two semantically similar components. The second term mea-
sures inconsistency between the estimates and polarities
(cs) from MPQA Lexicon for the ml components contained
in MPQA. The third term measures inconsistency between
the estimated values and initial polarities assigned by the
NRCAvgS aggregated contextual classifier (described in the
Evaluation section). We use two types of initial values be-
cause the MPQA lexicon has high precision but low cover-
age, while the classifier has greater coverage but lower pre-
cision. Given the objective, we derive the update function
for variable ck by computing its derivative and iteratively
updating the polarity values until convergence or 100 itera-
tions.9 The inferred polarity vectors are then used as the “ini-
tial” polarity vectors for the component nodes in our full SC
model. This separate learning process for component nodes
slightly improved our overall evaluation results.

Evaluation

We conducted extensive experiments to compare the perfor-
mance of our Semantic Consistency Model with the perfor-
mance of existing affective lexicons and classification mod-
els on our affective event data set. For these experiments, all
lexicon or model parameters were tuned on our development
set and the reported results are on our test set.

Prior Affective Lexicons and Learning Models

We evaluated the performance of five existing affective lex-
icons: MPQA (Wilson, Wiebe, and Hoffmann 2005), Sen-
tiWordNet3.0 (SentiWN) (Baccianella, Esuli, and Sebas-
tiani 2010), +/-EffectWordNet (+/-EffectWN) (Choi and
Wiebe 2014), ConnotationWordNet (ConnoWN) (Kang et
al. 2014), and Connotation Frames (Rashkin, Singh, and

9We used μ=0.1 in experiments based on the development set.
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Choi 2016) for which we evaluated both the effect on subject
(ConnoFrameS) and the effect on object (ConnoFrameO).
Since our event structures contain multiple words, we com-
puted the polarity score for an event as the average score of
its words. Most of these lexicons assign polarity scores over
a range of values, where high values mean strong polarity
and low values mean weak polarity. To explore the best way
to use each lexicon, we defined a threshold λ for each lexi-
con. For lexicons with polarity values ranging from [-1,+1],
we assigned events with a score > λ as positive, <-λ as neg-
ative and an absolute value |score| ≤ λ as neutral. For lexi-
cons with polarity values ranging from [0,+1], we assigned
events with a score between [0.5-λ, 0.5+λ] as neutral, <0.5-
λ as negative, and >0.5+λ as positive. We found that the
following values achieved the best F1 scores on our devel-
opment data and were therefore used throughout our experi-
ments: λ=0 for MPQA, λ=0.25 for ConnoFrameS, λ=0.3 for
ConnoFrameO, λ=0.4 for ConnoWN, λ=0.5 for SentiWN,
and λ=0.6 for +/-EffectWN.

Method POS NEG NEU AVG

Affective Lexicons
ConnoWN 26.3 9.8 64.1 33.4
ConnoFrameS 32.6 21.0 64.8 39.5
ConnoFrameO 29.8 22.5 70.7 41.0
+/-EffectWN 36.3 36.7 55.3 42.8
SentiWN 33.5 27.3 73.9 44.9
MPQA 57.8 54.9 80.1 64.3

Event Structure Classifiers
LRBOW 25.6 16.1 78.2 40.0
StanfordSA 37.5 12.4 77.7 42.6
LREmbed 50.8 44.9 79.7 58.5
NRC 58.6 55.9 79.6 64.7

Contextual Models
ECG 28.1 46.1 65.9 46.7
NRCAvgS 51.2 52.0 70.7 58.0
Combo 60.7 58.3 79.9 66.3

Table 2: F1 Scores for Lexicons and Models

The top portion of Table 2 shows the results for these
lexicons, including F1 scores for the positive (POS), neg-
ative (NEG), and neutral (NEU) polarities, and the macro-
averaged F1 score across all three polarities. The MPQA
lexicon performs the best on our data.

For learning based methods, we first evaluated several
event structure classifiers by applying them directly to the
sequence of words in an event structure. We replicated the
NRC-Canada sentiment classifier (NRC) (Mohammad, Kir-
itchenko, and Zhu 2013), and trained the classifier using
the SemEval 2014 Task 9 tweet data. We also evaluated the
Stanford sentiment analysis (StanfordSA) system, which is
a neural network model. In addition, we trained two logistic
regression classifiers on our development data. One classi-
fier (LRBOW) uses bag of words features for all words in an
event. A second classifier (LREmbed) uses word embedding
features, which is computed as the average of the word em-
beddings in an event.10 The middle of Table 2 shows that the
NRC classifier achieved the best result.

10We use the GloVe vectors (200d) pretrained on 27B tweets.

We also evaluated two types of contextual models, which
exploit the contexts surrounding an event. For each event, we
applied the NRC classifier to every sentence that it occurs
in and produced a distribution of polarity values across the
sentences. We call this method NRCAvgS . We also evaluated
the previous Event Context Graph (ECG) model (Ding and
Riloff 2016) on this new set of randomly sampled events. We
applied it to our full data set of nearly 1.4 million blog posts.
The ECG model produces polarity values ranging from [-1,
+1], so we tuned a λ parameter on our development data as
we did for the lexicons. We used the best value: λ=0.1511.
Table 2 shows that NRCAvgS was the best contextual model.

MPQA was the best lexicon, and NRCAvgS was the
best contextual model, and we hypothesized that combining
these complementary methods might perform even better.12

So we created a Combo system that linearly combines the
predictions of both models. For an event e, we compute its
polarity vector as α ∗ PolarityVectorNRCAvgS(e) + (1 − α) ∗
PolarityVectorMPQA(e). The last row of Table 2 shows the
results for this Combo method, which achieved the highest
F1 score, where α=0.7 based on the development set.

Results for the Semantic Consistency Model

Table 3 shows the results for our Semantic Consistency (SC)
model alongside the best system (Combo) that utilized ex-
isting methods for comparison. We initialized the polarity
vectors of the event nodes in the SC model using the Combo
method, which produces a distribution over the 3 polarity
values for each event.

Method
POS NEG NEU Average
F1 F1 F1 Pr Rec F1

Combo 60.7 58.3 79.9 67.5 65.6 66.3
SC+sim 58.6 62.9 82.3 72.6 65.7 67.9

+opp 59.9 63.8 83.4 75.0 65.8 69.0
+cmp 63.7 66.7 83.7 75.2 68.9 71.4

Table 3: Results for Semantic Consistency (SC) Model

The SC+sim row shows results for the SC model us-
ing only the semantic similarity edges, which substantially
improves precision (+5%) over the Combo baseline. The
+opp row shows results for adding the semantic opposi-
tion edges as well, which further improves precision to 75%
while maintaining the same level of recall. The +cmp row
shows results for the full model, which also includes compo-
nent nodes connected to corresponding events. These shared
component relations improve recall from 65.8% to 68.9%
without any loss of precision. Overall, the full semantic
consistency model achieved both higher recall (65.6% →
68.9%) and higher precision (67.5% → 75.2%) compared to
the best results achieved with previous methods. The macro-
averaged F1 score improved from 66.3% to 71.4%, which is

11The original experiments by (Ding and Riloff 2016) evaluated
only positive and negative events that received the highest polarity
scores. Our experiments evaluate the polarity assigned to all events
in our test set, which were randomly sampled.

12We also tried to combine MPQA and the NRC classifier, but
using MPQA and NRCAvgS was better.
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statistically significant at p < 0.01 based on the paired boot-
strap test (Berg-Kirkpatrick, Burkett, and Klein 2012).

Analysis

We took a closer look at the affective events identified by
the SC model in terms of both quality and quantity. First, we
identified all events whose initial polarity (produced by the
Combo model) was changed by the SC model. Table 4 shows
that the most frequent changes were from positive or nega-
tive polarity to neutral, and from neutral to negative. Table 5
shows the recall and precision differences between the mod-
els for each polarity. The large shifts from positive/negative
to neutral correspond to the precision gains, and the shifts
from neutral to negative correspond to the increased recall
for negative polarity.

Combo → SC #Total #Correct Accuracy

POS → NEU 24 19 79%
NEU → NEG 18 13 72%
NEG → NEU 45 32 71%
POS → NEG 4 2 50%
NEG → POS 8 3 38%
NEU → POS 3 1 33%

Table 4: Polarity Changes between Combo and SC models

Method
POS NEG NEU

Pr Rec Pr Rec Pr Rec
Combo 67.7 55.1 56.3 60.5 78.4 81.4
SC Model 75.7 55.1 70.4 63.3 79.3 88.5

Table 5: Precision (Pr) and Recall (Rec) Breakdowns

Table 6 shows some correct and incorrect examples of
events whose polarity changed. The SC model seems to have
learned that certain predicates (verbs) are typically neutral,
such as “open” and “want”. We also observe that many of its
errors involve negated terms, suggesting that more sophisti-
cated negation handling may be needed.

A goal of this research is to produce an affective event
lexicon that can be used by the NLP community as knowl-
edge of affective events. Toward this end, we created lexi-
cons of varying sizes by selecting events that were assigned
a positive or negative polarity with value ≥ τ in the polarity
vector, to effect recall/precision trade-offs. Table 7 shows the
precision and recall on our test set using different thresholds,
and also the total number of affective events extracted from
the corpus for corresponding thresholds. The bottom row
(max) shows the lexicon produced by assigning every event
the polarity that has the highest value. We notice that our
model produced more negative than positive events, which
is consistent with that of the initialization method (i.e. the
Combo results in Table 5). So we believe this is influenced
by the initialization method.

The bottom row of Table 7 shows that the complete lex-
icon has over 175K affective events with precision >70%.
Setting τ=0.5 still produces 111K events with > 80% pre-
cision for NEG and > 90% for POS events. Increasing the
threshold to 0.6 reduces the lexicon to > 69,000 affective

POSITIVE → NEUTRAL

Correct Examples: 〈 I, open, my email, -〉
〈box, be, open, -〉 〈my friend, start, work, -〉
〈I, want, photo, -〉 〈I, want, bag, -〉
Incorrect Examples: 〈my family, stay, with me, -〉
〈I, win, class, -, -〉 〈band, rock, -, -〉

NEUTRAL → NEGATIVE

Correct Examples: 〈food, not be, tasty, -〉
〈I, break, heart, -〉 〈friend, disappoint, me〉
〈I, be, bummed, -〉 〈I, start, sniffle, -〉
〈tear, pour, -, from eye〉 〈none, be, -, for me〉
Incorrect Examples:
〈we, see, cave, -〉 〈we, steal, glance, -〉

NEGATIVE → NEUTRAL

Correct Examples: 〈feeling, go, -, through me〉
〈I, feel, -, about stuff〉 〈I, need, bowl, -〉
〈I, call to work, -, -〉 〈answer, not be, one, -〉
Incorrect Examples: 〈my memory, not serve, me, -〉
〈house phone, not work, -, -〉 〈I, not function, -, at work 〉

Table 6: Correct and Incorrect Examples

events with > 93% precision for both polarities. This anal-
ysis shows that the SC model can be used to automatically
generate large, high-quality collections of affective events.
We plan to construct a lexicon of the affective events learned
by the SC model and make it freely available to the research
community.

τ
POS NEG #AffectiveEvents

Pr Rec Pr Rec #pos #neg #total
0.7 100 18.7 93.7 16.9 19031 18947 37978
0.6 96.9 31.8 93.4 32.2 30584 38523 69107
0.5 90.1 41.4 80.2 45.8 48594 62998 111592
max 75.7 55.1 70.4 63.3 82398 92743 175141

Table 7: Quality and Size of Different Lexicons

Conclusion
In this work, we investigated the prevalence of affective
events in personal story blogs, and designed a novel, weakly
supervised semantic consistency model for automatically in-
ducing a high-quality affective event lexicon. We did exten-
sive experiments to evaluate existing sentiment lexicons and
learning methods on a new affective event data set. The re-
sults show that our model achieves better performance than
other methods, and learns over 100,000 affective events with
high precision. However, the recall for positive and nega-
tive events have substantial room for improvement, so fu-
ture work is needed to obtain more comprehensive coverage
of affective events.
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