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Abstract

Neural network models recently proposed for question an-
swering (QA) primarily focus on capturing the passage-
question relation. However, they have minimal capability to
link relevant facts distributed across multiple sentences which
is crucial in achieving deeper understanding, such as perform-
ing multi-sentence reasoning, co-reference resolution, etc.
They also do not explicitly focus on the question and answer
type which often plays a critical role in QA. In this paper,
we propose a novel end-to-end question-focused multi-factor
attention network for answer extraction. Multi-factor atten-
tive encoding using tensor-based transformation aggregates
meaningful facts even when they are located in multiple sen-
tences. To implicitly infer the answer type, we also propose a
max-attentional question aggregation mechanism to encode a
question vector based on the important words in a question.
During prediction, we incorporate sequence-level encoding
of the first wh-word and its immediately following word as
an additional source of question type information. Our pro-
posed model achieves significant improvements over the best
prior state-of-the-art results on three large-scale challenging
QA datasets, namely NewsQA, TriviaQA, and SearchQA.

Introduction

In machine comprehension-based (MC) question answering
(QA), a machine is expected to provide an answer for a
given question by understanding texts. In recent years, sev-
eral MC datasets have been released. Richardson, Burges,
and Renshaw (2013) released a multiple-choice question
answering dataset. Hermann et al. (2015) created a large
cloze-style dataset using CNN and Daily Mail news articles.
Several models (Hermann et al. 2015; Chen, Bolton, and
Manning 2016; Kadlec et al. 2016; Kobayashi et al. 2016;
Cui et al. 2017; Dhingra et al. 2017) based on neural atten-
tional and pointer networks (Vinyals, Fortunato, and Jaitly
2015) have been proposed since then. Rajpurkar et al. (2016)
released the SQuAD dataset where the answers are free-
form unlike in the previous MC datasets.

Most of the previously released datasets are closed-world,
i.e., the questions and answers are formulated given the text
passages. As such, the answer spans can often be extracted
by simple word and context matching. Trischler et al. (2016)
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attempted to alleviate this issue by proposing the NewsQA
dataset where the questions are formed only using the CNN
article summaries without accessing the full text. As a re-
sult, a significant proportion of questions require reasoning
beyond simple word matching. Two even more challeng-
ing open-world QA datasets, TriviaQA (Joshi et al. 2017)
and SearchQA (Dunn et al. 2017), have recently been re-
leased. TriviaQA consists of question-answer pairs authored
by trivia enthusiasts and independently gathered evidence
documents from Wikipedia as well as Bing Web search. In
SearchQA, the question-answer pairs are crawled from the
Jeopardy archive and are augmented with text snippets re-
trieved from Google search.

Recently, many neural models have been proposed (Wang
et al. 2016; Pan et al. 2017; Seo et al. 2017; Wang and
Jiang 2017; Weissenborn, Wiese, and Seiffe 2017; Xiong,
Zhong, and Socher 2017; Yang et al. 2017), which mostly
focus on passage-question interaction to capture the context
similarity for extracting a text span as the answer. However,
most of the models do not focus on synthesizing evidence
from multiple sentences and fail to perform well on chal-
lenging open-world QA tasks such as NewsQA and Triv-
iaQA. Moreover, none of the models explicitly focus on
question/answer type information for predicting the answer.
In practice, fine-grained understanding of question/answer
type plays an important role in QA.

In this work, we propose an end-to-end question-focused
multi-factor attention network for document-based question
answering (AMANDA), which learns to aggregate evidence
distributed across multiple sentences and identifies the im-
portant question words to help extract the answer. Intu-
itively, AMANDA extracts the answer not only by synthe-
sizing relevant facts from the passage but also by implicitly
determining the suitable answer type during prediction. The
key contributions of this paper are:

• We propose a multi-factor attentive encoding approach
based on tensor transformation to synthesize meaningful
evidence across multiple sentences. It is particularly ef-
fective when answering a question requires deeper under-
standing such as multi-sentence reasoning, co-reference
resolution, etc.

• To subsume fine-grained answer type information, we
propose a max-attentional question aggregation mecha-
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Figure 1: Architecture of the proposed model. Hidden unit
representations of Bi-LSTMs, B and E, are shown to illus-
trate the answer pointers. Blue and red arrows represent the
start and end answer pointers respectively.

nism which learns to identify the meaningful portions of
a question. We also incorporate sequence-level represen-
tations of the first wh-word and its immediately following
word in a question as an additional source of question type
information.

Problem Definition

Given a pair of passage and question, an MC system needs
to extract a text span from the passage as the answer. We for-
mulate the answer as two pointers in the passage, which rep-
resent the beginning and ending tokens of the answer. Let P
be a passage with tokens (P1,P2, . . . ,PT ) and Q be a ques-
tion with tokens (Q1,Q2, . . . ,QU ), where T and U are the
length of the passage and question respectively. To answer
the question, a system needs to determine two pointers in the
passage, b and e, such that 1 ≤ b ≤ e ≤ T . The resulting
answer tokens will be (Pb,Pb+1, . . . ,Pe).

Network Architecture

The architecture of the proposed question-focused multi-
factor attention network1 is given in Figure 1.

Word-level Embedding

Word-level embeddings are formed by two components:
pre-trained word embedding vectors from GloVe (Penning-
ton, Socher, and Manning 2014) and convolutional neural
network-based (CNN) character embeddings (Kim 2014).
Character embeddings have proven to be very useful for out-
of-vocabulary (OOV) words. We use a character-level CNN

1Our code is available at https://github.com/nusnlp/amanda

followed by max-pooling over an entire word to get the em-
bedding vector for each word. Prior to that, a character-based
lookup table is used to generate the embedding for every
character and the lookup table weights are learned during
training. We concatenate these two embedding vectors for
every word to generate word-level embeddings.

Sequence-level Encoding

We apply sequence-level encoding to incorporate contextual
information. Let ept and eqt be the tth embedding vectors
of the passage and the question respectively. The embed-
ding vectors are fed to a bi-directional LSTM (BiLSTM)
(Hochreiter and Schmidhuber 1997). Considering that the
outputs of the BiLSTMs are unfolded across time, we rep-
resent the outputs as P ∈ R

T×H and Q ∈ R
U×H for pas-

sage and question respectively. H is the number of hidden
units for the BiLSTMs. At every time step, the hidden unit
representation of the BiLSTMs is obtained by concatenat-
ing the hidden unit representations of the corresponding for-
ward and backward LSTMs. For the passage, at time step
t, the forward and backward LSTM hidden unit representa-
tions can be written as:

−→
h

p

t =
−−−−→LSTM(

−→
h

p

t−1, e
p
t )

←−
h
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t =
←−−−−LSTM(
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The tth row of P is represented as pt =
−→
h

p

t || ←−h p

t , where
|| represents the concatenation of two vectors. Similarly, the
sequence level encoding for a question is qt =

−→
h

q

t || ←−h q

t ,
where qt is the tth row of Q.

Cartesian Similarity-based Attention Layer

The attention matrix is calculated by taking dot products be-
tween all possible combinations of sequence-level encoding
vectors for a passage and a question. Note that for calculat-
ing the attention matrix, we do not introduce any additional
learnable parameters. The attention matrix A ∈ R

T×U can
be expressed as:

A = P Q� (2)

Intuitively, Ai,j is a measure of the similarity between the
sequence-level encoding vectors of the ith passage word and
the jth question word.

Question-dependent Passage Encoding

In this step, we jointly encode the passage and question. We
apply a row-wise softmax function on the attention matrix:

R = row-wise softmax(A) (3)

If rt ∈ R
U is the tth row of R ∈ R

T×U , then
∑U

j=1 rt,j =
1. Each row of R measures how relevant every question
word is with respect to a given passage word. Next, an ag-
gregated question vector is computed corresponding to each
sequence-level passage word encoding vector. The aggre-
gated question vector gt ∈ R

H corresponding to the tth
passage word is computed as gt = rtQ. The aggregated
question vectors corresponding to all the passage words can
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be computed as G = R Q, where gt is the tth row of
G ∈ R

T×H .
The aggregated question vectors corresponding to the pas-

sage words are then concatenated with the sequence-level
passage word encoding vectors. If the question-dependent
passage encoding is denoted as S ∈ R

T×2H and st is the
tth row of S, then st = ct || gt, where ct is the sequence-
level encoding vector of the tth passage word (tth row of P).
Then a BiLSTM is applied on S to obtain V ∈ R

T×H .

Multi-factor Attentive Encoding

Tensor-based neural network approaches have been used
in a variety of natural language processing tasks (Pei, Ge,
and Chang 2014; Li, Li, and Chang 2016). We propose a
multi-factor attentive encoding approach using tensor-based
transformation. In practice, recurrent neural networks fail to
remember information when the context is long. Our pro-
posed multi-factor attentive encoding approach helps to ag-
gregate meaningful information from a long context with
fine-grained inference due to the use of multiple factors
while calculating attention.

Let vi ∈ R
H and vj ∈ R

H represent the question-
dependent passage vectors of the ith and jth word, i.e., the
ith and jth row of V. Tensor-based transformation for multi-
factor attention is formulated as follows:

fmi,j = vi W
[1:m]
f v�

j , (4)

where W
[1:m]
f ∈ R

H×m×H is a 3-way tensor and m is the
number of factors. The output of the tensor product fmi,j ∈
R

m is a vector where each element fm
i,j,k is a result of the

bilinear form defined by each tensor slice W
[k]
f ∈ R

H×H :

fm
i,j,k = vi W

[k]
f v�

j =
∑

a,b

vi,aW
[k]
fa,b

vj,b (5)

∀i, j ∈ [1, T ], the multi-factor attention tensor can be given
as F[1:m] ∈ R

m×T×T . For every vector fmi,j of F[1:m], we
perform a max pooling operation over all the elements to
obtain the resulting attention value:

Fi,j = max(fmi,j) , (6)

where Fi,j represents the element in the ith row and jth
column of F ∈ R

T×T . Each row of F measures how rele-
vant every passage word is with respect to a given question-
dependent passage encoding of a word. We apply a row-wise
softmax function on F to normalize the attention weights,
obtaining F̃ ∈ R

T×T . Next, an aggregated multi-factor at-
tentive encoding vector is computed corresponding to each
question-dependent passage word encoding vector. The ag-
gregated vectors corresponding to all the passage words,
M ∈ R

T×H , can be given as M = F̃ V. The aggre-
gated multi-factor attentive encoding vectors are concate-
nated with the question-dependent passage word encoding
vectors to obtain M̃ ∈ R

T×2H . To control the impact of
M̃, we apply a feed-forward neural network-based gating
method to obtain Y ∈ R

T×2H . If the tth row of M̃ is m̃t,
then the tth row of Y is:

yt = m̃t � sigmoid(m̃tW
g + bg) , (7)

where � represents element-wise multiplication. Wg ∈
R

2H×2H and bg ∈ R
2H are the transformation matrix and

bias vector respectively.
We use another pair of stacked BiLSTMs on top of Y to

determine the beginning and ending pointers. Let the hidden
unit representations of these two BiLSTMs be B ∈ R

T×H

and E ∈ R
T×H . To incorporate the dependency of the end-

ing pointer on the beginning pointer, the hidden unit repre-
sentation of B is used as input to E.

Question-focused Attentional Pointing

Unlike previous approaches, our proposed model does not
predict the answer pointers directly from contextual passage
encoding or use another decoder for generating the pointers.
We formulate a question representation based on two parts:
• max-attentional question aggregation (qma)
• question type representation (qf )
qma is formulated by using the attention matrix A and the
sequence-level question encoding Q. We apply a maxcol op-
eration on A which forms a row vector whose elements are
the maximum of the corresponding columns of A. We define
k ∈ R

U as the normalized max-attentional weights:

k = softmax(maxcol(A)) (8)

where softmax is used for normalization. The max-
attentional question representation qma ∈ R

H is:

qma = k Q (9)

Intuitively, qma aggregates the most relevant parts of the
question with respect to all the words in the passage.

qf is the vector concatenation of the representations of
the first wh-word and its following word from the sequence-
level question encoding Q. The set of wh-words we used
is {what, who, how, when, which, where, why}. If qtwh

and
qtwh+1 represent the first wh-word and its following word
(i.e., the twhth and (twh + 1)th rows of Q), qf ∈ R

2H is
expressed as:

qf = qtwh
|| qtwh+1 (10)

The final question representation q̃ ∈ R
H is expressed as:

q̃ = tanh((qma || qf )Wq + bq) (11)

where Wq ∈ R
3H×H and bq ∈ R

H are the weight matrix
and bias vector respectively. If no wh-word is present in a
question, we use the first two sequence-level question word
representations for calculating q̃.

We measure the similarity between q̃ and the contextual
encoding vectors in B and E to determine the beginning
and ending answer pointers. Corresponding similarity vec-
tors sb ∈ R

T and se ∈ R
T are computed as:

sb = q̃ B� , se = q̃ E� (12)

The probability distributions for the beginning pointer b and
the ending pointer e for a given passage P and a question Q
can be given as:

Pr(b | P,Q) = softmax(sb)
Pr(e | P,Q, b) = softmax(se) (13)
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Passage: ... The family of a Korean-American missionary
believed held in North Korea said Tuesday they are work-
ing with U.S. officials to get him returned home. Robert
Park told relatives before Christmas that he was trying to
sneak into the isolated communist state to bring a mes-
sage of ”Christ’s love and forgiveness” to North Korean
leader Kim ...
Question: What is the name of the Korean-American
missionary?
Reference Answer: Robert Park

Table 1: Example of a (passage, question, answer)

Figure 2: Multi-factor attention weights (darker regions sig-
nify higher weights).

The joint probability distribution for obtaining the answer a
is given as:

Pr(a | P,Q) = Pr(b | P,Q) Pr(e | P,Q, b) (14)

To train our model, we minimize the cross entropy loss:

loss = −
∑

log Pr(a | P,Q) (15)

summing over all training instances. During prediction, we
select the locations in the passage for which the product of
Pr(b) and Pr(e) is maximum keeping the constraint 1 ≤ b ≤
e ≤ T .

Visualization

To understand how the proposed model works, for the ex-
ample given in Table 1, we visualize the normalized multi-
factor attention weights F̃ and the attention weights k which
are used for max-attentional question aggregation.

In Figure 2, a small portion of F̃ has been shown, in
which the answer words Robert and Park are both assigned
higher weights when paired with the context word Korean-
American. Due to the use of multi-factor attention, the an-
swer segment pays more attention to the important keyword
although it is quite far in the context passage and thus effec-
tively infers the correct answer by deeper understanding. In
Figure 3, it is clear that the important question word name is
getting a higher weight than the other question words. This
helps to infer the fine-grained answer type during prediction,
i.e., a person’s name in this example.

Figure 3: Max-attentional weights for question (the origin is
set to −0.1 for clarity).

Model
Dev Test

EM F1 EM F1

(Trischler et al. 2016)
Match-LSTM 34.4 49.6 34.9 50.0
BARB 36.1 49.6 34.1 48.2

(Golub et al. 2017)
BiDAF on NewsQA - - 37.1 52.3
†Neural BoW Baseline 25.8 37.6 24.1 36.6
†FastQA 43.7 56.4 41.9 55.7
†FastQAExt 43.7 56.1 42.8 56.1

(Weissenborn 2017)
R2-BiLSTM - - 43.7 56.7

AMANDA 48.4 63.3 48.4 63.7

Table 2: Results on the NewsQA dataset. † denotes the mod-
els of (Weissenborn, Wiese, and Seiffe 2017).

Experiments

We evaluated AMANDA on three challenging QA datasets:
NewsQA, TriviaQA, and SearchQA. Using the NewsQA de-
velopment set as a benchmark, we perform rigorous analysis
for better understanding of how our proposed model works.

Datasets

The NewsQA dataset (Trischler et al. 2016) consists of
around 100K answerable questions in total. Similar to
(Trischler et al. 2016; Weissenborn, Wiese, and Seiffe 2017),
we do not consider the unanswerable questions in our exper-
iments. NewsQA is more challenging compared to the pre-
viously released datasets as a significant proportion of ques-
tions requires reasoning beyond simple word- and context-
matching. This is due to the fact that the questions in
NewsQA were formulated only based on summaries without
accessing the main text of the articles. Moreover, NewsQA
passages are significantly longer (average length of 616
words) and cover a wider range of topics.

TriviaQA (Joshi et al. 2017) consists of question-answer
pairs authored by trivia enthusiasts and independently gath-
ered evidence documents from Wikipedia and Bing Web
search. This makes the task more similar to real-life IR-style
QA. In total, the dataset consists of over 650K question-
answer-evidence triples. Due to the high redundancy in
Web search results (around 6 documents per question), each
question-answer-evidence triple is treated as a separate sam-
ple and evaluation is performed at document level. How-

5831



Model Domain
Distant Supervision Verified
Dev Test Dev Test

EM F1 EM F1 EM F1 EM F1
‡Random

Wiki

12.72 22.91 12.74 22.35 14.81 23.31 15.41 25.44
‡Classifier 23.42 27.68 22.45 26.52 24.91 29.43 27.23 31.37
‡BiDAF 40.26 45.74 40.32 45.91 47.47 53.70 44.86 50.71
�MEMEN 43.16 46.90 - - 49.28 55.83 - -
AMANDA 46.95 52.51 46.67 52.22 52.86 58.74 50.51 55.93
‡Classifier

Web

24.64 29.08 24.00 28.38 27.38 31.91 30.17 34.67
‡BiDAF 41.08 47.40 40.74 47.05 51.38 55.47 49.54 55.80
�MEMEN 44.25 48.34 - - 53.27 57.64 - -
AMANDA 46.68 53.27 46.58 53.13 60.31 64.90 55.14 62.88

Table 3: Results on the TriviaQA dataset. ‡(Joshi et al. 2017), �(Pan et al. 2017)

Model Set
Unigram N-gram
Accuracy F1

(Dunn et al. 2017)

TF-IDF Max Dev 13.0 -
Test 12.7 -

ASR Dev 43.9 24.2
Test 41.3 22.8

AMANDA Dev 48.6 57.7
Test 46.8 56.6

Table 4: Results on the SearchQA dataset.

ever, in Wikipedia, questions are not repeated (each ques-
tion has 1.8 evidence documents) and evaluation is per-
formed over questions. In addition to distant supervision,
TriviaQA also has a verified human-annotated question-
evidence collection. Compared to previous datasets, Trivi-
aQA has more complex compositional questions which re-
quire greater multi-sentence reasoning.

SearchQA (Dunn et al. 2017) is also constructed to more
closely reflect IR-style QA. They first collected existing
question-answer pairs from a Jeopardy archive and aug-
mented them with text snippets retrieved by Google. One
difference with TriviaQA is that the evidence passages in
SearchQA are Google snippets instead of Wikipedia or Web
search documents. This makes reasoning more challenging
as the snippets are often very noisy. SearchQA consists of
140,461 question-answer pairs, where each pair has 49.6
snippets on average and each snippet has 37.3 tokens on av-
erage.

Experimental Settings

We tokenize the corpora with NLTK2. We use the 300-
dimension pre-trained word vectors from GloVe (Penning-
ton, Socher, and Manning 2014) and we do not update them
during training. The out-of-vocabulary words are initial-
ized with zero vectors. We use 50-dimension character-level
embedding vectors. The number of hidden units in all the
LSTMs is 150. We use dropout (Srivastava et al. 2014) with

2http://www.nltk.org/

probability 0.3 for every learnable layer. For multi-factor at-
tentive encoding, we choose 4 factors (m) based on our ex-
perimental findings (refer to Table 7). During training, the
minibatch size is fixed at 60. We use the Adam optimizer
(Kingma and Ba 2015) with learning rate of 0.001 and clip-
norm of 5. During testing, we enforce the constraint that the
ending pointer will always be equal to or greater than the
beginning pointer. We use exact match (EM) and F1 scores
as the evaluation metrics.

Results

Table 2 shows that AMANDA outperforms all the state-
of-the-art models by a significant margin on the NewsQA
dataset. Table 3 shows the results on the TriviaQA dataset.
In Table 3, the model named Classifier based on feature en-
gineering was proposed by Joshi et al. (2017). They also
reported the performance of BiDAF (Seo et al. 2017). A
memory network-based approach, MEMEN, was recently
proposed by (Pan et al. 2017). Note that in the Wikipedia
domain, we choose the answer which provides the highest
maximum joint probability (according to Eq. (14)) for any
document. Table 3 shows that AMANDA achieves state-of-
the-art results in both Wikipedia and Web domain on dis-
tantly supervised and verified data.

Results on the SearchQA dataset are shown in Table 4. In
addition to a TF-IDF approach, Dunn et al. (2017) modified
and reported the performance of attention sum reader (ASR)
which was originally proposed by Kadlec et al. (2016). We
consider a maximum of 150 words surrounding the answer
from the concatenated ranked list of snippets as a passage
to more quickly train the model and to reduce the amount
of noisy information. During prediction, we choose the first
200 words (about 5 snippets) from the concatenated ranked
list of snippets as an evidence passage. These are cho-
sen based on performance on the development set. Based
on question patterns, question types are always represented
by the first two sequence-level representations of question
words. To make the results comparable, we also report ac-
curacy for single-word-answer (unigram) questions and F1
score for multi-word-answer (n-gram) questions. AMANDA
outperforms both systems, especially for multi-word-answer
questions by a huge margin. This indicates that AMANDA
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Model EM F1

minus multi factor attn. 46.4 61.2
minus qma and qf 46.2 60.5
minus qma 46.6 61.3
minus qf 46.8 61.8
AMANDA 48.4 63.3

Table 5: Ablation of proposed components on the NewsQA
development set.

Model EM F1

minus char embedding 47.5 61.4
minus question-dependent passage enc. 32.1 45.0
minus 2nd LSTM during prediction 46.5 61.6
AMANDA 48.4 63.3

Table 6: Ablation of other components on the NewsQA de-
velopment set

can learn to make inference reasonably well even if the evi-
dence passages are noisy.

Effectiveness of the Model Components

Table 5 shows that AMANDA performs better than any
of the ablated models which include the ablation of multi-
factor attentive encoding, max-attentional question aggrega-
tion (qma), and question type representation (qf ). We also
perform statistical significance test using paired t-test and
bootstrap resampling. Performance of AMANDA (both in
terms of EM and F1) is significantly better (p < 0.01) than
the ablated models.

One of the key contributions of this paper is multi-factor
attentive encoding which aggregates information from the
relevant passage words by using a tensor-based attention
mechanism. The use of multiple factors helps to fine-tune
answer inference by synthesizing information distributed
across multiple sentences. The number of factors is the gran-
ularity to which the model is allowed to refine the evidence.
The effect of multi-factor attentive encoding is illustrated by
the following example taken from the NewsQA development
set:
What will allow storage on remote servers?
...The iCloud service will now be integrated into the iOS 5

operating system. It will work with apps and allow content
to be stored on remote servers instead of the users’ iPod,
iPhone or other device...
When multi-factor attentive encoding is ablated, the model
could not figure out the cross-sentence co-reference and
wrongly predicted the answer as apps. On the contrary, with
multi-factor attentive encoding, AMANDA could correctly
infer the answer as iCloud service.

Another contribution of this work is to include the ques-
tion focus during prediction. It is performed by adding two
components: qma (max-attentional question aggregation)
and qf (question type representation). qma and qf implic-
itly infer the answer type during prediction by focusing on
the important question words. Impact of the question focus

Value of m 1 2 3 4 5

EM 45.8 47.4 48.7 48.4 48.0
F1 61.2 61.9 62.9 63.3 62.5

Table 7: Variation of m on the NewsQA development set.

Aggregation EM F1

Mean 46.6 61.3
Sum 47.9 62.2
Max (AMANDA) 48.4 63.3

Table 8: Variation of question aggregation formulation on
the NewsQA development set.

components is illustrated by the following example taken
from the NewsQA development set:
who speaks on Holocaust remembrance day?

... Israel’s vice prime minister Silvan Shalom said Tuesday
“Israel can never ... people just 65 years ago” ... He was
speaking as Israel observes its Holocaust memorial day, re-
membering the roughly...
Without the qma and qf components, the answer was
wrongly predicted as Israel, whereas with qma and qf ,
AMANDA could correctly infer the answer type (i.e., a per-
son’s name) and predict Silvan Shalom as the answer.

Ablation studies of other components such as character
embedding, question-dependent passage encoding, and the
second LSTM during prediction are given in Table 6. When
the second LSTM (E) is ablated, a feed-forward layer is
used instead. Table 6 shows that question-dependent passage
encoding has the highest impact on performance.

Variation on the number of factors (m) and qma

Table 7 shows the performance of AMANDA for different
values of m. We use 4 factors for all the experiments as it
gives the highest F1 score. Note that m = 1 is equivalent to
standard bilinear attention.

Table 8 shows the variation of question aggregation for-
mulation. For mean aggregation, the attentional weight vec-
tor k is formulated by applying column-wise averaging on
the attention matrix A. Intuitively, it is giving equal priority
to all the passage words to determine a particular question
word attention. Similarly, in the case of sum aggregation,
we apply a column-wise sum operation. Table 8 shows that
the best performance is obtained when qma is obtained with
a column-wise maximum operation on A. Effectively, it is
helping to give higher weights to the more important ques-
tion words based on the most relevant passage words.

Quantitative Error Analysis

We analyzed the performance of AMANDA across differ-
ent question types and different predicted answer lengths.
Figure 4(a) shows that it performs poorly on why and other
questions whose answers are usually longer. Figure 4(b) sup-
ports this fact as well. When the predicted answer length in-
creases, both F1 and EM start to degrade. The gap between
F1 and EM also increases for longer answers. This is be-
cause for longer answers, the model is not able to decide
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(a) (b)

Figure 4: (a) Results for different question types. (b) Results
for different predicted answer lengths.

Answer ambiguity (42%)
Q: What happens to the power supply?
... customers possible.” The outages were due mostly
to power lines downed by Saturday’s hurricane-force
winds, which knocked over trees and utility poles. At ...
Context mismatch (22%)
Q: Who was Kandi Burrus’s fiance?
Kandi Burruss, the newest cast member of the reality
show “The Real Housewives of Atlanta” ... fiance, who
died ... fiance, 34-year-old Ashley “A.J.” Jewell, also...
Complex inference (10%)
Q: When did the Delta Queen first serve?
... the Delta Queen steamboat, a floating National ...
scheduled voyage this week ... The Delta Queen will go
... Supporters of the boat, which has roamed the nation’s
waterways since 1927 and helped the Navy ...
Paraphrasing issues (6%)
Q: What was Ralph Lauren’s first job?
Ralph Lauren has ... Japan. For four ... than the former
tie salesman from the Bronx. “Those ties ... Lauren orig-
inally named his company Polo because ...

Table 9: Examples of different error types and their percent-
ages. Ground truth answers are bold-faced and predicted an-
swers are underlined.

the exact boundaries (low EM score) but manages to predict
some correct words which partially overlap with the refer-
ence answer (relatively higher F1 score).

Qualitative Error Analysis

On the NewsQA development set, AMANDA predicted
completely wrong answers on 25.1% of the questions. We
randomly picked 50 such questions for analysis. The ob-
served types of errors are given in Table 9 with examples.
42% of the errors are due to answer ambiguities, i.e., no
unique answer is present. 22% of the errors are due to mis-
match between question and context words. 10% of the er-
rors are due to the need for highly complex inference. 6%
of the errors occur due to paraphrasing, i.e., the question
is posed with different words which do not appear in the
passage context. The remaining 20% of the errors are due
to insufficient evidence, incorrect tokenization, wrong co-
reference resolution, etc.

Related Work

Recently, several neural network-based models have been
proposed for QA. Models based on the idea of chunking and
ranking include Yu et al. (2016) and Lee et al. (2016). Yang
et al. (2017) used a fine-grained gating mechanism to cap-
ture the correlation between a passage and a question. Wang
and Jiang (2017) used a Match-LSTM to encode the ques-
tion and passage together and a boundary model determined
the beginning and ending boundary of an answer. Trischler
et al. (2016) reimplemented Match-LSTM for the NewsQA
dataset and proposed a faster version of it. Xiong, Zhong,
and Socher (2017) used a co-attentive encoder followed by
a dynamic decoder for iteratively estimating the boundary
pointers. Seo et al. (2017) proposed a bi-directional atten-
tion flow approach to capture the interactions between pas-
sages and questions. Weissenborn, Wiese, and Seiffe (2017)
proposed a simple context matching-based neural encoder
and incorporated word overlap and term frequency features
to estimate the start and end pointers. Wang et al. (2017)
proposed a gated self-matching approach which encodes
the passage and question together using a self-matching at-
tention mechanism. Pan et al. (2017) proposed a memory
network-based multi-layer embedding model and reported
results on the TriviaQA dataset.

Different from all prior approaches, our proposed multi-
factor attentive encoding helps to aggregate relevant evi-
dence by using a tensor-based multi-factor attention mecha-
nism. This in turn helps to infer the answer by synthesizing
information from multiple sentences. AMANDA also learns
to focus on the important question words to encode the ag-
gregated question vector for predicting the answer with suit-
able answer type.

Conclusion

In this paper, we have proposed a question-focused multi-
factor attention network (AMANDA), which learns to ag-
gregate meaningful evidence from multiple sentences with
deeper understanding and to focus on the important words
in a question for extracting an answer span from the passage
with suitable answer type. AMANDA achieves state-of-
the-art performance on NewsQA, TriviaQA, and SearchQA
datasets, outperforming all prior published models by signif-
icant margins. Ablation results show the importance of the
proposed components.
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