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Abstract

We improve automatic correction of grammatical, ortho-
graphic, and collocation errors in text using a multilayer con-
volutional encoder-decoder neural network. The network is
initialized with embeddings that make use of character N-
gram information to better suit this task. When evaluated
on common benchmark test data sets (CoNLL-2014 and JF-
LEG), our model substantially outperforms all prior neural
approaches on this task as well as strong statistical machine
translation-based systems with neural and task-specific fea-
tures trained on the same data. Our analysis shows the supe-
riority of convolutional neural networks over recurrent neural
networks such as long short-term memory (LSTM) networks
in capturing the local context via attention, and thereby im-
proving the coverage in correcting grammatical errors. By
ensembling multiple models, and incorporating an N-gram
language model and edit features via rescoring, our novel
method becomes the first neural approach to outperform the
current state-of-the-art statistical machine translation-based
approach, both in terms of grammaticality and fluency.

Introduction

With the increasing number of non-native learners and writ-
ers of the English language around the globe, the neces-
sity to improve authoring tools such as error correction sys-
tems is increasing. Grammatical error correction (GEC) is
a well-established natural language processing (NLP) task
that deals with building systems for automatically correct-
ing errors in written text, particularly in non-native written
text. The errors that a GEC system attempts to correct are
not limited to grammatical errors, but also include spelling
and collocation errors.

GEC in English has gained much attention within the
NLP community recently. The phrase-based statistical ma-
chine translation (SMT) approach has emerged as the state-
of-the-art approach for this task (Chollampatt and Ng 2017;
Junczys-Dowmunt and Grundkiewicz 2016), in which GEC
is treated as a translation task from the language of “bad”
English to the language of “good” English. The transla-
tion model is learned using parallel error-corrected corpora
(source text that contains errors and their corresponding cor-
rected target text). Although neural network (NN) models
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have been used as features to improve the generalization of
the SMT approach (Chollampatt, Taghipour, and Ng 2016),
SMT still suffers from limitations in accessing the global
source and target context effectively. The treatment of words
and phrases as discrete entities during decoding also lim-
its its generalization capabilities. To this end, several neu-
ral encoder-decoder approaches were proposed for this task
(Xie et al. 2016; Yuan and Briscoe 2016; Ji et al. 2017;
Schmaltz et al. 2017). However, their performance still falls
substantially behind state-of-the-art SMT approaches.

All prior neural approaches for GEC relied on using recur-
rent neural networks (RNNs). In contrast to previous neu-
ral approaches, our neural approach to GEC is based on a
fully convolutional encoder-decoder architecture with mul-
tiple layers of convolutions and attention (Gehring et al.
2017). Our analysis shows that convolutional neural net-
works (CNNs) can capture local context more effectively
than RNNs as the convolution operations are performed
over smaller windows of word sequences. Most grammat-
ical errors are often localized and dependent only on the
nearby words. Wider contexts and interaction between dis-
tant words can also be captured by a multilayer hierarchical
structure of convolutions and an attention mechanism that
weights the source words based on their relevance in pre-
dicting the target word. Moreover, only a fixed number of
non-linearities are performed on the input irrespective of the
input length whereas in RNNs, the number of non-linearities
is proportional to the length of the input, diminishing the ef-
fects of distant words.

We further improve the performance by ensembling mul-
tiple models. Contrary to prior neural approaches, we use
a simpler pre-processing method to alleviate the unknown
word problem (Sennrich, Haddow, and Birch 2016). Rare
words are split into multiple frequent sub-words using a
byte pair encoding (BPE) algorithm. One of the major weak-
nesses of prior neural approaches is that they do not incor-
porate task-specific features nor utilize large native English
corpora to good effect. We use such English corpora in our
encoder-decoder model to pre-train the word vectors to be
used for initializing the embeddings in the encoder and de-
coder. We also train an N-gram language model to be used as
a feature along with edit operation count features in rescor-
ing to produce an overall better output.

To summarize, this paper makes the following contribu-
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tions: (1) We successfully employ a convolutional encoder-
decoder model trained on BPE tokens as our primary model
to achieve state-of-the-art performance for GEC. Ours is the
first work to use fully convolutional neural networks for
end-to-end GEC. (2) We exploit larger English corpora to
pre-train word embeddings and to train an N-gram language
model to be used as a feature in a rescorer that is trained to
optimize the target metric using minimum error rate train-
ing (Och 2003). (3) We conduct a comparison of attention
mechanisms in typical recurrent architectures and our mod-
els, and perform error type performance analysis to identify
the strengths of our approach over the current state-of-the-
art SMT approach.

Related Work

GEC gained much attention within the NLP community af-
ter the CoNLL-2014 shared task (Ng et al. 2014) was or-
ganized. The shared task dealt with the correction of all
grammatical errors in English essays. Since then, the test
set for the shared task has been used to benchmark GEC
systems. Statistical machine translation has emerged as the
state-of-the-art approach (Chollampatt and Ng 2017) due to
its ability to correct various types of errors and complex er-
ror patterns, whereas previous approaches relied on building
error type-specific classifiers (Dahlmeier, Ng, and Ng 2012;
Rozovskaya et al. 2014). The SMT framework largely ben-
efits from its ability to incorporate large error-corrected
parallel corpora like the publicly available Lang-8 corpus
(Mizumoto et al. 2011), additional English corpora for train-
ing robust language models (LMs), task-specific features
(Junczys-Dowmunt and Grundkiewicz 2016), and neural
models (Chollampatt, Taghipour, and Ng 2016). However,
SMT-based systems suffer from limited generalization capa-
bilities compared to neural approaches and are unable to ac-
cess longer source and target contexts effectively. To address
these issues, several neural encoder-decoder approaches re-
lying on RNNs were proposed for GEC.

Neural Encoder-Decoder Approaches to GEC

Yuan and Briscoe (2016) first applied a popular neural ma-
chine translation model, RNNSearch (Bahdanau, Cho, and
Bengio 2015), consisting of a bidirectional RNN encoder
and an attention-based RNN decoder. They additionally
made use of an unsupervised word alignment model and a
word-level statistical translation model to replace unknown
words in the output. However, they trained their systems
on l.9M sentence pairs from the professionally annotated,
non-public Cambridge Learner Corpus (CLC), making their
models hard to replicate and compare with.

Xie et al. (2016) proposed the use of a character-level
recurrent encoder-decoder network for GEC. They trained
their models on the publicly available NUCLE (Dahlmeier,
Ng, and Wu 2013) and Lang-8 corpora, along with syn-
thesized examples for frequent error types. They also in-
corporated an N-gram LM trained on a small subset of the
Common Crawl corpus (2.2B N-grams) during decoding to
achieve an F0.5 score of 39.97 on the CoNLL-2014 test set.
They further used a supervised edit classifier trained on char-

acter and word-level edit operation and pre-trained word em-
bedding features to remove spurious edits and improve the
F0.5 score to 40.56.

Ji et al. (2017) proposed a hybrid word-character model
based on the hybrid machine translation model of (Luong
and Manning 2016), by adding nested levels of attention at
the word and character level. Similar to (Yuan and Briscoe
2016), they also made use of the non-public CLC cor-
pus in training in addition to Lang-8 and NUCLE, result-
ing in 2.6M sentence pairs. By further adding a web-scale
Common Crawl LM that was used in (Junczys-Dowmunt
and Grundkiewicz 2016) in a rescoring step, they achieved
an F0.5 score of 45.15 on the CoNLL-2014 test set. Their
rescorer was trained using a simple grid search with fixed
step size to get the feature weights and did not make use of
task-specific features, whereas we use minimum error rate
training (Och 2003) to find optimal feature weights and use
edit operation features and LM features.

More recently, Schmaltz et al. (2017) used a word-level
bidirectional LSTM network trained on Lang-8 and NU-
CLE (1.4M sentence pairs) with edit operations (insertions,
deletions, and substitutions) marked with special tags in
the target sentences. Their untuned model and the baseline
that did not have edit operation tags marked yielded a high
precision and a low recall. However, when they tuned the
weights for the edit operations using a grid search maxi-
mizing F0.5, their recall went up. Without using any addi-
tional models or corpora, their approach achieved F0.5 score
of 41.37 on the CoNLL-2014 test set. Their edit operation
tagging method and tuning also implicitly modeled edit op-
eration weights. We model edit operations explicitly in our
approach by counting and using them as weighted features
in our rescorer.

A Multilayer Convolutional Encoder-Decoder

Neural Network

Encoder-decoder models are most widely used for machine
translation from a source language to a target language. Sim-
ilarly, an encoder-decoder model can be employed for GEC,
where the encoder network is used to encode the poten-
tially erroneous source sentence in vector space and a de-
coder network generates the corrected output sentence by
using the source encoding. The attention mechanism (Bah-
danau, Cho, and Bengio 2015) selectively weights different
parts of the source sentence during decoding, allowing for a
different encoding of the source sentence at every decoding
time step. We build our models based on an encoder-decoder
architecture with multiple layers of convolutions and atten-
tion mechanisms, similar to its use in MT by (Gehring et al.
2017). The models are trained on words with rare words seg-
mented into sub-words (Sennrich, Haddow, and Birch 2016).

Model

Consider an input source sentence S given as a sequence of
m source tokens s1, . . . , sm and si ∈ Vs, where Vs is the
source vocabulary. The last source token, sm, is a special
end-of-sentence marker token. The source tokens are em-
bedded in continuous space as s1, . . . , sm. The embedding
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Figure 1: Architecture of our multilayer convolutional model
with seven encoder and seven decoder layers (only one en-
coder and one decoder layer are illustrated in detail).

si ∈ R
d is given by si = w(si) + p(i), where w(si) is the

word embedding and p(i) is the position embedding cor-
responding to the position i of token si in the source sen-
tence. Both embeddings are obtained from embedding ma-
trices that are trained along with other parameters of the net-
work.

The encoder and decoder are made up of L layers each.
The architecture of the network is shown in Figure 1. The
source token embeddings, s1, . . . , sm, are linearly mapped
to get input vectors of the first encoder layer, h0

1, . . . ,h
0
m,

where h0
i ∈ R

h and h is the input and output dimension of
all encoder and decoder layers. Linear mapping is done by
multiplying a vector with weights W ∈ R

h×d and adding
the biases b ∈ R

h:

h0
i = Wsi + b

In the first encoder layer, 2h convolutional filters of dimen-
sion 3 × h map every sequence of three consecutive input
vectors to a feature vector f1i ∈ R

2h. Paddings (denoted by
<pad> in Figure 1) are added at the beginning and end of
the source sentence to retain the same number of output vec-
tors as the source tokens after the convolution operations.

f1i = Conv(h0
i−1,h

0
i ,h

0
i+1)

where Conv(·) represents the convolution operation. This is
followed by a non-linearity using gated linear units (GLU)
(Dauphin et al. 2016):

GLU(f1i ) = f1i,1:h ◦ σ(f1i,h+1:2h)

where GLU(f1i ) ∈ R
h, ◦ and σ represent element-wise mul-

tiplication and sigmoid activation functions, respectively,
and f1i,u:v denotes the elements of f1i from indices u to v
(both inclusive). The input vectors to an encoder layer are
finally added as residual connections. The output vectors of
the lth encoder layer are given by,

hl
i = GLU(f li ) + hl−1

i i = 1, . . . ,m

Each output vector of the final encoder layer, hL
i ∈ R

h, is
linearly mapped to get the encoder output vector, ei ∈ R

d,
using weights We ∈ R

d×h and biases be ∈ R
d:

ei = Weh
L
i + be i = 1, . . . ,m

Now, consider the generation of the target word tn at
the nth time step in decoding, with n − 1 target words
previously generated. For the decoder, paddings are added
at the beginning. The two paddings, beginning-of-sentence
marker and the previously generated tokens, are embedded
as t−2, t−1, t0, t1, . . . , tn−1 in the same way as source to-
ken embeddings are computed. Each embedding tj ∈ R

d is
linearly mapped to g0

j ∈ R
h and passed as input to the first

decoder layer. In each decoder layer, convolution operations
followed by non-linearities are performed on the previous
decoder layer’s output vectors gl−1

j , where j = 1, . . . , n:

yl
j = GLU(Conv(gl−1

j−3,g
l−1
j−2,g

l−1
j−1)

where Conv(·) and GLU(·) represent convolutions and non-
linearities respectively, and yl

j becomes the decoder state at
the jth time step in the lth decoder layer. The number and size
of convolution filters are the same as those in the encoder.

Each decoder layer has its own attention module. To com-
pute attention at layer l before predicting the target token
at the nth time step, the decoder state yl

n ∈ R
h is lin-

early mapped to a d-dimensional vector with weights Wz ∈
R

d×h and biases bz ∈ R
d, adding the previous target to-

ken’s embedding:

zln = Wzy
l
n + bz + tn−1

The attention weights αl
n,i are computed by a dot product of

the encoder output vectors e1, . . . , em with zln and normal-
ized by a softmax:

αl
n,i =

exp(e�i z
l
n)∑m

k=1 exp(e�k zln)
i = 1, . . . ,m

The source context vector xl
n is computed by applying the

attention weights to the summation of the encoder output
vectors and the source embeddings. The addition of the
source embeddings helps to better retain information about
the source tokens.

xl
n =

m∑

i=1

αl
n,i(ei + si)

The context vector xl
n is then linearly mapped to cln ∈ R

h.
The output vector of the lth decoder layer, gln, is the summa-
tion of cln, yl

n, and the previous layer’s output vector gl−1
n .

gl
n = yl

n + cln + gl−1
n

The final decoder layer output vector gL
n is linearly mapped

to dn ∈ R
d. Dropout (Srivastava et al. 2014) is applied at

the decoder outputs, embeddings, and before every encoder
and decoder layer. The decoder output vector is then mapped
to the target vocabulary size (|Vt|) and softmax is computed
to obtain target word probabilities.

on = Wodn + bo Wo ∈ R
|Vt|×d,bo ∈ R

|Vt|
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p(tn = wi|t1, . . . , tn−1, S) =
exp(on,i)∑|Vt|

k=1 exp(on,k)
where wi is the ith word in the target vocabulary Vt.

Pre-Training of Word Embeddings

We initialize the word embeddings for the source and tar-
get words with pre-trained word embeddings learned from a
large English corpus. Rare words in this English corpus are
split into BPE-based sub-word units as we use similar pre-
processing for the parallel corpus that is used to train the net-
work. The word embeddings are computed by representing
a word as a bag of character N-grams and summing the skip-
gram embeddings of these character n-gram sequences, us-
ing the fastText tool (Bojanowski et al. 2017). These embed-
dings have information about the underlying morphology of
words and was empirically found to perform better than ini-
tializing the network randomly or using word2vec (Mikolov
et al. 2013) embeddings, which treat words as separate enti-
ties and have no information about the character sequences
that make up the words.

Training

The model is trained using the negative log-likelihood loss
function:

L = − 1

N

N∑

i=1

1

Ti

Ti∑

j=1

log
(
p(ti,j |ti,1, . . . , ti,j−1, S)

)

where N is the number of training instances in a batch,
Ti is the number of tokens in the ith reference sentence,
ti,j is the jth target word in the reference correction for
the ith training instance. The parameters are optimized us-
ing Nesterov’s Accelerated Gradient Descent (NAG) with a
simplified formulation for Nesterov’s momentum (Bengio,
Boulanger-Lewandowski, and Pascanu 2013).

Decoding

The encoder-decoder model estimates the probability of tar-
get words given the erroneous source sentence S. The best
sequence of target words is obtained by a left-to-right beam
search. In a beam search, the top b probable candidates at ev-
ery decoding time step is retained. The top-scoring candidate
in the beam at the end of the search will be the correction hy-
pothesis. The model score of a hypothesis is the sum of the
log probabilities of the hypothesis words computed by the
network. We also perform ensembling during decoding by
averaging the predictions from multiple models in order to
compute the log probability scores of the hypothesis words.
The models used for ensembling have the same architecture
but are trained with different random initializations.

Rescoring

In order to incorporate task-specific features and large lan-
guage models, we re-score the final beam candidates using a
log-linear framework. The score of a correction hypothesis
sentence T given the source sentence S is given by,

score(T, S) =
F∑

i=1

λifi(T, S)

where, λi and fi are the ith feature weight and feature func-
tion respectively, and F is the number of features. The fea-
ture weights are computed by minimum error rate training
(MERT) (Och 2003) on the development set. We use the fol-
lowing sets of features in rescoring in addition to the model
score of the hypothesis:

1. Edit operation (EO) features: Three features denoting
the number of token-level substitutions, deletions, and in-
sertions between the source sentence and the hypothesis
sentence.

2. Language model (LM) features: Two features, a 5-gram
language model score (i.e., the sum of log probabilities
of 5-grams in the hypothesis sentence) and the num-
ber of words in the hypothesis. Similar to state-of-the-
art methods, the language model is trained on the web-
scale Common Crawl corpus (Chollampatt and Ng 2017;
Junczys-Dowmunt and Grundkiewicz 2016).

Experimental Setup

Datasets

We use two public datasets from prior work, Lang-8 (Mizu-
moto et al. 2011) and NUCLE (Dahlmeier, Ng, and Wu
2013), to create our parallel data. Along with the sentence
pairs from NUCLE, we extract and use the English sentence
pairs in Lang-8 by selecting essays written by English learn-
ers and removing non-English sentences from them using
a language identification tool1. Sentence pairs that are un-
changed on the target side are discarded from the training
set. A subset of this data, 5.4K sentence pairs from NUCLE,
is taken out to be used as the development data for model se-
lection and training the rescorer. The remaining parallel data
that is used for training the encoder-decoder NN consists of
1.3M sentence pairs (18.05M source words and 21.53M tar-
get words). We also make use of the larger English corpora
from Wikipedia (1.78B words) for pre-training the word em-
beddings, and a subset of the Common Crawl corpus (94B
words) for training the language model for rescoring. Cor-
pora of similar size from the Common Crawl have been
used by leading GEC systems (Chollampatt and Ng 2017;
Ji et al. 2017; Junczys-Dowmunt and Grundkiewicz 2016).

Evaluation

Our evaluation setting is the same as that in the CoNLL-
2014 shared task. We evaluate our models and compare them
to previous systems on the official CoNLL-2014 test set
using the F0.5 score computed using the MaxMatch scorer
(Dahlmeier and Ng 2012). Following prior work, we ana-
lyze our neural model choices and perform ablation studies
on the CoNLL-2013 shared task test set.

We also evaluate the fluency of our model outputs on
the recently released JFLEG development and test sets
(Napoles, Sakaguchi, and Tetreault 2017), which have
fluency-based rewrites of learner-written sentences done
by native writers in order to make the sentences native-
sounding and error-free. The GLEU metric is used to as-

1https://github.com/saffsd/langid.py
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System Parallel Is Data Other CoNLL-2014 Test Set
Data Public? Corpora Prec. Recall F0.5

Baselines
SMT L8, NUCLE Yes – 57.94 16.48 38.54
SMT +NNJM L8, NUCLE Yes – 58.38 18.83 41.11
This work (no additional corpora)
MLConv L8, NUCLE Yes – 59.68 23.15 45.36
MLConv (4 ens.) L8, NUCLE Yes – 67.06 22.52 48.05
MLConv (4 ens.) +EO L8, NUCLE Yes – 62.36 27.55 49.78
This work (using additional corpora)
MLConvembed L8, NUCLE Yes Wiki 60.90 23.74 46.38
MLConvembed (4 ens.) L8, NUCLE Yes Wiki 68.13 23.45 49.33
MLConvembed (4 ens.) +EO L8, NUCLE Yes Wiki 63.12 28.36 50.70
MLConvembed (4 ens.) +EO +LM L8, NUCLE Yes Wiki, CC 65.18 32.26 54.13
MLConvembed (4 ens.) +EO +LM +SpellCheck L8, NUCLE Yes Wiki, CC, SP 65.49 33.14 54.79
Prior encoder-decoder approaches
(Ji et al. 2017) with LM L8, NUCLE, CLC No CC – – 45.15
(Ji et al. 2017) without LM L8, NUCLE, CLC No – – – 41.53
(Schmaltz et al. 2017) L8, NUCLE Yes – – – 41.37
(Xie et al. 2016) with LM, Edit Classifier L8, NUCLE Yes CC (small) 49.24 23.77 40.56
(Yuan and Briscoe 2016) CLC No – – – 39.90
State-of-the-art systems
(Chollampatt and Ng 2017) +SpellCheck L8, NUCLE Yes Wiki, CC, SP 62.74 32.96 53.14
(Chollampatt and Ng 2017) L8, NUCLE Yes Wiki, CC 62.14 30.92 51.70
(Junczys-Dowmunt and Grundkiewicz 2016) L8, NUCLE Yes Wiki, CC 61.27 27.98 49.49

Table 1: Results on the CoNLL-2014 test set. For single models (MLConv and MLConvembed), average precision, recall, and
F0.5 of 4 models (trained with different random initializations) are reported. (4 ens.) refers to the ensemble decoding of these 4
models. +EO and +LM refer to re-scoring using edit operation and language model features, respectively. +SpellCheck denotes
the addition of the publicly available spell checker proposed in (Chollampatt and Ng 2017). L8 refers to the Lang-8 corpus, CC
refers to Common Crawl, CLC refers to the non-public Cambridge Learner Corpus, and SP refers to the corpus of misspellings.
A smaller subset of CC (2.2B words) was used in (Xie et al. 2016) compared to the rest (94B – 97B words).

sess fluency of corrected text when the error-span and error-
type annotations are not provided (Napoles et al. 2015). We
also calculate the F0.5 score after automatically extracting
the annotation span using the scripts released with the JF-
LEG dataset.

Model and Training Details

We extend the publicly available PyTorch-based implemen-
tation2 for training multilayer convolutional models initial-
ized with pre-trained embeddings. Both source and target
embeddings are of 500 dimensions. Each of the source and
target vocabularies consists of 30K most frequent BPE to-
kens from the source and target side of the parallel data, re-
spectively. Pre-training is done using fastText with one pass
on the Wikipedia corpus using a skip-gram model with a
window size of 5. Character N-gram sequences of size be-
tween 3 and 6 (both inclusive) are used to compute the word
embeddings and other parameters are kept to their default
values. The embeddings are updated during training of the
encoder-decoder NN. Each of the encoder and decoder is
made up of seven convolutional layers, with a convolution
window width of 3. The number of layers in the encoder
and decoder is set based on development set performance
after experimenting with 5, 7, and 9 layers. Output of each
encoder and decoder layer is of 1024 dimensions. Dropout

2https://github.com/facebookresearch/fairseq-py

with probability 0.2 is applied on the embeddings, convolu-
tion layers, and decoder output. We train every model simul-
taneously on 3 NVIDIA Titan X GPUs with a batch size of
32 on each GPU and perform validation after every epoch
concurrently on another NVIDIA Titan X GPU. A learn-
ing rate of 0.25 is used with a learning rate annealing factor
of 0.1 and a momentum value of 0.99. We use early stop-
ping and select the best model based on the F0.5 score on the
development set. Training a single model takes around 18
hours. During decoding, a beam width of 12 is used.

Baselines

We compare our systems to all prior neural approaches for
GEC and two state-of-the-art (SOTA) systems. The first
SOTA system (Junczys-Dowmunt and Grundkiewicz 2016)
employs a word-level SMT approach with task-specific fea-
tures and a web-scale LM trained on the Common Crawl
corpus. The second SOTA system (Chollampatt and Ng
2017) adds an adapted neural network joint model (NNJM)
to a word-level SMT system with task-specific features and
a web-scale LM, with further improvement by spelling er-
ror correction using a character-level SMT system. In or-
der to compare our neural approach to the SMT approach
without using other English corpora, we create two base-
lines using released models of the SOTA system (Chollam-
patt and Ng 2017). The first (SMT +NNJM in Table 1) is
this word-level SMT-based system retuned after removing
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all subsidiary models that make use of additional English
corpora such as the word-class LM and the web-scale Com-
mon Crawl LM. This system has an adapted NNJM and an
operation sequence model (OSM), both trained on the par-
allel data, and has a single LM trained on the target side of
the parallel data. Another non-neural SMT baseline (SMT in
Table 1) is created by further removing the adapted NNJM
and retuning on our development set.

Experiments and Results

Evaluation on Benchmark Corpora

We evaluate our systems based on the grammaticality and
fluency of their output sentences.

Grammaticality We first evaluate different variants of our
system on the CoNLL-2014 test data (Table 1). Our sin-
gle model without using any additional corpora or rescor-
ing (MLConv) achieves 45.36 F0.5. After ensembling four
models (4 ens.), the performance reaches 48.05 F0.5 and out-
performs the previous best neural model without LM (Ji et
al. 2017) (41.53 F0.5) by a large margin of 6.52 F0.5, despite
the latter using much more training data including the non-
public CLC. Our neural systems also substantially outper-
form the two comparable SMT baselines, ‘SMT’ and ‘SMT
+NNJM’. When re-scoring is performed with edit operation
(+EO) features, the performance goes up to 49.78 F0.5, out-
performing a strong SMT-based system (Junczys-Dowmunt
and Grundkiewicz 2016) that uses task-specific features and
a web-scale Common Crawl language model. Our system,
on the other hand, achieves this level of performance with-
out using any additional English corpora or pre-trained word
embeddings. When we train our models by initializing with
pre-trained fastText word embeddings (MLConvembed), de-
code using an ensemble of four models, and rescore with
edit operation features, the performance reaches 50.70 F0.5.

After adding the web-scale LM in rescoring (+LM), our
approach reaches 54.13 F0.5, outperforming the best previ-
ous published result of (Chollampatt and Ng 2017) (F0.5 =
53.14) that additionally uses a spelling correction compo-
nent trained on a spelling corpus. This improvement is sta-
tistically significant (p < 0.001). When we make use of
the spelling correction component in (Chollampatt and Ng
2017) (+SpellCheck), our performance reaches 54.79, a sta-
tistically significant improvement of 1.65 F0.5 (p < 0.001)
over the best previous published result, and establishes the
new state of the art for English GEC. All statistical signif-
icance tests were performed using sign test with bootstrap
resampling on 100 samples.

Fluency We also measure the fluency of the outputs on the
JFLEG development and test sets (Table 2). Our system with
rescoring using edit operation features outperforms the state-
of-the-art system with a web-scale LM without spell check-
ing (Chollampatt and Ng 2017) on both datasets and metrics.
This is without adding the web-scale LM to our system. Af-
ter adding the web-scale LM and using the spell checker, our
method achieves the best reported GLEU and F0.5 scores on
these datasets. It is worth noting that our models achieve this

System JFLEG Dev JFLEG Test
F0.5 GLEU F0.5 GLEU

MLConvembed 56.67 47.71 58.82 51.34
MLConvembed (4 ens.) 57.62 47.93 59.21 51.06

+EO 59.40 49.24 62.15 53.38
+LM 62.44 51.24 65.87 55.99

+SpellCheck 63.61 52.48 66.80 57.47
C&N (2017) 58.17 48.17 60.95 53.18

+SpellCheck 61.51 51.01 64.25 56.78

Table 2: Results on the JFLEG development and test
sets compared to (Chollampatt and Ng 2017) (C&N). For
MLConvembed, average F0.5 and GLEU of 4 models (trained
with different random initializations) are reported.

Architecture Prec. Recall F0.5

BiLSTM 52.49 10.95 29.84
SLConv 43.65 10.23 26.39
MLConv 51.90 12.59 31.96

Table 3: Performance of various architectures on the
CoNLL-2013 test set.

level of performance without tuning on the JFLEG develop-
ment set.

Encoder and Decoder Architecture

We analyze the performance of various network architec-
tures without using pre-trained word embeddings on the
CoNLL-2013 test set (Table 3). We experiment with using a
bidirectional LSTM in the encoder and an attentional LSTM
decoder with a soft attention mechanism (Bahdanau, Cho,
and Bengio 2015) (BiLSTM in Table 3), and compare it
to single layer convolutional (SLConv) as well as our pro-
posed multilayer convolutional (MLConv) encoder and de-
coder models. BiLSTM can capture the entire sentence con-
text from left and right for each input word, whereas SLConv
captures only a few surrounding words (equal to the filter
width of 3). However, MLConv captures a larger surround-
ing context (7 layers × filter width 3 = 21 tokens) more
effectively, causing it to outperform both SLConv and BiL-
STM.

It is interesting to note that the BiLSTM model has a
higher precision than the MLConv model, although its recall
is lower. We analyze the attention weights of both models
(Figure 2) on an example sentence from the CoNLL-2013
test set. The attention weights shown for the MLConv model
is the averaged attention weights of all decoder layers. It can
be seen that BiLSTM produces a sharper distribution plac-
ing higher weights on matching source words as opposed to
MLConv which places noticeable probability mass on the
surrounding context words also. We observed this trend for
all other examples that we tried. This could be the reason
that causes BiLSTM to frequently output the source words,
leading to a fewer number of proposed corrections and con-
sequently, a higher precision. This analysis demonstrates the
ability of MLConv in capturing the context better, thereby
favoring more corrections than copying of the source words.
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Figure 2: Visualization of attention weights of BiLSTM and
MLConv models. y-axis shows the target words and x-axis
shows the source words.

Initialization Prec. Recall F0.5

Random 51.90 12.59 31.96
Word2vec 52.80 12.80 32.49
fastText 51.08 13.63 32.97

Table 4: Results of different embedding initializations on the
CoNLL-2013 test set.

Initialization with Pre-trained Embeddings

We assess various methods of initializing the source and tar-
get word embeddings. Table 4 shows the results of initial-
izing the embeddings randomly as well as with word2vec
and fastText on the CoNLL-2013 test set. We train skip-gram
models with word2vec and use parameters identical to those
we use for fastText. fastText embeddings have access to the
character sequences that make up the words and hence are
better suited to learn word representations taking morphol-
ogy into account. We also find that initializing with fastText
works well empirically, and hence we choose these embed-
dings to initialize our network when evaluating on bench-
mark test datasets.

Analysis and Discussion

We perform error type-specific performance comparison of
our system and the state-of-the-art (SOTA) system (Chol-
lampatt and Ng 2017), using the recently released ERRANT
toolkit (Bryant, Felice, and Briscoe 2017) on the CoNLL-
2014 test data based on F0.5. ERRANT relies on a rule-
based framework to identify the error type of corrections
proposed by a GEC system. The results on four common er-
ror types are shown in Figure 3. We find that our ensembled
model with the rescorer (+EO+LM) performs competitively
on preposition errors, and outperforms the SOTA system on
noun-number, determiner, and subject-verb agreement er-
rors. One of the weaknesses of SMT-based systems is in cor-
rection of subject-verb agreement errors, because a verb and
its subject can be very far apart within a source sentence. On
the other hand, even our single model (MLConvembed) with-
out rescoring is superior to the SOTA SMT-based system in
terms of subject-verb agreement errors, since it has access to
the entire source context through the global attention mech-
anism and to longer target context through multiple layers of

Figure 3: Performance of our models compared to the state-
of-the-art system (Chollampatt and Ng 2017) on common
error types evaluated on the CoNLL-2014 test set based on
F0.5.

convolutions in the decoder.
From our analysis, we find that a convolutional encoder-

decoder NN captures the context more effectively compared
to an RNN and achieves superior results. However, RNNs
can give higher precision, so a combination of both ap-
proaches could be investigated in future. Improved language
modeling has been previously shown to improve GEC per-
formance considerably. We leave it to future work to explore
the integration of web-scale LM during beam search and the
fusion of neural LMs into the network. We also find that a
simple preprocessing method that segments rare words into
sub-words effectively deals with the rare word problem for
GEC, and performs better than character-level models and
complex word-character models.

Conclusion

We use a multilayer convolutional encoder-decoder neural
network for the task of grammatical error correction and
achieve significant improvements in performance compared
to all previous encoder-decoder neural network approaches.
We utilize large English corpora to pre-train and initial-
ize the word embeddings and to train a language model
to rescore the candidate corrections. We also make use
of edit operation features during rescoring. By ensembling
multiple neural models and rescoring, our novel method
achieves improved performance on both CoNLL-2014 and
JFLEG data sets, significantly outperforming the current
leading SMT-based systems. We have thus fully closed
the large performance gap that previously existed between
neural and statistical approaches for this task. The source
code and model files used in this paper are available at
https://github.com/nusnlp/mlconvgec2018.
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