
Classical Planning in Deep Latent Space:
Bridging the Subsymbolic-Symbolic Boundary

Masataro Asai, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo

Abstract

Current domain-independent, classical planners require sym-
bolic models of the problem domain and instance as input,
resulting in a knowledge acquisition bottleneck. Meanwhile,
although deep learning has achieved significant success in
many fields, the knowledge is encoded in a subsymbolic
representation which is incompatible with symbolic systems
such as planners. We propose LatPlan, an unsupervised ar-
chitecture combining deep learning and classical planning.
Given only an unlabeled set of image pairs showing a sub-
set of transitions allowed in the environment (training inputs),
and a pair of images representing the initial and the goal states
(planning inputs), LatPlan finds a plan to the goal state in a
symbolic latent space and returns a visualized plan execu-
tion. The contribution of this paper is twofold: (1) State Au-
toencoder, which finds a propositional state representation of
the environment using a Variational Autoencoder. It gener-
ates a discrete latent vector from the images, based on which
a PDDL model can be constructed and then solved by an off-
the-shelf planner. (2) Action Autoencoder / Discriminator, a
neural architecture which jointly finds the action symbols and
the implicit action models (preconditions/effects), and pro-
vides a successor function for the implicit graph search. We
evaluate LatPlan using image-based versions of 3 planning
domains: 8-puzzle, Towers of Hanoi and LightsOut.

Note: The extended manuscript on Arxiv contains all de-
tails of Latplan, but please cite this AAAI version. Latplan
code is available on Github.

1 Introduction
Recent advances in domain-independent planning have
greatly enhanced their capabilities. However, planning prob-
lems need to be provided to the planner in a structured, sym-
bolic representation such as PDDL (McDermott 2000), and
in general, such symbolic models need to be provided by
a human, either directly in a modeling language such as
PDDL, or via a compiler which transforms some other sym-
bolic problem representation into PDDL. This results in the
knowledge-acquisition bottleneck, where the modeling step
is sometimes the bottleneck in the problem-solving cycle. In
addition, the requirement for symbolic input poses a signifi-
cant obstacle to applying planning in new, unforeseen situa-
tions where no human is available to create such a model or
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An image-based 8-puzzle.

a generator, e.g., autonomous spacecraft exploration. In par-
ticular this first requires generating symbols from raw sensor
input, i.e., the symbol grounding problem (Steels 2008).

Recently, significant advances have been made in neural
network (NN) deep learning approaches for perceptually-
based cognitive tasks including image classification (Deng
et al. 2009), object recognition (Ren et al. 2015), speech
recognition (Deng, Hinton, and Kingsbury 2013), machine
translation as well as NN-based problem-solving systems
(Mnih et al. 2015; Graves et al. 2016). However, the current
state-of-the-art, pure NN-based systems do not yet provide
guarantees provided by symbolic planning systems, such as
deterministic completeness and solution optimality.

Using a NN-based perceptual system to automatically
provide input models for domain-independent planners
could greatly expand the applicability of planning technol-
ogy and offer the benefits of both paradigms. We consider
the problem of robustly, automatically bridging the gap be-
tween such subsymbolic representations and the symbolic
representations required by domain-independent planners.

Fig. 1 (left) shows a scrambled, 3x3 tiled version of the
photograph on the right, i.e., an image-based instance of the
8-puzzle. Even for humans, this photograph-based task is
arguably more difficult to solve than the standard 8-puzzle
because of the distracting visual aspects. We seek a domain-
independent system which, given only a set of unlabeled
images showing the valid moves for this image-based puz-
zle, finds an optimal solution to the puzzle. Although the
8-puzzle is trivial for symbolic planners, solving this image-
based problem with a domain-independent system which
(1) has no prior assumptions/knowledge (e.g., “sliding ob-
jects”, “tile arrangement”), and (2) must acquire all knowl-
edge from the images, is nontrivial. Such a system should not
make assumptions about the image (e.g., “a grid-like struc-
ture”). The only assumption allowed about the nature of the

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6094



task is that it can be modeled as a classical planning problem
(deterministic and fully observable).

We propose Latent-space Planner (LatPlan), an architec-
ture which completely automatically generates a symbolic
problem representation from the subsymbolic input, which
can be used as the input for a classical planner. LatPlan con-
sists of 3 components: (1) a NN-based State Autoencoder
(SAE), which provides a bidirectional mapping between the
raw images of the environment and its propositional rep-
resentation, (2) an action model acquisition (AMA) sys-
tem which grounds the action symbols and learns the action
model, and (3) a symbolic planner. Given only a set of un-
labeled images of the environment, and in an unsupervised
manner, we train the SAE and AMA to generate its symbolic
representation. Then, given a planning problem instance as
a pair of initial and goal images such as Fig. 1, LatPlan uses
the SAE to map the problem to a symbolic planning in-
stance, invokes a planner, then visualizes the plan execution.
We evaluate LatPlan using image-based versions of the 8-
puzzle, LightsOut, and Towers of Hanoi domains.

2 Background

Knowledge Acquisition Bottleneck While ideally, sym-
bolic models like PDDL should be learned/generated by the
machine itself, in practice, they must be hand-coded by a hu-
man, resulting in the so-called Knowledge Acquisition Bot-
tleneck (Cullen and Bryman 1988), which refers to the ex-
cessive cost of human involvement in converting real-world
problems into inputs for symbolic AI systems.

In order to fully automatically acquire symbolic mod-
els for Classical Planning, Symbol Grounding and Ac-
tion Model Acquisition (AMA) are necessary. Symbol
Grounding is an unsupervised process of establishing a
mapping from huge, noisy, continuous, unstructured inputs
to a set of compact, discrete, identifiable (structured) enti-
ties, i.e., symbols. For example, PDDL has six kinds of sym-
bols: Objects, predicates, propositions, actions, problems
and domains. Each type of symbol requires its own mech-
anism for grounding. For example, the large body of work
in the image processing community on recognizing objects
(e.g. faces) and their attributes (male, female) in images,
or scenes in videos (e.g. cooking) can be viewed as corre-
sponding to grounding the object, predicate and action sym-
bols, respectively. In contrast, an Action Model is a sym-
bolic/subsymbolic data structure representing the causality
in the transitions of the world, which, in PDDL, consists of
preconditions and effects. In this paper, we focus on propo-
sitional and action symbols, as well as AMA, leaving first-
order symbols (predicates, objects) as future work.

Action Model Acquisition (AMA) Methods Existing
methods require symbolic or near-symbolic, structured in-
puts. ARMS (Yang, Wu, and Jiang 2007), LOCM (Cress-
well, McCluskey, and West 2013), and Mourão et al. (2012)
assume the action, object, predicate symbols. Framer (Lind-
say et al. 2017) parses natural language texts and emits
PDDL, but requires a clear grammatical structure and word
consistency.

Konidaris, Kaelbling, and Lozano-Pérez generated PDDL

Figure 2: Classical planning in latent space: We use the
learned State Autoencoder (Sec. 4) to convert pairs of im-
ages (pre, suc) first to symbolic transitions, from which
the AMA component generates an action model. We also
encode the initial and goal state images into symbolic ini-
tial/goal states. A classical planner finds the symbolic solu-
tion plan. Finally, intermediate states in the plan are decoded
back to a human-comprehensible image sequence.

from semi-MDP (2014). They convert a probabilistic model
into a propositional model, i.e., they do not generate a
model from unstructured inputs. In fact, options (≈ ac-
tions) in their semi-MDP have names assigned by a human
(move/interact), and state variables are identifiable entities
(x/y distances toward objects, light level, state of a switch)
i.e. already symbolic.

Previous work in Learning from Observation, which
could take images (unstructured input), typically assume
domain-dependent hand-coded symbol extractors, such as
ellipse detectors for tic-tac-toe board data which imme-
diately obtains propositions (Barbu, Narayanaswamy, and
Siskind 2010). Kaiser (2012) similarly assumes grids and
pieces to obtain the relational structures in the board image.

Autoencoders and Latent Representations An Autoen-
coder (AE) is a type of feed-forward neural network that
learns an identity function whose output matches the in-
put (Hinton and Salakhutdinov 2006). Its intermediate layer
(typically smaller than the input) has a compressed, latent
representation of the input. AEs are trained by backpropa-
gation (BP) to minimize the reconstruction loss, the distance
between the input and the output according to a distance
function such as Euclidean distance. NNs, including AEs,
typically have continuous activations and integrating them
with propositional reasoners is not straightforward.

3 LatPlan: System Architecture

This section describes the high-level architecture of Lat-
Plan (Fig. 2). LatPlan takes two inputs. The first input is
the transition input Tr, a set of pairs of raw data. Each pair
tri = (prei, suci) ∈ Tr represents a transition of the envi-
ronment before and after some action is executed. The sec-
ond input is the planning input (i, g), a pair of raw data,
which corresponds to the initial and the goal state of the en-
vironment. The output of LatPlan is a data sequence repre-
senting the plan execution that reaches g from i. While we
present an image-based implementation (“data” = raw im-
ages), the architecture itself does not make such assumptions

6095



and could be applied to the other data formats e.g. audio/text.
LatPlan works in 3 phases. In Phase 1, a State Au-

toencoder (SAE) learns a bidirectional mapping between
raw data (e.g., images) and propositional states from a set
of unlabeled, random snapshots of the environment. The
Encode function maps images to propositional states, and
Decode function maps the propositional states back to im-
ages. After training the SAE from {prei, suci . . .}, we ap-
ply Encode to each tri ∈ Tr and obtain (Encode(prei),
Encode(suci)) = (si, ti) = tri ∈ Tr, the symbolic repre-
sentations (latent space vectors) of the transitions.

In Phase 2, an AMA method identifies the action symbols
from Tr and learns an action model, both in an unsuper-
vised manner. We propose two approaches: AMA1 directly
generates a PDDL and AMA2 produces a successor function
(implicit model). Both methods have advantages and draw-
backs. AMA1 is a trivial AMA method designed to show
the feasibility of SAE-generated propositional symbols. It
does not learn/generalize from examples, instead requiring
all valid state transitions. However, since AMA1 directly
produces a PDDL model, it serves as a demonstration that in
principle, the approach is compatible with existing planners.
AMA2 is a novel NN architecture which jointly learns action
symbols and action models from a small subset of transitions
in an unsupervised manner. Unlike existing methods, AMA2

does not require action symbols. Since it does not produce
PDDL, it needs a search algorithm (such as A*) for AMA2,
or semi-declarative symbolic planners (Frances et al. 2017),
instead of PDDL-based solvers.

In Phase 3, a planning problem instance is generated from
the planning input (i, g). These are converted to symbolic
states by the SAE, and the symbolic planner solves the prob-
lem. For example, an 8-puzzle problem instance consists of
an image of the start (scrambled) configuration of the puzzle
(i), and an image of the solved state (g).

Since the intermediate states comprising the plan are
SAE-generated latent bit vectors, the “meaning” of each
state (and thus the plan) is not necessarily clear to a hu-
man observer. However, in the final step, we obtain a step-
by-step visualization of the plan execution (e.g. Fig. 4) by
Decode’ing the latent bit vectors for each intermediate state.

In this paper, we evaluate LatPlan as a high-level planner
using puzzle domains such as the 8-puzzle. Mapping a high-
level action to low-level actuation sequences via a motion
planner is beyond the scope of this paper.

4 SAE as a Gumbel-Softmax VAE

First, note that a direct 1-to-1 mapping from images to
propositions can be trivially obtained from the array of dis-
cretized pixel values or an image hash function. However,
such a trivial SAE lacks the crucial properties of generaliza-
tion – ability to describe unseen world states with the same
symbols – robustness – two similar images that represent
“the same world state” should map to the same representa-
tion – and bijection – ability to map symbolic states to real-
world images. We need a bidirectional mapping where the
symbolic representation captures the “essence” of the im-
age, not merely the literal, raw pixel vector.

The first technical contribution of this paper is the pro-
posal of a SAE which is implemented as a Variational Au-
toencoder (Kingma et al. 2014) with a Gumbel-Softmax
(GS) activation (Jang, Gu, and Poole 2017) (Fig. 3).

A Variational Autoencoder (VAE) (Kingma and Welling
2013) is a type of AE that forces the latent layer (the most
compressed layer in the AE) to follow a certain distribution
(e.g., Gaussian). Since the random distribution is not differ-
entiable (BP is not applicable), VAEs use reparametrization
tricks, which decompose the target distribution into a differ-
entiable and a purely random distribution (the latter does not
require the gradient). For example, the Gaussian N(σ, μ) is
decomposed to μ+σN(1, 0), where μ, σ are learned. In ad-
dition to the reconstruction loss, VAE should also minimize
the variational loss (the difference between the learned and
the target distributions) measured by, e.g., KL divergence.

Gumbel-Softmax (GS) is a recently proposed repara-
metrization trick (Jang, Gu, and Poole 2017) for categori-
cal distribution. It continuously approximates Gumbel-Max
(Maddison, Tarlow, and Minka 2014), a method for draw-
ing categorical samples. Assume the output z is a one-hot
vector, e.g. if the domain is D = {a, b, c}, 〈0, 1, 0〉 rep-
resents “b”. The input is a class probability vector π, e.g.
〈.1, .1, .8〉. Gumbel-Max draws samples from D following
π: zi ≡ [i = argmaxj(gj+log πj) ? 1 : 0] where gj are i.i.d
samples drawn from Gumbel(0, 1) (Gumbel and Lieblein
1954). Gumbel-Softmax approximates argmax with softmax
to make it differentiable: zi = Softmax((gi + log πi)/τ).
“Temperature” τ controls the magnitude of approximation,
which is annealed to 0 by a certain schedule. The output of
GS converges to a discrete one-hot vector when τ ≈ 0.

Our key observation is that these categorical variables
can be used directly as propositional symbols by a symbolic
reasoning system, i.e., this gives a solution to the proposi-
tional symbol grounding in our architecture. In the SAE, we
use GS in the latent layer. Its input is connected to the en-
coder network. The output is an (N,M) matrix where N
is the number of categorical variables and M is the num-
ber of categories. We specify M = 2, effectively obtain-
ing N propositional state variables. It is possible to specify
different M for each variable and represent the world us-
ing multi-valued representation as in SAS+ (Bäckström and
Nebel 1995), but we use M = 2 for all variables for simplic-
ity. This does not affect the expressiveness because bitstrings
of sufficient length can represent arbitrary integers.

The trained SAE provides a bidirectional mapping be-
tween the raw inputs (subsymbolic representation) and their
symbolic representations:

• b = Encode(r) maps an image r to a boolean vector b.

• r̃ = Decode(b) maps a boolean vector b to an image r̃.

Encode(r) maps raw input r to a symbolic representation
by feeding the raw input to the encoder network, extract
the activation in the GS layer, and take the first row in the
N × 2 matrix, resulting in a binary vector of length N .
Similarly, Decode(b) maps a binary vector b back to an
image by concatenating b and its complement b̄ to obtain
a N × 2 matrix and feeding it to the decoder. These are
lossy compression/decompression functions, so in general,

6096



Figure 3: Step 1: Train the State Autoencoder by minimizing
the sum of the reconstruction loss and the variational loss
of Gumbel-Softmax. As the training continues, the output
of the network converges to the input images. Also, as the
Gumbel-Softmax temperature τ decreases during training,
the latent values approach either 0 or 1.

r̃ = Decode(Encode(r)) may have an acceptable amount
of errors from r for visualization.

It is not sufficient to simply use traditional activation func-
tions such as sigmoid or softmax and round the continu-
ous activation values in the latent layer to obtain discrete
0/1 values. In order to map the propositional states back to
images, we need a decoding network trained for 0/1 val-
ues. A rounding-based scheme would be unable to restore
the images because the decoder is not trained with inputs
near 0/1 values. Also, embedding the rounding operation as
a layer of the network is infeasible because rounding is non-
differentiable, precluding BP-based training of the network.

SAE implementation can easily and largely benefit from
the progress in the image processing community. We im-
plemented SAE as a denoising autoencoder (Vincent et al.
2008) to add noise robustness, with some techniques which
improve the accuracy.

5 AMA1: Oracular PDDL Generator

In AMA1, our first AMA method, the output is a PDDL
definition for a grounded unit-cost STRIPS planning prob-
lem. AMA1 is a trivial, oracular strategy which generates a
model based on all transitions, i.e., Tr contains image pairs
representing all transitions that are possible in this domain,
and Tr contains all corresponding symbolic transitions. The
images are generated by an external, domain-specific image
generator. It is important to note that while Tr for AMA1

contains all transitions, the SAE is trained using only a sub-
set of state images. Although ideally an AMA component
should induce a complete action model from a limited set
of transitions, AMA1 is intended to demonstrate the over-
all feasibility of SAE-produced propositions and the overall
LatPlan architecture.

AMA1 compiles Tr directly into a PDDL model as fol-
lows. Each transition tri ∈ Tr directly maps to an action
ai. Each bit bj(1 ≤ j ≤ N) in boolean vectors si and ti
is mapped to propositions (bj-true) and (bj-false)
when the encoded value is 1 and 0 (resp.). si is directly
used as the preconditions of action ai. The add/delete ef-
fects of action i are computed by taking the bitwise differ-
ence between si and ti. For example, when bj changes from
1 to 0, the effect compiles to (and (bj-false) (not
(bj-true))). The initial and the goal states are similarly
created by applying the SAE to the initial and goal images.

The PDDL instance output by AMA1 can be solved
by an off-the-shelf planner. We use a modified version of
Fast Downward (Helmert 2006). LatPlan inherits all of the
search-related properties of the planner which is used. For
example, if the planner is complete and optimal, LatPlan will
find an optimal plan for the given problem (if one exists),
with respect to the portion of the state-space graph captured
by the Action Model.

5.1 Evaluating AMA1 on Various Puzzles

We evaluated LatPlan with AMA1 on several puzzle do-
mains. Resulting plans are shown in Fig. 4. See the extended
Arxiv version for further details of the network, training and
inputs.

MNIST 8-puzzle is an image-based version of the 8-
puzzle, where tiles contain hand-written digits (0-9) from
the MNIST database (LeCun et al. 1998). Valid moves in
this domain swap the “0” tile with a neighboring tile, i.e.,
the “0” serves as the “blank” tile in the classic 8-puzzle.
The Scrambled Photograph 8-puzzle (Mandrill, Spider)
cuts and scrambles real photographs, similar to the puzzles
sold in stores). These differ from the MNIST 8-puzzle in
that “tiles” are not cleanly separated by black regions (we
re-emphasize that LatPlan has no built-in notion of square
or movable region). In Towers of Hanoi (ToH), we gener-
ated the 4 disks instances. 4-disk ToH resulted in a 15-step
optimal plan. LightsOut is a video game where a grid of
lights is in some on/off configuration (+: On), and pressing
a light toggles its state as well as the states of its neighbors.
The goal is all lights Off. Unlike previous puzzles, a single
operator can flip 5/16 locations at once and removes some
“objects” (lights). This demonstrates that LatPlan is not lim-
ited to domains with highly local effects and static objects.
Twisted LightsOut distorts the original LightsOut game im-
age by a swirl effect, showing that LatPlan is not limited to
handling rectangular “objects”/regions.

Robustness to Noisy Input Fig. 4 (Bottom, Right) demon-
strates the robustness of the system vs. input noise. We cor-
rupted the initial/goal state inputs by adding Gaussian or
salt/pepper noise. The system is robust enough to success-
fully solve the problem because of the Denoising AE (Vin-
cent et al. 2008).

6 AMA2: Action Symbol Grounding

LatPlan + AMA1 shows that (1) the SAE can robustly learn
image ↔ propositional vector mappings from examples, and
that (2) if all valid image-image transitions (i.e., the entire
state space) is given, LatPlan can correctly generate optimal
plans. However, AMA1 is clearly not practical due to the
requirement that it uses the entire state space as input, and
lacks the ability to learn/generalize an action model from a
small subset of valid action transitions (image pairs). Next,
we propose AMA2, a novel neural architecture which jointly
grounds the action symbols and acquires the action model
from the subset of examples, in an unsupervised manner.

Acquiring a descriptive action model (e.g., PDDL) from
a set of unlabeled propositional state transitions consists
of three steps. (Step 1) Identify the “types” of transitions,

6097



Figure 4: (Top) Output of LatPlan + AMA1 solving the MNIST/Mandrill 8-puzzle instance with the longest (31 steps) optimal
plan (Reinefeld 1993). This shows that LatPlan finds an optimal solution given a correct model by AMA1 and an admissible
search algorithm. LatPlan has no notion of “slide” or “tiles”, making MNIST, Mandrill and Spider entirely distinct domains.
(Bottom, Left) Output of solving 4x4 LightsOut and Twisted LightsOut. The blurs in the goal states are the noise that was
normalized and enhanced by the plotting library. (Middle, Right) Output of solving ToH with 4 disks. (Bottom, Right) SAE
robustness vs noise: Corrupted initial state image r and its reconstruction Decode(Encode(r)). r are corrupted by Gaussian
noise of σ up to 0.3 and by salt/pepper noise up to p = 0.06. LatPlan successfully solved the problems. The SAE maps the
noisy image to the correct propositional vector, finds a plan, then maps the plan back to the denoised images.

where each “type” is an identifiable, action symbol. For
example, a hand-coded “slide-up-8-at-1-2” in 8-puzzle is
an example of action symbols, but note that an AMA sys-
tem should ground anonymous symbols without human-
provided labels. While they are not lifted/parameterized,
they still provide abstraction. For example, the same “slide-
up-8-at-1-2” action, which slides the tile 8 at position
(x, y) = (1, 2) upward, applies to many states (each state
being a permutation of tiles 1-7). (Step 2) Identify the pre-
conditions and the effects of each action and store the infor-
mation in an action model. (Step 3) Represent the model in
a modeling language (e.g., PDDL).

Addressing this entire process is a daunting task. Existing
AMA methods typically handle only Steps 2 and 3, skipping
Step 1. Without step 1, however, an agent lacks the ability to
learn in an unknown environment where it does not know
what is even possible. Note that even if the agent has the full
knowledge of its low-level actuator capabilities, it does not
know its own high-level capabilities e.g. sliding a tile. Note
that AMA1 handles only Step 3.

On the other hand, search on a state space graph in an
unknown environment is feasible even if Step 3 is missing.
PDDL provides two elements, a successor function and its
description. While ideally both are available, the descrip-
tion is not the essential requirement. The description may in-
crease the explainability of the system in a language such as
PDDL, but such explainability may be lost anyway when the
propositional symbols are identified by SAE, as the mean-
ings of such propositions are unclear to humans (Sec. 3).
The description is also useful for constructing the heuris-
tic functions, but the recent success of simulator-based plan-
ning (Frances et al. 2017) shows that, in some application,
efficient search is possible without action descriptions.

The new method, AMA2, thus focuses on Steps 1 and 2.
It grounds the action symbols (Step 1) and finds a succes-

sor function that can be used for forward state space search
(Step 2), but maintains its implicit representation. AMA2

comprises two networks: an Action Autoencoder (AAE) and
an Action Discriminator (AD). The AAE jointly learns the
action symbols and the action effects, and provides the abil-
ity to enumerate the candidates of the successors of a given
state. The AD learns which transitions are valid, i.e. pre-
conditions. Using the enumeration & filtering approach, the
AAE and the AD provides a successor function that returns
a list of valid successors of the current state. Both networks
are trained unsupervised, and operate in the symbolic la-
tent space, i.e. both the input and output are SAE-generated
bitvectors. This keeps the network small and easy to train.

6.1 Action Autoencoder

Consider a simple, linear search space with no branches. In
this case, grounding the action symbol is not necessary and
the AMA task reduces to predicting the next state t from the
current state s. A NN a′ could be trained for a successor
function a(s) = t, minimizing the loss |t − a′(s)|. This ap-
plies to much of the work on scene prediction from videos
such as (Srivastava, Mansimov, and Salakhudinov 2015).

However, when the current state has multiple successors,
as in planning problems, such a network cannot be applied.
One might consider training a separate NN for each action,
but (1) it is unknown how many types of transitions are avail-
able, (2) the number of transitions depends on the current
state, and (3) it does not know which transition belongs to
which action. Although a single NN could learn a multi-
modal distribution, it lacks the ability to enumerate the suc-
cessors, a crucial requirement for a search algorithm.

To solve this, we propose an Action Autoencoder (AAE,
Fig. 5). The key idea of AAE is to reformulate the transi-
tions as apply(a, s) = t, which lifts the action symbol and
makes it trainable, and to realize that s is the background in-

6098



Figure 5: (Left) Action Autoencoder. (Right) The first 10 successors of a state s, generated by actions identified by AAE.

formation of the state transition function. The AAE has s, t
as inputs and reconstructs t as t̃ whose error |t − t̃| is min-
imized. The main difference from a typical AE is: (1) The
latent layer is a Gumbel-Softmax one-hot vector indicating
the action label a. (2) Every layer is concatenated with s.
Thus s conditions the entire network and this makes the 128
action labels (7bit) represent only the conditional informa-
tion (difference) necessary to “reconstruct t given s”, unlike
typical AEs which encode the entire information of the in-
put. As a result, the AAE learns the bidirectional mapping
between t and a, both conditioned by s:

• action(t, s) = a returns the action label from t.

• apply(a, s) = t̃ applies a to s and returns a successor t̃.

The number of labels serves as the upper bound on the
number of action symbols learned by the network. Too few
labels make AAE reconstruction loss fail to converge to
zero. After training, some labels may not be mapped to by
any of the example transitions. In the later phases of LatPlan,
these unused labels are ignored. Since we obtain a limited
number of action labels, we can enumerate the candidates
of the successor states of the given current state in constant
time. Without AAE, all 2N states would be enumerated as
the potential successors, which is clearly impractical.

6.2 Action Discriminator

An AAE identifies the number of actions and learns their
effects, but does not address the applicability (precondi-
tions). Preconditions are necessary to avoid invalid moves
(e.g. swapping 3 tiles at once) or invalid states (e.g. having
duplicated tiles), as shown in Fig. 5. We address this by an
Action Discriminator (AD) which learns the 0/1 mapping
for each transition indicating whether it is valid. This is a
binary classification function which takes s, t as inputs and
returns a probability that (s, t) is valid.

One technical problem in training the AD is that explicit
invalid transitions are unavailable. This is not just a matter
of insufficient data, but rather a fundamental constraint in
the physical environment: Invalid transitions which violate
the laws of physics (e.g. teleportation) are never observed.
We then might consider “imagining/generating” the negative
examples, like a thought experiment, but it is impossible due
to the lack of specification of what is invalid.

To overcome this issue, we use the PU-Learning frame-
work (Elkan and Noto 2008), which can learn a posi-
tive/negative classifier from the positive and mixed exam-
ples that may contain both positive and negative examples.
We used Tr as the positive examples (they are all valid).
The mixed, i.e. possibly invalid, examples are generated by

applying each action a (except unused ones) on each before-
state s in Tr.

State Discriminator As a performance improvement, we
also trained a State Discriminator (SD) which is a binary
classifier for a single state s and detects the invalid states,
e.g. states with duplicated tiles in 8-puzzles. Again, we use
PU-learning. Positive examples are the before/after states
in Tr (all valid). Mixed examples are generated from the
random bit vectors ρ (may be invalid): Many of the images
Decode’d from ρ are blurry and do not represent autoencod-
able, meaningful real-world images. However, when they
are repeatedly encoded/decoded, they converge to the clear,
autoencodable invalid states because of the denoising AE
(Vincent et al. 2008), and we used the results as the mixed
examples. We use the SD to prune some mixed action exam-
ples for the AD training so that they contain only the valid
successors. This improves the AD accuracy significantly.

6.3 Evaluating LatPlan using AMA2

In the case of AMA2, we can not use an off-the-shelf PDDL-
based planner because the action model is embedded in the
AAE, AD, and SD neural networks. However, they allow us
to implement a successor function which can be used in any
symbolic, forward state space search algorithm such as A∗
(Hart, Nilsson, and Raphael 1968). The AAE generates the
(potentially invalid) successors and the AD and SD filter the
invalid states/transitions:

Succ(s) = {t = apply(a, s) | a ∈ {0 . . . 127} \ unused,
AD(s, t) ≥ 0.5 ∧ SD(t) ≥ 0.5}

We implemented A* in which states are latent-space (propo-
sitional) vectors, and the above Succ function is used to gen-
erate successors of states. A simple goal-count heuristic is
used. As the goal-count heuristic is inadmissible, the results
could be suboptimal. However, the purpose of implementing
this planner is to see the feasibility of the action model.

We evaluate the feasibility of the action symbols and the
action models learned by AAE and AD. We tested 8-puzzle
(mnist, mandrill, spider), LightsOut (+ Twisted). We gener-
ated 100 instances for each domain and for each noise type
(std, gaussian noise, salt/pepper noise) by 7-step (benchmark
A)or 14-step (benchmark B) self-avoiding random walks
from the goal state, and evaluated the planner with the 180
sec. time limit. We verified the resulting image plans with
domain-specific validators. Table 1 shows that the LatPlan
achieves a high success rate. The failures are due to timeouts
(the successor function requires many calls to the feedfor-
ward neural nets, resulting in a very slow node generation).

6099



domain A:step=7 B:step=14 SD error (%) AD error (in %)
std G s/p std G s/p type1 type2 type1 type2 2/SD 2/V

MNIST 72 64 64 6 4 3 0.09 <0.01 1.55 14.9 6.15 6.20
Mandrill 100 100 100 9 14 14 <0.01 <0.01 1.10 16.6 2.93 2.94
Spider 94 99 98 29 36 38 <0.01 <0.01 1.22 17.7 4.97 4.91
L. Out 100 99 100 59 60 51 <0.01 N/A 0.03 1.64 1.64 1.64
Twisted 96 65 98 75 68 72 <0.01 N/A 0.02 1.82 1.82 1.82

Table 1: AMA2 results: (left) Number of solved instances out of 100 within 3 min. time limit. The 2nd/3rd columns show the
results when the input is corrupted by G(aussian) or s(alt)/p(epper) noise. In benchmark A (created with 7-step random walks),
LatPlan solved the majority of instances even under the input noise. In the harder instances (benchmark B: 14-steps), many
instances were still solved. (right) Misclassification by SD and AD in %, measured as: (SD type-1) Generate all valid states and
count the states misclassified as invalid. (type-2) Generate reconstructable states, remove the valid states (w/ validator), sample
30k states, and count the states misclassified as valid. N/A means all reconstructable states were valid. (AD type-1) Generate
all valid transitions and count the number of misclassification. (type-2) For 1000 randomly selected valid states, generate all
successors, remove the valid transitions (w/ validator), then count the transitions misclassified as valid. (2/SD, 2/V) Same as
Type-2, but ignore the transitions whose successors are invalid according to SD or the validator. Relatively large AD errors
explain the increased number of failures in MNIST 8-puzzles.

We next examine the accuracy of the AD and SD (Table
1). We measured the type-1/2 errors for the valid and invalid
transitions (AD) and states (SD). Low errors show that our
networks successfully learned the action models.

7 Related Work

Compared to the work by Konidaris, Kaelbling, and
Lozano-Pérez (2014), the inputs to LatPlan are unstructured
(42x42=1764-dimensional arrays for 8-puzzle); each pixel
does not carry a meaning and the boundary between “iden-
tifiable entities” is unknown. Also, AMA2 automatically
grounds action symbols, while they rely on human-assigned
symbols (move, interact). Furthermore, they do not explicitly
deal with robustness to noisy input, while we implemented
SAE as a denoising AE. However, effects/preconditions in
AMA2 is implicit in the network, and their approach could
be utilized to extract PDDL from AAE/AD (future work).

There is a large body of work using NNs to directly
solve combinatorial tasks, starting with the well-known TSP
solver (Hopfield and Tank 1985). Neurosolver represents a
search state as a node in NN and solved ToH (Bieszczad and
Kuchar 2015). However, they assume a symbolic input.

Previous work combining symbolic search and NNs em-
bedded NNs inside a search to provide the search control
knowledge, e.g., domain-specific heuristic functions for the
sliding-tile puzzle and Rubik’s Cube (Arfaee, Zilles, and
Holte 2011), classical planning (Satzger and Kramer 2013),
or the game of Go (Silver et al. 2016). Deep Reinforcement
Learning (DRL) has solved complex problems, including
video games where it communicates to a simulator through
images (Mnih et al. 2015, DQN). In contrast, LatPlan only
requires a set of unlabeled image pairs (transitions), and
does not require a reward function for unit-action-cost plan-
ning, nor expert solution traces (AlphaGo), nor a simulator
(DQN), nor predetermined action symbols (“hands”, con-
trol levers/buttons). Extending LatPlan to symbolic POMDP
planning is an interesting avenue for future work.

A significant difference between LatPlan and learning
from observation (LfO) in the robotics literature (Argall et

al. 2009) is that LatPlan is trained based on individual tran-
sitions while LfO work is largely based on the longer se-
quence of transitions (e.g. videos) and should identify the
start/end of actions (action segmentation). Action segmen-
tation would not be an issue in an implementation of au-
tonomous LatPlan-based agent because it has the full control
over its low-level actuators and initiates/terminates its own
action for the data collection.

8 Discussion and Conclusion

We proposed LatPlan, an integrated architecture for learn-
ing and planning which, given only a set of unlabeled im-
ages and no prior knowledge, generates a classical planning
problem, solves it with a symbolic planner, and presents the
plan as a human-comprehensible sequence of images. We
demonstrated its feasibility using image-based versions of
planning/state-space-search problems (8-puzzle, Towers of
Hanoi, Lights Out). Our key technical contributions are (1)
SAE, which leverages the Gumbel-Softmax to learn a bidi-
rectional mapping between raw images and propositional
symbols compatible to symbolic planners. On 8-puzzle, the
“gist” of 42x42 training images are robustly compressed into
propositions, capturing the essence of the images. (2) AMA2,
which jointly grounds action symbols and learns the pre-
conditions/effects. It identifies which transitions are “same”
wrto the state changes and when they are allowed.

The only key assumptions about the input domain we
make are that (1) it is fully observable and deterministic and
(2) NNs can learn from the available data. Thus, we have
shown that different domains can all be solved by the same
system, without modifying any code or the NN architecture.
In other words, LatPlan is a domain-independent, image-
based classical planner. To our knowledge, this is the first
system which completely automatically constructs a logical
representation directly usable by a symbolic planner from a
set of unlabeled images for a diverse set of problems.

We demonstrated the feasibility of leveraging deep learn-
ing in order to enable symbolic planning using classical
search algorithms such as A*, when only image pairs rep-

6100



resenting action start/end states are available, and there is no
simulator, no expert solution traces, and no reward function.
Although much work is required to determine the applica-
bility and scalability of this approach, we believe this is an
important first step in bridging the gap between symbolic
and subsymbolic reasoning and opens many avenues for fu-
ture research.

Acknowledgments
This research was supported by a JSPS Grant-in-Aid for JSPS Fel-
lows and a JSPS KAKENHI grant.

References
Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning Heuristic
Functions for Large State Spaces. Artificial Intelligence 175(16-
17):2075–2098.
Argall, B.; Chernova, S.; Veloso, M. M.; and Browning, B. 2009.
A Survey of Robot Learning from Demonstration. Robotics and
Autonomous Systems 57(5):469–483.
Bäckström, C., and Nebel, B. 1995. Complexity Results for SAS+
Planning. Computational Intelligence 11(4):625–655.
Barbu, A.; Narayanaswamy, S.; and Siskind, J. M. 2010. Learning
Physically-Instantiated Game Play through Visual Observation. In
ICRA, 1879–1886.
Bieszczad, A., and Kuchar, S. 2015. Neurosolver Learning to Solve
Towers of Hanoi Puzzles. In IJCCI, volume 3, 28–38. IEEE.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Acquiring
planning domain models using LOCM. Knowledge Eng. Review
28(2):195–213.
Cullen, J., and Bryman, A. 1988. The knowledge acquisition bot-
tleneck: Time for reassessment? Expert Systems 5(3).
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR, 248–255. IEEE.
Deng, L.; Hinton, G.; and Kingsbury, B. 2013. New Types of Deep
Neural Network Learning for Speech Recognition and Related Ap-
plications: An Overview. In ICASSP, 8599–8603. IEEE.
Elkan, C., and Noto, K. 2008. Learning Classifiers from Only Posi-
tive and Unlabeled Data. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
213–220. ACM.
Frances, G.; Ramırez, M.; Lipovetzky, N.; and Geffner, H. 2017.
Purely Declarative Action Representations are Overrated: Classical
Planning with Simulators. In IJCAI, 4294–4301.
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka, I.;
Grabska-Barwińska, A.; Colmenarejo, S. G.; Grefenstette, E.; Ra-
malho, T.; Agapiou, J.; et al. 2016. Hybrid Computing us-
ing a Neural Network with Dynamic External Memory. Nature
538(7626):471–476.
Gumbel, E. J., and Lieblein, J. 1954. Statistical theory of extreme
values and some practical applications: a series of lectures.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. Systems
Science and Cybernetics, IEEE Transactions on 4(2):100–107.
Helmert, M. 2006. The Fast Downward Planning System. J. Artif.
Intell. Res.(JAIR) 26:191–246.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the Dimensionality of Data with Neural Networks. Science
313(5786):504–507.

Hopfield, J. J., and Tank, D. W. 1985. ”Neural” Computation
of Decisions in Optimization Problems. Biological Cybernetics
52(3):141–152.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Reparameteriza-
tion with Gumbel-Softmax. In ICLR.
Kaiser, L. 2012. Learning Games from Videos Guided by Descrip-
tive Complexity. In AAAI.
Kingma, D. P., and Welling, M. 2013. Auto-Encoding Variational
Bayes. In ICLR.
Kingma, D. P.; Mohamed, S.; Rezende, D. J.; and Welling, M.
2014. Semi-Supervised Learning with Deep Generative Models.
In NIPS, 3581–3589.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2014. Con-
structing Symbolic Representations for High-Level Planning. In
AAAI, 1932–1938.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
Based Learning Applied to Document Recognition. Proc. of the
IEEE 86(11):2278–2324.
Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.; and
Gregory, P. J. 2017. Framer: Planning Models from Natural Lan-
guage Action Descriptions. In ICAPS.
Maddison, C. J.; Tarlow, D.; and Minka, T. 2014. A* sampling. In
NIPS, 3086–3094.
McDermott, D. V. 2000. The 1998 AI Planning Systems Competi-
tion. AI Magazine 21(2):35–55.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; et al. 2015. Human-Level Control through Deep
Reinforcement Learning. Nature 518(7540):529–533.
Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steedman,
M. 2012. Learning STRIPS Operators from Noisy and Incomplete
Observations. In UAI, 614–623.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-CNN: To-
wards Real-time Object Detection with Region Proposal Networks.
In NIPS, 91–99.
Satzger, B., and Kramer, O. 2013. Goal Distance Estimation for
Automated Planning using Neural Networks and Support Vector
Machines. Natural Computing 12(1):87–100.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529(7587):484–489.
Srivastava, N.; Mansimov, E.; and Salakhudinov, R. 2015. Un-
supervised Learning of Video Representations using LSTMs. In
ICML, 843–852.
Steels, L. 2008. The Symbol Grounding Problem has been Solved.
So What’s Next? In de Vega, M.; Glenberg, A.; and Graesser, A.,
eds., Symbols and Embodiment. Oxford University Press.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A. 2008.
Extracting and Composing Robust Features with Denoising Au-
toencoders. In ICML, 1096–1103. ACM.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning Action Models
from Plan Examples using Weighted MAX-SAT. Artificial Intelli-
gence 171(2-3):107–143.

6101


