
Scheduling in Visual Fog Computing:
NP-Completeness and Practical Efficient Solutions

Hong-Min Chu
National Taiwan University
r04922031@csie.ntu.edu.tw

Shao-Wen Yang
Intel Corporation

shao-wen.yang@intel.com

Padmanabhan Pillai
Intel Corporation

padmanabhan.s.pillai@intel.com

Yen-Kuang Chen
Intel Corporation

yen-kuang.chen@intel.com

Abstract

The visual fog paradigm envisions tens of thousands of het-
erogeneous, camera-enabled edge devices distributed across
the Internet, providing live sensing for a myriad of different
visual processing applications. The scale, computational de-
mands, and bandwidth needed for visual computing pipelines
necessitates offloading intelligently to distributed computing
infrastructure, including the cloud, Internet gateway devices,
and the edge devices themselves. This paper focuses on the
visual fog scheduling problem of assigning the visual comput-
ing tasks to various devices to optimize network utilization.
We first prove this problem is NP-complete, and then formu-
late a practical, efficient solution. We demonstrate sub-minute
computation time to optimally schedule 20,000 tasks across
over 7,000 devices, and just 7-minute execution time to place
60,000 tasks across 20,000 devices, showing our approach is
ready to meet the scale challenges introduced by visual fog.

1 Introduction

Visual data are collected everywhere nowadays. Surveillance
cameras have been around every street corner across the
world. There are more than 4 million cameras in UK and
over 20 million in China. This can serve as the foundation
of smart cities for physical security, smart transportation, etc.
There are also increased number of cameras in retail stores
for customer analytics and directed advertising. Cameras also
penetrated into more and more households for security, senior
care, baby care, etc. IHS forecasted that the amount of data
generated by video surveillance cameras installed globally
will be more than 859 petabytes per day by 2017 (IHS 2015).
The visual data are rich in content and can open vast analytics
opportunities.

However, the visual data are significantly underutilized
due to the computation requirements and the outstanding
data volume that can incur. The cloud computing paradigm
has been well evolved in the past decade for easily scaling out
with big data frameworks like Hadoop MapReduce, Spark,
Spark Streaming, etc. However, the bounded bandwidth re-
mains a bottleneck for scaling out video analytics applica-
tions; it is also known as the problem of live video analytics
or streaming video analytics. Specifically, the cloud has been
very scalable for computer vision and machine learning tasks

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Job
Task 1

Task 2

Job B

Job A 1A 2A

1B 2B

1A 2A

1B 2B

Task Parallelism Data Parallelism Task & Data Parallelism

Figure 1: Parallelisms in Visual Fog Computing

but streaming every bit of continuous video streams to the
cloud for processing is hardly possible. The challenge lies in
the fact that visual data are continuous, mandating not only
significant computation but also outstanding bandwidth.

Fog (Bonomi et al. 2012; Botta et al. 2016) is a paradigm
for collaboratively using edge devices, intermediate gateways,
and servers on premise or in the cloud as the computing plat-
form. The problem of visual fog computing is to use the
fog paradigm to process continuous video streams in real
time; namely, to generate results continuously in a timely
basis based on the underlying applications. Offloading is a
technique for a device to outsource tasks to another device
(Satyanarayanan et al. 2009; Kumar et al. 2013) for better
efficiency, lower latency or lower power consumption. Of-
floading can be particularly valuable in the context of visual
fog, due to the large computational demands of visual pro-
cessing tasks, and the relatively limited capabilities of edge
devices. However, greedy offloading can be catastrophic, due
to the high bandwidth data streams and shared upstream re-
source among multiple pipelines. Thus, global coordinated
scheduling is needed.

Scheduling in visual fog computing is much harder than
the counterpart in cloud computing because (1) devices are
way more heterogeneous in terms of resource types and re-
source capacities, (2) there are usually a few orders of magni-
tude more devices, and (3) there are more constraints in terms
of device connectivity and task dependency. Unfortunately,
the state of the art schedulers in cloud computing do not take
into account device connectivity and task dependency as they
don’t exist in cloud computing. The current schedulers also
addressed the scheduling problem at a much smaller scale.
The differences between scheduling in cloud computing and
scheduling in visual fog computing will be described in detail
in Sec. 2.

The goal of this paper is to address the global scheduling
problem for visual fog computing. Scheduling covers spatial

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6127

and temporal aspects of assignment. The work is about the
spatial aspect of task placement over devices; the temporal as-
pect is omitted since all tasks are run in parallel. On the other
hand, it is assumed, in the context of visual fog computing,
that data will make forward progress towards the destination,
avoiding longer network paths or repeated traversals over the
same links. Our key contributions include proving the NP-
completeness of the problem and providing practical efficient
exact solutions. The novelty of this paper is as follows.

• Our problem formulation considers all tasks as a whole
and schedule onto heterogeneous devices with the best
tradeoffs leveraging task runtime resource estimation (Tu-
manov et al. 2016). Many schedulers in cloud computing
are greedy or based on heuristics, scheduling tasks one by
one based on heuristics can lead to suboptimal decisions.

• Our problem formulation takes into account connectivity
of devices and dependency of tasks. Essentially, devices
are sparsely connected and may not be reachable from one
another in the fog paradigm. On the other hand, tasks, as
part of a certain job, may be under certain mapping and
ordering constraints.

• Our solution to the scheduling problem in visual fog com-
puting are optimal, scalable and efficient under the theo-
retic foundation of integer linear programming (Dantzig,
Orden, and Wolfe 1955; Schrijver 1998) with novel tricks
to turn various non-linear constraints in linear forms.

The experiments confirmed the efficiency of our global
scheduler in realistic settings that can schedule 20,000 depen-
dent tasks for 7,000 devices with a sub-minute efficiency, and
can schedule over 60,000 dependent tasks for 20,000 devices
in 7 minutes. This demonstrates that our solution is scalable
in the fog paradigm with more than tens of thousands of
connected devices.

2 Background

Our work extends prior research in the literature of cloud
computing that schedules diverse workloads on heteroge-
neous devices with heterogeneous resource capacities by
explicitly taking into account device connectivity and task
dependency. Specifically, device connectivity represents the
device hierarchy of a fog paradigm, and task dependency
refers to the dependency between (primitive) tasks. There are
two major bodies of related work – reservation systems and
DAG scheduling. We will first describe how these two prob-
lems are formulated and show why they can’t comprehend
the need for scheduling in visual fog computing.

The state of the art reservation systems (Curino et al. 2014)
and scheduling systems (Tumanov et al. 2016) do not have
the concept of task dependency. Reservation systems are
designed to ensure that resource guarantees are not overcom-
mitted in a per task manner. Scheduling systems are used to
determine task-to-device mapping for allocating tasks onto
devices for potentially optimal performance. However, both
of them are not capable of addressing the scheduling problem
in visual fog computing without taking into account device
connectivity and task dependency. Specifically, in visual fog
computing, video analytics tasks are usually divisible and

can be easily partitioned into multiple interdependent stages.
Hence, task parallelism and data parallelism can be exploited
for simultaneous execution of tasks.

In DAG scheduling, task dependency is represented ex-
plicitly as directed acyclic graphs (DAGs). The problem had
attracted outstanding attentions for decades for its expressive-
ness in addressing many real world heterogeneous resource
scheduling problem (Radulescu and Van Gemund 2000;
Topcuoglu, Hariri, and Wu 2002; Sakellariou and Zhao 2004;
Deelman et al. 2009; Zheng and Sakellariou 2013); however,
the resource types are usually limited to no more than a few,
e.g., CPU, GPU and FPGA on one server. For example, in the
experiments of (Zheng and Sakellariou 2013), the number of
resources and the number of nodes are considered up to 8 and
123, respectively. In visual fog computing there are orders
of magnitude more resources (hereinafter, we may refer to
resource and device interchangeably) and nodes (hereinafter,
we may refer to task and node interchangeably); on the other
hand, the resource connectivity (i.e., device connectivity) can
be rather sparse and directional, which shall be represented
in another DAG.

Note that in either of the aforementioned body of work,
there is no hard constraint on device capacity and network
capacity. Yet another key difference is the objective. The
objective in the prior art is to minimize the makespan (i.e.,
the total execution time). However, in visual fog computing,
the (video) data come in continuously, and, therefore, there’s
no concept of makespan. The scheduling problem in visual
fog computing, in effect, optimizes for certain resource uti-
lization, e.g., device resource, link resource or a utility of a
mixture of them.

The key differences between the scheduling problem in vi-
sual fog computing and the conventional scheduling problem
are as follows.

• Task Parallelism refers to the capability of a device of
running a job of a sequences of tasks, concurrently.

• Data Parallelism refers to the capability of offloading
based on data locality.

Task dependency introduces implications about (direct) de-
vice connectivity. Conventional cloud computing assumed all
devices (or servers) are interconnected with high-speed, low-
latency networks; however, it is not true in the fog paradigm
in which a pair of devices may not be directly connected, e.g.,
two cameras in different subnets. The links among connected
devices can also come with significantly diverse capacities,
e.g., 10Mbps over the Internet and 10Gbps within a server
rack.

As illustrated in Fig. 1, task parallelism exploits the depth
of a pipeline for running simultaneous tasks; data parallelism
uses data locality. The scheduling problem of visual fog
computing is to determine the best possible schedule with
respect to a certain objective, e.g., the least total bandwidth
consumption, the least power consumption and the shortest
turnaround time, while meeting the set of predetermined
constraints, e.g., the bounded computational resources and
the bounded bandwidth.

Fig. 2 depicts an example of scheduling in visual fog com-
puting. Fig. 2a is a task dependency graph comprising re-

6128

Task ε
(Source) Task 1 Task σ

(Sink)Bandwidth = 8Mbps Bandwidth = 1Mbps

CPU = 1MIPS CPU = 10MIPS CPU = 1MIPS

(a) Task Dependency

(b) Device Connectivity

(c) Schedule X

Device A
(Source)

CPU = 100MIPS

Device B

CPU = 1,000MIPS

Device C
(Sink)

CPU = 10,000MIPS

Task ε Task 1 Task σ

Device A
Require = 1MIPS

Capacity = 100MIPS

Device B
Require = 0MIPS

Capacity = 1,000MIPS

Device C
Require = 11MIPS

Capacity = 10,000MIPS

(d) Schedule Y Task ε Task 1 Task σ

Device A
Require = 1MIPS

Capacity = 100MIPS

Device B
Require = 10MIPS

Capacity = 1,000MIPS

Device C
Require = 1MIPS

Capacity = 10,000MIPS

(e) Schedule Z Task ε Task 1 Task σ

Device A
Require = 11MIPS

Capacity = 100MIPS

Device B
Require = 0MIPS

Capacity = 1,000MIPS

Device C
Require = 1MIPS

Capacity = 10,000MIPS

Require = 8Mbps
Capacity = 1,000 Mbps

Bandwidth = 1Mbps
Capacity = 1,000 Mbps

Require = 8Mbps
Capacity = 10Mbps

Bandwidth = 1Mbps
Capacity = 1,000 Mbps

Bandwidth = 8Mbps
Capacity = 1,000 Mbps

Bandwidth = 1Mbps
Capacity = 1,000 Mbps

Bandwidth = 1,000Mbps Bandwidth = 10Mbps

Figure 2: Scheduling in Visual Fog Computing

source requirements over tasks and links between intermedi-
ate tasks. Tasks ε and σ are artifacts for problem formulation,
whose characteristics are as follows.
• Task ε is a producer task that must run on a source device,

i.e., a camera, where the data come from.
• Task σ is a consumer task that must run on a sink de-

vice, i.e., the cloud, where results may store or a user may
consume the data.

Fig. 2b is a device connectivity graph comprising resource
capacity over devices and links between intermediate devices.
Fig. 2c-e show possible schedules X, Y and Z given the
various resource constraints and link constraints.

In this paper, we proposed the first global scheduler
for visual fog computing taking into account task depen-
dency and device connectivity, presuming that task runtime
can be predicted a priori by resource types and quantities
(Curino et al. 2014; Delimitrou and Kozyrakis 2013; 2014;
Ferguson et al. 2012). We, essentially, assumed devices and
their connectivity and tasks and their dependency can be rep-
resented as (DAGs); then we prove its hardness and provide
practical, efficient solutions.

3 Problem Formulation

In this section, we start with describing the scheduling prob-
lem of visual fog computing, hereinafter may be referred to
as VFC, by defining the two conceptual graphs representing
devices and their connectivity, and tasks and their depen-
dency, respectively. Then, we will show how the objective
and additional constraints are formalized.

Device connectivity graph is defined as a DAG GD =
(VD, ED). Each v ∈ VD represents a device and each edge
(u, v) ∈ ED represents the connectivity between device
u to device v. Specifically, v ∈ VD is a source device if

deg+(v) = 0, and is a sink device if deg−(v) = 0, where
deg+(·) and deg−(·) denote in-degree and out-degree of a
vertex, respectively. We denote V +

D and V −
D as the collections

of source devices and sink devices, respectively, and E+
D and

E−
D as the collections of edges start with a source device and

end with a sink device, respectively.
Task dependency graph GJ = (VJ , EJ) = ∪J

j=1G
j
J

where J is the number of jobs – disjoint subgraphs. Each
subgraph Gj

J = (V j
J , Ej

J) is a linear (or path) graph hav-
ing exact one (entry) producer task and one (exit) consumer
task; any intermediate tasks are neither producer or consumer
tasks. For each subgraph Gj

J , |{deg+(v) = 0|v ∈ V j
J }| =

|{deg−(v) = 0|v ∈ V j
J }| = 1. Each v ∈ VJ represents a

task and (u, v) ∈ EJ represents the dependency between
task u and task v. Specifically, v ∈ VJ is a producer task if
deg+(v) = 0, and is a consumer task if deg−(v) = 0. We
denote V +

J and V −
J as the collections of producer and con-

sumer tasks, respectively, and E+
J and E−

J as the collections
of edges start with a producer task and end with a consumer
task, respectively.

In VFC, in additional to the aforementioned two graphs,
the mappings of producer tasks and consumer tasks are pre-
determined, which can be expressed as g̃+ : V +

J → V +
D and

g̃− : V −
J → V −

D , respectively. Then, a VFC instance can be
expressed in the following form:(

GD, GJ , g̃+, g̃−, cV , cE , rV , rE
)

(1)

where cV and cE are capacity functions over GD, and rV and
rE are requirement functions over GJ which will be defined
later in Sec. 3.1.

3.1 The Decision Problem

A schedule maps an edge in GJ to a simple path (hereinafter
we may refer to simple path as path) in arbitrary lengths in
GD, which can be expressed as:

f : EJ →
|VD|⋃
k=0

(vi)
k
i=1 (2)

where (vi)
k
i=1 represents an arbitrary length-k path. A sched-

ule f implies vertex-to-vertex mapping. Specifically, the
edge-to-path mapping of a schedule f determines the corre-
spondence between the two endpoints of an edge in the task
dependency graph to the two endpoints of a path in the device
connectivity graph, respectively; we omit detailed derivation
for space consideration. To facilitate formulation, we define
task schedule as:

g : VJ → VD (3)

that maps tasks over devices. We also define partial order
relation �J over task dependency graph GJ , and �D over
device connectivity graph GD, which can be expressed as:

u �J v ⇐⇒ v is reachable from u, ∀u, v ∈ VJ (4)
u �D v ⇐⇒ v is reachable from u, ∀u, v ∈ VD (5)

Note that task schedule g is not a dual of schedule f ;
the latter is more expressive. Specifically, there may exist

6129

multiple paths between any arbitrary pairs of devices in GD;
a schedule not only select a collection of devices to run a
collection of tasks but also select a collection of links between
devices for data transmission among tasks. A schedule is
subject to the following mapping constraints:

g̃+, g̃− ⊆ g (6)

(vi)
k
i=1 : path ⇐⇒ ⊕k−1

i=1 f((vi, vi+1)) : path, ∀vi ∈ VJ
(7)

where ⊕ is the path joining operator that concatenates two
paths; (u1, u2) ⊕ (v1, v2) is (u1, u2, v2) if u2 = v1; if v1
is reachable from u2, it becomes (u1, u2, · · · , v1, v2), and
undefined otherwise. Eq. 7 implies:

The Single Choice Constraint A task must be mapped to
one and only device (i.e., g is a function) that f(e1) ends
at where f(e2) starts if and only if e1 ends at where e2
starts, for all e1, e2 ∈ EJ . All simple paths being mapped
from Gj

J must form a simple path from a source device to
a sink device in GD

The Ordering Constraint The ordering of tasks along a job
in GJ must remain in their mapped devices in GD, which
can be expressed as follows:

u �J v =⇒ g(u) �D g(v) (8)

A feasible schedule is subject to device and network con-
straints. An optimal schedule is a feasible schedule that min-
imizes an objective. Throughout this paper, we will use over-
all network utilization as the objective, while extension to
other objectives, e.g., overall device (resource) utilization is
straightforward. The network utilization is the total network
used given the particular schedule f .

The device constraint is defined in a way that tasks mapped
to a device shall not go over the device’s capacity; likewise,
the network constraint is defined in a way that links in the task
dependency graph mapped to a link in the device connectivity
graph must not go over the link’s capacity. We will first define
capacity function and requirement function in GD and GJ ,
respectively, and define the device constraint and the network
constraint.

The Device & Network Constraints We first define the
capacity function and requirement function in GD and GJ ,
respectively. The capacity functions are defined over vertices
and edges, respectively, in GD. It is the maximum amount of
resource a device or a link between a device to its succeeding
device can accommodate for a task in GJ .

• Device capacity function cV : VD → R represents device
capacity, e.g., CPU MIPS.

• Link capacity function cE : ED → R represents the capac-
ity of data transmission from one device to another, e.g.,
bandwidth capacity in Mbps.

The requirement functions are defined over vertices and
edges, respectively, in GJ . In other words, it is the required
amount of resource a task or a link between a task to its
succeeding task would require from a device in GD.

• Task requirement function rV : VJ → R represent task
requirement, e.g., CPU MIPS.

• Link requirement function rE : EJ → R represents the
requirement of data transmission from one task to another,
e.g., bandwidth requirement in Mbps.
Recall that f defines an edge-to-path mapping from an

edge e = (u1, u2) ∈ GJ to an arbitrary length path
(v1, v2, · · · , vk) in GD. This manifests the nature of data
transmission in VFC. Specifically, if the length of path f(e)
is zero, i.e., k = 1, rE(e) doesn’t implicate any links in GD
since f(e) doesn’t contain any edge in GD. In other words,
data transmission within a device is essentially omitted since
inter-process or inter-thread communication is way faster
than inter-device communication. Otherwise, if the length
of path f(e) is greater than or equal to one, i.e., k ≥ 2, it
implies task u1 and u2 run on v1 and vk, respectively, i.e.,
g(u1) = v1 and g(u2) = vk, and the link requirement rE(e)
remains constant on all edges {(vi, vi+1)}k−1

i=1 along path
f(e).

A feasible f must satisfy the device constraint and the
network constraint which can be expressed, respectively, as
follows:⎛

⎝ ∑
v∈VJ

�u = g(v)�rV (v)

⎞
⎠ ≤ cV (u), ∀u ∈ VD (9)

⎛
⎝ ∑

e∈EJ

�d ∈ f(e)�rE(e)

⎞
⎠ ≤ cE(e), ∀d ∈ ED (10)

where Eq. 10 implies that when multiple consecutive tasks
mapped to one device, the network overhead do not add to
any links between devices. For simplicity, we assume homo-
geneous resource type upon device and link throughout this
paper. It is straightforward to generalize the VFC formulation
to compound resource types; each device resource type de-
fines a separate device capacity function cV over VD and task
requirement function rV over VJ whereas each link resource
type defines a separate link capacity function cE over ED
and link requirement function rE over EJ . Hence, a device
constraint and network constraint can be formulated in Eq. 9
for each device resource type and in Eq. 10 for each link
resource type, respectively.

3.2 The Optimization Problem

The optimization problem of VFC is to find a feasible f�

that minimizes an objective. In this paper, we defined the
objective as minimizing total network utilization, which can
be expressed as follows.∑

d∈ED

∑
e∈EJ

�d ∈ f(e)�rE(e) (11)

However, it is straightforward to extend to others, like mini-
mizing sink device resource utilization or maximizing source
device resource utilization.

4 NP-Completeness
In this section, we prove that the decision problem of VFC is
NP-complete. In order to prove NP-completeness, we need

6130

u1

u2

u3

s1

s2

User Server

(a) Users & servers

10

15

20

25

30

User Server

(b) Req. & capacity

10

15

20

25

30

User Server

(c) A solution to (b)

Figure 3: A CC instance

to show that (1) polynomial time verification – a feasible
schedule can be validated in polynomial time, and (2) NP-
hardness – VFC can be reduced from an NP-complete problem
in polynomial time.

It is straightforward to derive an algorithm to verify the fea-
sibility of a schedule by evaluating Eqs. 6–10 in polynomial
time. To prove the NP-hardness, we construct a polynomial
time reduction from the cloud computing problem CC (Wein-
man 2011) to VFC, where CC is reduced from PARTITION
and 3-SAT. Note that VFC can also be reduced from the well-
known bin packing problem directly and we use CC for its
relevance to VFC. We first briefly review the definition of CC
before we proceed to the detail of the reduction to VFC.

4.1 The Cloud Computing Problem

Given a set of users with their resource requirements and a
set of servers with their resource capacities, the goal of CC
is to assign each user to a server while preventing the total
resource used on a server from exceeding the capacity of
the server. Moreover, each user has a designated subset of
reachable servers, where servers not belonging to the subset
cannot be assigned to the user.

An instance of CC can be represented in the following
form:

(U,S, {Sn}n, {cm}m, {rn}n) (12)

where U = {un}Nn=1 is the set of resource requirements from
N users, S = {sm}Mm=1 is the set of resource capacities of
M servers, Sn ⊆ S represents the collection of reachable
servers by user n, cm ∈ N is the resource capacity of server
sm and rn ∈ N is the resource requirement of user un. Fig. 3a
and Fig. 3b illustrate a CC instance, and the corresponding re-
quirements and capacities. The left hand side nodes represent
three users and their resource requirements; the right hand
side nodes represent two servers and their resource capacities.
The edges in between represent reachable servers for each
user.

The goal of CC is a to find a mapping Φ : U → S such that
Φ(un) ∈ Sn, ∀un ∈ U while satisfying the server capacity
constraint, which can be expressed as:(

N∑
n=1

�Φ(un) = sm� rn

)
≤ cm, ∀sm ∈ S (13)

where �·� is the indicator function. Fig. 3c shows a feasible
mapping in of the CC instance in Fig. 3b.

u1

u2

u3

s1

s2

GJ GD

ε1

ε2

ε3

σ1

σ2

σ3

α1

α2

α3

β1

β2

β3

Figure 4: Reducing a CC Instance to a VFC Instance

4.2 Reduction from CC to VFC

A reduction from CC to VFC implies (1) every CC instance
can be transformed into a VFC instance, and (2) a solution to
the VFC instance can be transformed back as a solution to the
corresponding CC instance.

The reduction is about constructing, based on a CC instance,
a task dependency graph GJ that represents U and a device
connectivity graph that represents both S and {Sn}Nn=1.

A CC Instance ⇒ A VFC Instance Recall that a VFC in-
stance is represented as the tuple in Eq. 1. We first let
rE(e) = 0, ∀e ∈ EJ and cE(e) = 0, ∀e ∈ ED, and will
show how to formalize GD, GJ , g̃+, g̃−, cV and rV .

To formulate CC in VFC we first turn U into GJ =
(VJ , EJ). Each CC user un is represented as a task in VJ ;
in addition, a producer task εn and a consumer task σn are
added for each user un. Each user’s corresponding VFC task
and their corresponding producer task and consumer task
form a path graph of (εn, un, σn). Therefore, VJ and EJ
can be expressed as follows:

VJ = ∪N
n=1{εn, vn, σn} (14)

EJ = ∪N
n=1{(εn, vn), (vn, σn)} (15)

where rV (un) = rn and rV (εn) = rV (σn) = 0 for all
un ∈ U.

Then, we represent S and {Sn}Nn=1 in GD = (VD, ED).
Likewise, each CC server sm is represented as a device in VD.
To represent CC reachability Sn, a source device αn and a
sink device βn are added for each user un; user un’s source
device αn and sink device βn are connected to a device sm, if
sm ∈ Sn, and form a path of (αn, sm, βn) in GD. Therefore,
VD and VD can be expressed as follows:

VD = ∪N
n=1{αn, βn} ∪ {sm}Mm=1 (16)

ED = ∪N
n=1{(αn, sm), (sm, βn)|sm ∈ Sn} (17)

where cV (sm) = cm for all sm ∈ S and cV (αn) =
cV (βn) = 0 for all un ∈ U.

Finally, we let g̃+(εn) = αn and g̃−(σn) = βn for all
user n. Fig. 4 illustrates the reduced VFC instance from the
CC instance in Fig. 3a. The left hand side along with the
solid lines shows the task dependency graph GJ , and the
right hand side along with the solid lines shows the device
connectivity graph GD; the dotted lines show the mapping
constraints g̃+ and g̃−.

6131

A Solution in VFC ⇒ A Solution in CC Observe that CC
reachability Sn is manifested in GD. The cardinality of Sn is
translated to the number of paths from αn to βn. Specifically,
if server sm is reachable by user un, there exists a path from
αn to βn through sm, and vice versa.

A CC solution can be obtained from task schedule g in VFC,
which can be expressed as follows:

Φ(un) = g(un), ∀un ∈ U (18)

It is straightforward to verify the server capacity constraint
over CC since rV (un) = rn for all un ∈ U, cV (sm) = cm
for all sm ∈ S. The device constraint of VFC (Eq. 9) implies
the server capacity constraint of CC (Eq. 13).

5 Proposed Solutions

In this section, we show how VFC can be formulated as an in-
teger linear programming problem ILP, and, thereby, solved
with state-of-the-art ILP solvers. An ILP formulation is es-
sentially a reduction from VFC to ILP. In addition to a naive
formulation in ILP, we also show a novel dual formulation
in ILP that can be solved much more efficiently.

We first briefly review the definition of ILP, and propose
two VFC solutions in ILP formulations in task perspective
and device perspective, respectively. Finally, we characterize
and compare the two solutions.

5.1 Integer Linear Programming

Integer linear programming is a non-convex optimization
problem that had been well-studied in the literature (Dantzig,
Orden, and Wolfe 1955; Schrijver 1998). Despite the fact
that ILP is in NP-hard, many efficient solvers have been
developed and deployed in real-world applications.

We describe the well-known 0-1 (or binary) integer linear
programming, which will be later on used for formulating
VFC, whose decision problem is also in NP-complete. An ILP
instance can be expressed as:

minimize c�x (19)
subject to Ax ≤ b (20)

Cx = d (21)

and x ∈ {0, 1}K (22)

where K is the length of x, Eq. 19 is the objective term,
Eq. 20 is the inequality constraint, Eq. 21 is the equality
constraint and Eq. 22 is the binary constraint.

In the following sections, we will describe two realizations
of VFC in ILP forms, which we will be refered to as ILP-T
and ILP-D, respectively. The high level idea is as follows:

• x to present the collection of possible schedules f

• Objective term (Eq. 19) to present total network utilization
(Eq. 11)

• Constraints (Eq. 20–21) to present device and network
constraints (Eqs. 9–10) and mapping constraints (Eqs. 6–
7)

5.2 ILP-T: Task Perspective Formulation

A first attempt at solving VFC is to represent all possible as-
signments from EJ to ED with a set of binary variables in x.
The key idea is to represent sub-schedule f j : Gj

J → GD in
xj for each subgraph Gj

J ∈ GJ , where x = (x�
1 · · ·x�

J)
�.

A feasible schedule can be realized with the equality con-
straint in ILP for which only one entry in xj is non-zero.

The Objective A sub-schedule f j for each job Gj
J is

formulated separately. Denote εj and σj the producer task
and the consumer task of the j-th job, respectively, and let
αj = g(εj) and βj = g(σj). We define xj

p,q a binary variable
representing the q-th possible assignment along the p-th path
from αj to βj . Therefore, the objective can be expressed as:

c�x =
J∑

j=1

P (j)∑
p=1

Q(j,p)∑
q=1

cjp,qx
j
p,q (23)

where P (j) is the number of paths from αj to βj , Q(j, p) is
the number of possible assignments from αj to βj along the
p-th path, and cjp,q is the total network utilization for xj

p,q.
Essentially, xj

p,q represents the use of the q-th assignment
along the p-th path for job j.

The Single Choice Constraint To ensure each xj has only
one non-zero entry, we define the following equality con-
straint:

P (j)∑
p=1

Q(j,p)∑
q=1

xj
p,q = 1, 1 ≤ j ≤ J (24)

The Ordering Constraint This is automatically satisfied
since ILP-T expands all possible assignments in the formula-
tion.

The Device & Network Constraints We denote, given
xj
p,q , Rj

V (v, p, q) the total resource requirement for each de-
vice v ∈ VD and Ri

E(e, p, q) the total link requirement for
each link e ∈ ED. Therefore, we can formulate the device
and network constraints as:⎛
⎝ J∑

j=1

P (j)∑
p=1

Q(j,p)∑
q=1

Rj
V (v, p, q)x

j
p,q

⎞
⎠ ≤ cV (v), ∀v ∈ VD

(25)⎛
⎝ J∑

j=1

P (j)∑
p=1

Q(j,p)∑
q=1

Rj
E(e, p, q)x

j
p,q

⎞
⎠ ≤ cE(e), ∀e ∈ ED

(26)

The ILP-T formulation reflects the nature of task-to-device
assignment, and enumerates all possible assignments in x.
In order to turn all constraints into linear forms, ILP-T es-
sentially expands all possibilities in x. It works fairly well
when the number of jobs and the number of devices are no
more than a few thousands. However, P (j) grows signifi-
cantly when there are multiple paths from αj to βj ; even

6132

worse, Q(j, p) grow exponentially, which can be expressed
as follow:

Q(j, p) =

(|V j
J |+ |P (j)| − 3

|V j
J | − 2

)
(27)

The outstanding cardinality of x can make ILP converge
rather slowly.

While ILP-T maps directly from f in VFC to x in ILP by
enumerating all possible paths for each job j, it is feasible
but cannot scale well because the dimension of x grows
exponentially with increased complexity in both graphs VJ
and VD. In the next section, we present a novel formulation
ILP-D of VFC in ILP that exploits the duality of f for which
the cardinality of x can be significantly reduced; hence, VFC
can be solved much more efficiently. A detailed comparison
between ILP-T and ILP-D will be discussed in Sec. 5.4.

5.3 ILP-D: Device Perspective Formulation

The ILP-D formulation is based on a simple perhaps critical
observation that there exists a reverse schedule h for each
feasible schedule f . Essentially, a reverse schedule defines
the relation links in device connectivity graph ED and de-
pendencies in task dependency graph EJ . For simplicity, we
define h as a function from ED to the power set of EJ , which
can be expressed as:

h = ED → 2EJ (28)

where 2EJ denotes the power set of EJ . This above implies
d ∈ f(e) ⇔ e ∈ h(d). In addition, h can be represented with
a collection of reverse sub-schedule hj , which are functions
mapping a device back to a task in a per job manner:

hj : ED → {Ej
J ∪ φ} 1 ≤ j ≤ J (29)

h(d) = ∪J
j=1h

j(d) ∀d ∈ ED (30)

where J is the number of jobs (disjoint subgraphs) in GJ .
The reverse schedule h is a dual of f ; namely, for each sched-
ule f , there exists a reverse schedule h that can be used to
reconstruct the schedule f . The fact that h is a dual of f al-
lows us to reformulate VFC in ILP with reverse schedule h in
x, which lead to a much more efficient runtime performance
for the reduced number of variables in ILP-D.

The Objective To formulate x for reverse edge-to-edge
mapping of h, we define x as follows:

x = {xj
d,e|d ∈ ED, e ∈ Ej

J }Jj=1 (31)

where xj
d,e = 1 ⇔ hj(d) = e; namely, device connection e

is used by task dependency e in job j. Therefore, the objective
can be defined as follows:

c�x =

J∑
j=1

∑
d∈ED

∑
e∈Ej

J

rE(e)x
j
d,e (32)

The ILP-D formulation explicitly model the edge-to-edge
mapping from ED to EJ in x, cf. ILP-T expands all possible
paths for each pair of source device and sink device for each
job.

The Single Choice Constraint Based on the definition of
the reverse schedule h, we define flow conservation con-
straints on the device connectivity graph GD. A device has
at most one outward edge mapped by f for each job, which
can be expressed as:∑

d+=u
d∈ED

∑
e∈Ej

J

xj
d,e ≤ 1, ∀u ∈ VD (33)

where ·+ and ·− denote the tail and the head of an arbitrary
edge; namely, e+ = u and e− = v if e = (u, v). In addition,
every intermediate device u ∈ VD \ (V +

D ∪ V −
D), which is

neither a source device nor a sink device, must have one
inward edge and one outward edge or have none of them,
which can be expressed as:

∑
e∈Ej

J

⎛
⎜⎜⎝ ∑

d+=u
d∈ED

xj
d,e −

∑
d−=u
d∈ED

xj
d,e

⎞
⎟⎟⎠ = 0 (34)

On the other hand, a source device in V +
D and a sink device

in V −
D must have exact one outward edge and one inward

edge, respectively, which can be expressed as:∑
d+∈V +

D
d∈ED

∑
e∈Ej

J

xj
d,e =

∑
d−∈V −

D
d∈ED

∑
e∈Ej

J

xj
d,e = 1 (35)

The Ordering Constraint The tasks along a job must be
mapped in order along a path in the device connectivity graph,
as described in Eq. 8, which can be expressed as:∑

d−=u
d∈ED

∑
e∈Ej

J

I(e)xj
d,e ≤

∑
d+=u
d∈ED

∑
e∈Ej

J

I(e)xj
d,e, ∀u ∈ VD

(36)

where I : EJ → R is an arbitrary function that satisfies the
property e+1 �J e+2 ⇔ e−1 �J e−2 ⇒ I(e1) ≤ I(e2) for all
e1, e2 ∈ EJ . The above implies that Eq. 8 holds by using
the novel function I to preserve the total ordering of Gj

J .

The Device & Network Constraints The network con-
straint is straightforward in ILP-D, which can be formulated
as follows:⎛

⎜⎝ J∑
j=1

∑
e∈Ej

J

rE(e)x
j
d,e

⎞
⎟⎠ ≤ cE(d), ∀d ∈ ED (37)

The device constraint, on the other hand, is trickier in the
ILP-D formulation since edge-to-edge mapping is explicitly
modeled in x. We define R : EJ → R the aggregated
requirement function that sum up the task requirements all
the way to the tail of e from its corresponding producer task
in the very beginning of a job, which can be expressed as:

R(e) =
∑

u�J e+

u∈VJ

rV (u), ∀e ∈ EJ (38)

6133

0 5000 10000 15000 20000
number of data sources

0

200

400

600

800

1000

1200
tim

e
(s

ec
)

Naive
ILP-T
ILP-D

(a) Tree depth of 3,
task length of 3

0 5000 10000 15000 20000
number of data sources

500

1000

1500

2000

2500

3000

tim
e

(s
ec

)

Naive
ILP-T
ILP-D

(b) Tree depth of 3,
task length of 4

0 5000 10000 15000 20000
number of data sources

0

1000

2000

3000

4000

5000

6000

7000

tim
e

(s
ec

)

Naive
ILP-T
ILP-D

(c) Tree depth of 3,
task length of 5

0 5000 10000 15000
number of data sources

0

1000

2000

3000

4000

5000

tim
e

(s
ec

)

ILP-T
ILP-D

(d) Tree depth of 4,
task length of 3

0 5000 10000 15000
number of data sources

0

5000

10000

15000

tim
e

(s
ec

)

ILP-T
ILP-D

(e) Tree depth of 4,
task length of 4

0 5000 10000 15000
number of data sources

0

1

2

3

4

5

tim
e

(s
ec

)

104

ILP-T
ILP-D

(f) Tree depth of 4,
task length of 5

 0 2000 4000 6000 8000
number of data sources

0

0.5

1

1.5

2

2.5

tim
e

(s
ec

)

104

ILP-T
ILP-D

(g) Tree depth of 5,
task length of 3

 0 2000 4000 6000 8000
number of data sources

0

2

4

6

8

tim
e

(s
ec

)

104

ILP-T
ILP-D

(h) Tree depth of 5,
task length of 4

 0 2000 4000 6000 8000
number of data sources

0

0.5

1

1.5

2

2.5

tim
e

(s
ec

)

105

ILP-T
ILP-D

(i) Tree depth of 5,
task length of 5

Figure 5: Quantitative Results with Realistic Settings

The difference between aggregated requirements of a device’s
inward edge and outward edge uniquely defines the actual
jobs running on the device, as well as the total resource
requirements on this particular device. Hence, we define the
device constraint for all u ∈ VD, which can be expressed as
follows:

J∑
j=1

∑
e∈Ej

J

R(e)

(∑
d+=u

xj
d,e −

∑
d−=u

xj
d,e

)
≤ cV (u) (39)

where each e in the inner summation is either all zero or
has exact one positive term and one negative term whose
difference defines the actual task or tasks run on device u.
The novel use of R makes possible extracting device-to-task
mapping from reverse edge-to-edge mapping h.

5.4 Discussion

We proposed two formulations ILP-T and ILP-D for solving
VFC using ILP solvers; ILP-T maps schedule f to x whereas
ILP-D maps dual schedule h to x. Generalization of VFC for
compound resource types, as described in Sec. 3, is a straight-
forward extension to both formulations by representing each
device constraint and network constraint in its respective
form in ILP-T and ILP-D. The novelty of ILP-D is to explic-
itly model the edge-to-edge relation between ED and EJ
in x while being able to represent the various non-linear
constraints in linear forms, especially Eq. 36 and Eq. 39.

The characteristics of the two formulations are summa-
rized in Tab. 1. As P (j) and Q(j, p) grow extremely fast
with increased |VD| and |ED|, both in combination can make
ILP-T computationally intractable in real world settings. On
the other hand, ILP-D, by exploiting the duality of schedule,

2 4 6 8 10
number of data sources

0

0.02

0.04

0.06

0.08

tim
e

(s
ec

)

ILP-T
ILP-D

(a) DAG depth of 3,
task length of 3

2 4 6 8 10
number of data sources

0

2

4

6

8

tim
e

(s
ec

)

ILP-T
ILP-D

(b) DAG depth of 4,
task length of 4

2 4 6 8 10
number of data sources

0

200

400

600

800

1000

1200

tim
e

(s
ec

)

ILP-T
ILP-D

(c) DAG depth of 5,
task length of 5

Figure 6: Quantitative Results with Generalized Settings

keeps the cardinality of x polynomial, and, in effect, can be
solved much more efficiently.

ILP-T ILP-D
|x| ∑J

j=1

∑P (j)
p=1 Q(j, p) |EJ | × |ED|

Eq. 20 |VD|+ |ED| (J + 1)× |VD|+ |ED|
Eq. 21 J 2× J × |VD|

Table 1: ILP-T vs. ILP-D

6 Experimental Results

This section evaluates our solutions for feasibility and scala-
bility, where the former is through experiments against real-
istic visual fog settings and the latter is through generalized
visual fog settings. Both of them are with carefully crafted
simulated data so that there only exist non-trivial solutions.
All experiments were run on Intel Xeon CPU E5-4657L v2
@ 2.4GHz using MATLAB’s Optimization Toolbox. The
number of jobs per source device can be arbitrary, and, for
simplicity of evaluation, in the below experiments, we gener-
ate a job in a per source device manner.

6.1 Realistic Visual Fog Settings

Realistic visual fog settings are with tree structure where
the root vertex is the only sink device and the leaf vertices
are source devices. The root vertex manifests the concept of
cloud computing where a cluster of interconnected servers are
abstracted. Complete b-nary tree is assumed where all non-
leaf vertices share a same branching factor b. Each setting
repeats for 10 times and assumes a tree depth and a task
length while increasing branching factor of the tree until
there are more than 20,000 source devices, i.e., leaf vertices.

Fig. 5 compares ILP-T, ILP-D and a naive baseline that
iterates through all possibilities, with respect to the execution
time to find an optimal schedule, in which task length denotes
the number of tasks is in a job. As one can see from Fig. 5a-
c, the naive approach is computationally intractable in any
realistic settings; ILP-T and ILP-D on the other hand, are
scalable even when there are thousands of source devices.
The performance difference between ILP-T and ILP-D is also
significant. This experiment not only shows the feasibility of
ILP-T and ILP-D, but also shows the advantage of the ILP-D
formulation where its number of variables in x is significantly
fewer than with ILP-T.

6134

6.2 Generalized Visual Fog Settings

The generalized settings are with DAG structure of device
connectivity graph GD where there can be multiple paths
between a pair of source device and sink device. This mani-
fests the multipath nature of networking. To make the prob-
lem even more challenging, we simulate GD with complete
multi-partite graphs where each independent vertex set in GD
shares a same cardinality. Likewise, each setting repeats for
10 times and assumes a DAG depth (number of indepedent
vertex sets) and a task length while increasing the cardinality
of all vertex sets up until 10.

Fig. 6 compares ILP-T and ILP-D, with respect to the
execution time to find an optimal schedule. As can be seen in
Fig. 6c, ILP-T cannot scale well even with no more than ten
devices. Both experiments, in combination, concluded that
ILP-D is much more scalable in both realistic and generalized
settings.

7 Conclusion

In this paper, we formulated and addressed the scheduling
problem of visual fog computing. To the best of our knowl-
edge, we are the first to prove its NP-completeness and pro-
posed practical efficient solutions under the theoretic foun-
dation of ILP. The novel trick in ILP-D that represents non-
linear constraints in linear forms makes it particularly viable
for deploying in real world settings. The ample experimental
results showed that our methods are feasible and scalable.
Future extensions include just-in-time scheduling and run-
time scheduling, specialized solutions for realistic visual
fog settings, extending jobs in task dependency graph from
linear graph to DAG, extending device connectivity graph
from DAG to general graph, and practical consideration of
de-duplication of tasks among jobs. We also plan to use dis-
tributed ILP solvers for improved efficiency of scheduling,
and use approximation algorithms with theoretic guarantee
for further improving the computational complexity, e.g., re-
laxation with randomized rounding (Raghavan and Tompson
1987).

References

Bonomi, F.; Milito, R.; Zhu, J.; and Addepalli, S. 2012. Fog
computing and its role in the internet of things. In the first
edition of the MCC workshop on Mobile cloud computing.
Botta, A.; de Donato, W.; Persico, V.; and Pescape, A. 2016.
Integration of cloud computing and internet of things: a sur-
vey. 56:684–700.
Curino, C.; Difalla, D. E.; Douglas, C.; Krishnan, S.; Ramakr-
ishnan, R.; and Raio, S. 2014. Reservation-based scheduling:
If you’re late don’t blame us! In Proceedings of the ACM
Symposium on Cloud Computing.
Dantzig, G. B.; Orden, A.; and Wolfe, P. 1955. Generalized
simplex method for minimizing a linear form under linear
inequality restraints. 5:183–195.
Deelman, E.; Gannon, D.; Shields, M.; and Taylor, I. 2009.
Workflows and e-science: An overview of workflow system
features and capabilities. Future generation computer sys-
tems 25(5):528–540.

Delimitrou, C., and Kozyrakis, C. 2013. Qos-aware schedul-
ing in heterogeneous datacenters with paragon. 31.
Delimitrou, C., and Kozyrakis, C. 2014. Quasar: Resource-
efficient and qos-aware cluster management. In Proceedings
of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems.
Ferguson, A. D.; Bodik, P.; Kandula, S.; Boutin, E.; and
Fonseca, R. 2012. Jockey: guaranteed job latency in data
parallel clusters. In Proceedings of the 7th ACM European
Conference on Computer Systems.
2015. Top video surveillance trends for 2015. Technical
report.
Kumar, K.; Liu, J.; Lu, Y.-H.; and Bhargava, B. 2013. A
survey of computation offloading for mobile systems. Mobile
Networks and Applications 18(1):129–140.
Radulescu, A., and Van Gemund, A. J. 2000. Fast and effec-
tive task scheduling in heterogeneous systems. In Heteroge-
neous Computing Workshop, 2000.(HCW 2000) Proceedings.
9th, 229–238. IEEE.
Raghavan, P., and Tompson, C. D. 1987. Randomized round-
ing: A technique for provably good algorithms and algorith-
mic proofs. 7:365–374.
Sakellariou, R., and Zhao, H. 2004. A hybrid heuristic for
dag scheduling on heterogeneous systems. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th
International, 111. IEEE.
Satyanarayanan, M.; Bahl, P.; Caceres, R.; and Davies, N.
2009. The case for vm-based cloudlets in mobile computing.
IEEE pervasive Computing 8(4).
Schrijver, A. 1998. Theory of linear and integer program-
ming. John Wiley and Sons.
Topcuoglu, H.; Hariri, S.; and Wu, M.-y. 2002. Performance-
effective and low-complexity task scheduling for heteroge-
neous computing. IEEE transactions on parallel and dis-
tributed systems 13(3):260–274.
Tumanov, A.; Zhu, T.; Park, J. W.; Kozuch, M. A.; Harchol-
Balter, M.; and Ganger, G. R. 2016. Tetrisched: global
rescheduling with adaptive plan-ahead in dynamic heteroge-
neous clusters. In The European Conference on Computer
Systems (EuroSys).
Weinman, J. 2011. Cloud computing is np-complete. Tech-
nical report.
Zheng, W., and Sakellariou, R. 2013. Stochastic dag schedul-
ing using a monte carlo approach. 73(12):1673–1689.

6135

