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Abstract

Qualitative Decentralized Partially Observable Markov De-
cision Problems (QDec-POMDPs) constitute a very general
class of decision problems. They involve multiple agents, de-
centralized execution, sequential decision, partial observabil-
ity, and uncertainty. Typically, joint policies, which prescribe
to each agent an action to take depending on its full history
of (local) actions and observations, are huge, which makes it
difficult to store them onboard, at execution time, and also
hampers the computation of joint plans.
We propose and investigate a new representation for joint
policies in QDec-POMDPs, which we call Multi-Agent
Knowledge-Based Programs (MAKBPs), and which uses
epistemic logic for compactly representing conditions on his-
tories. Contrary to standard representations, executing an
MAKBP requires reasoning at execution time, but we show
that MAKBPs can be exponentially more succinct than any
reactive representation.

Introduction
Knowledge-Based Programs (KBPs) (Fagin et al. 2003)
describe policies that agents should perform according to
their knowledge, such as ‘if KiΦ then κ’ where Ki is
the knowledge modality for agent i, Φ is a formula, and
κ is a program. As shown by Lang and Zanuttini (2012;
2013) for the single-agent case, KBPs offer compact repre-
sentations of policies for planning problems. Moreover, ar-
guably, they provide a natural level of expressivity for ex-
perts to design policies for autonomous agents.

We are interested here in multi-agent decision problems,
for which we generalize KBPs. Precisely, we consider Qual-
itative Decentralized Partially Observable Markov Deci-
sion Problems (QDec-POMDPs), as formalized by Brafman,
Shani, and Zilberstein (2013). Such problems involve multi-
ple agents, decentralized execution, sequential decision, par-
tial observability, and uncertainty.

A single agent executing a policy for such a problem must
reason about what the other agents are executing, what they
have observed, and what they believe or know. However,
this is taken into account only indirectly by standard rep-
resentations of policies. A drawback of this is that such poli-
cies are typically huge. By expliciting the reasoning about
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other agents’ knowledge in Multi-Agent KBPs (MAKBPs),
we provide more succinct representations. The counterpart
is that executing MAKBPs requires reasoning, hence they do
not constitute reactive policies. However, in many scenarios
some reasoning at execution time may be affordable. Typi-
cal examples are applications in which executing atomic ac-
tions is not instantaneous (like in extraterraneous missions),
so that deliberation can be performed in parallel.

Knowledge-based policies have been considered in other
planning settings than that of QDec-POMDPs, in particu-
lar, they arise naturally in epistemic planning (Bolander and
Andersen 2011). Other works have taken inspiration from
reasoning about knowledge to design approaches for multi-
agent (classical) planning (Kominis and Geffner 2015).

However, the originality of the (qualitative) Dec-PODMP
model is that it assumes decentralized execution, but cen-
tralized planning. This makes it a challenging problem, as it
requires to be able to plan offline a joint plan which can be
executed in a decentralized fashion. The challenge is visible
in the large body of work about the resolution of quantitative
(stochastic) Dec-POMDPs (see Oliehoek and Amato (2016),
Dibangoye et al. (2016) for instance).

Centralized planning with decentralized execution means
that agents agree on a policy offline, then execute it indepen-
dently of each other. Hanabi is a flagship example of such
settings. In this cooperative card game with partial observ-
ability and limited communication, players typically agree
on conventions before the game takes places. Researchers
have started building computer players for Hanabi, notably
by encoding human-designed policies (van den Bergh 2015;
Cox et al. 2015). Furthermore, describing and using poli-
cies that involve epistemic reasoning to determine the next
action is seen as a gateway to high-performance automated
players (Osawa 2015). Yet, no formal frameworks allowing
such policies have been put forward.

Example 1 (running) As a running example, assume Alice
wants to meet Bob. She may take a train or a flight from her
place to his, but there is a risk of air crew strike. Alice and
Bob may call each other beforehand (centralized planning
phase) to agree on the following plan.

Alice tries to fly. If there is a strike, she takes the train and
listens to the radio to know whether Bob can know this. If
the strike is not announced on the radio (hence Bob cannot
know), after arriving at the station she will reach the airport
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to meet Bob there. Otherwise they will meet at her place of
arrival. It can be seen that this plan, once agreed upon, can
be executed successfully in a decentralized fashion.

Besides defining MAKBPs as a new representation of
joint policies for QDec-PODMPs, we make the following
contributions. We prove that this representation is as suc-
cinct as standard ones, e.g., joint policies trees, and we give
families of problems for which it is exponentially more suc-
cinct. Contrary to standard representations, determining the
action to execute next is nontrivial in MAKBPs, as it in-
volves explicit reasoning about other agents’ knowledge. We
then investigate the complexity of this execution problem
and that of verifying whether a given MAKBP solves a given
QDec-POMDP, and we show that both these essential prob-
lems are intractable: both are PSPACE-complete if the hori-
zon is bounded, and verification is undecidable otherwise.1

Decentralized POMDPs
We define the planning tasks which we address in two steps;
first the model, encoding the dynamics of actions and obser-
vations (Definition 2), then the planning task itself, which
specifies an initial (belief) state, a goal, and a planning hori-
zon (Definition 3). Our definitions essentially follow those
given by Brafman, Shani, and Zilberstein (2013). We gen-
eralize them slightly by (1) allowing nondeterminism in the
transitions and observations, (2) allowing the observations
to depend on the previous state as well as the action and re-
sulting state, and (3) allowing arbitrary observations rather
than only the truth value of propositions.

For simplicity, we assume that all agents have the same
actions, and do not consider explicit preconditions.2

Definition 2 (factored QDec-POMDP model) A factored
model for a Qualitative Decentralized Partially Observable
Markov Decision Problem (QDec-POMDP) is a tuple M =
〈I , X,A,Ω, T 〉, where I , X,A,Ω are finite set of agents,
propositions, actions, and observations, resp., and T is a
transition function, which maps each couple (s,a) ∈ 2X ×
AI to a set of couples {(s′,ω)} ⊆ 2X × ΩI .

A Boolean assignment s to X is called a state; s[x] de-
notes the value it assigns to x. An element a of AI is called
a joint action, and specifies one (individual) action ai per
agent i . We use similar notation for observations. The tran-
sition function encodes the dynamics of actions and obser-
vations: (s′,ω) ∈ T (s,a) means that when the state is s
and the agents take joint action a, it is possible that both the
environment transitions to state s′ and each agent i receives
the observation ωi . Note that the next states and observations
depend on the current state and the joint action taken.

At execution time (when agents act), at any timestep t the
environment is in some state st ∈ 2X . Each agent i (simul-
taneously and independently) chooses and takes an (individ-
ual) action ati ∈ A, defining the joint action at. Then the en-

1A simple demonstration of executions of KBPs can be
found in the tool Hintikka’s world (http://people.irisa.fr/Francois.
Schwarzentruber/hintikkasworld/).

2The trick to model unexecutable joint actions consists of
adding a sink state to which any unexecutable joint action leads.

vironment nondeterministically chooses a couple (st+1,ωt)
from T (st,at); it transitions to state st+1; each agent i re-
ceives the individual observation ωt

i ; and the process repeats.

Definition 3 (factored QDec-POMDP) A factored QDec-
POMDP is a quadruple Π = 〈M,B0, g,H〉, where M =
〈I , X,A,Ω, T 〉 is a factored QDec-POMDP model, B0 ⊆
2X is the initial belief state, g is a Boolean formula over X
called goal, and H ∈ N ∪ {∞} is the horizon.3

Histories and policies Let M = 〈I , X,A,Ω, T 〉 be a
QDec-POMDP model. A t-history for M is a sequence

ht = s0a0ω0s1a1ω1 . . . st−1at−1ωt−1st

satisfying ∀t′ < t, (st
′+1,ωt′) ∈ T (st

′
,at′). Of ht, the

only information available to an agent i ∈ I is its local
history ht

i = a0i ω
0
i a

1
i ω

1
i . . . a

t−1
i ωt−1

i , that is, the sequence
of (individual) actions it has taken and (individual) observa-
tions it has received. We write Ht for the set of all t-histories
for M (M will always be clear from the context), and Ht

i
for the set of all local t-histories for i . We also use notation
H≤t =

⋃t
t′=0 H

t′ and H≤t
i =

⋃t
t′=0 H

t′
i .

A (deterministic) t-policy for i is a mapping πi : H
≤t
i →

A. Action πi(h
t′
i ) is the one which i should take when

its local history so far is ht′
i . A joint t-policy π is sim-

ply a vector of t-policies, one for each agent i . A history
ht = s0a0ω0 . . . st−1at−1ωt−1st is said to be consistent
with π if at all timesteps, each agent acts according to its
policy, namely, for all timesteps t′ < t − 1 and all agents i ,
at

′+1
i is πi(a

0
i ω

0
i . . . a

t′
i ω

t′
i ).

A joint t-policy π is valid for Π = 〈M,B0, g,H〉 if for all
H-histories s0a0ω0 . . . sH−1aH−1ωH−1sH with s0 ∈ B0

and consistent with π, the final state sH satisfies the goal g.
Note that we require the final state to satisfy g: this implicitly
requires that the agents know when g is achieved and main-
tain it until timestep H (e.g., using void actions if available).
Finally, two joint policies are said to be t-equivalent (wrt Π)
if they induce exactly the same sets of consistent t-histories.

In this paper, we are interested in joint policies which are
computed offline in a centralized manner (as opposed to ex-
ecution, which is decentralized), as is standard in the lit-
erature on Dec-POMDPs (Brafman, Shani, and Zilberstein
2013; Oliehoek and Amato 2016; Dibangoye et al. 2016).

Representations Desiging compact representations for
(joint) policies is crucial, due to the combinatorial nature of
H≤t

i . The most direct representations are (1) by policy trees,
which the agent follows by branching on the observations
received and executing the actions stored at the nodes, and
(2) by finite state controllers, i.e., labelled automata in which
transitions are fired by observations and each state holds an
action to take (see Kumar, Mostafa, and Zilberstein (2016)).4

3By assuming g to be a Boolean formula, we stick to the stan-
dard definition of a Dec-POMDP. However, it is easily seen that
allowing epistemic goals, e.g., that all agents know the value of
some variable, would not change the results in the paper.

4Note that finite state controllers constitute a much more gen-
eral class of representations than policy trees. In particular, if there
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w : {x} w′ : ∅ w′′ : {x}1 2

Figure 1: Example of a Kripke structure (each world w is
annotated with its valuation V (w))

A well-known drawback of such representations is that
they can be huge even for simple problems. Observe in-
deed that there are as many as |Ω|t local t-histories, each
of which can yield a distinct path in the tree or automaton.
On the other hand, an advantage of using these represen-
tations is that they are reactive, in the sense that they are
easily executable. Taking inspiration from Bäckström and
Jonsson (2012), we formalize this as follows.

Definition 4 (execution problem) The execution problem
takes as input a QDec-POMDP model M , an initial belief
state B0, a joint policy π, an agent i , and a local history ht

i

such that there is a history ht consistent with π and induc-
ing ht

i . It asks what action πi(h
t
i) is, that is, what action π

prescribes to i at timestep t+ 1.

Definition 5 (reactive policy representation) A class R of
representations of policies is said to be reactive if the ex-
ecution problem restricted to policies represented in R is
solvable in polynomial time.

Clearly, policy trees and finite state controllers constitute
reactive representations: executing one consists of iteratively
changing state according to the observation just received and
taking the action found there. The rest of the paper provides
a proper generalization of them, which is not reactive but has
the essential advantage of being more succinct.

Background on Epistemic Logic
Let X be a set of variables and I be a set of agents. A Kripke
structure represents an epistemic situation, that is, a descrip-
tion of the state of the variables and of what the agents know
about it, about what the other agents know about it, etc. (Hin-
tikka 1962). This is done through a graph of possible worlds
and undistinguishability relations ∼i (for each agent i ). In-
tuitively, a possible world w represents a possible state over
X (either the actual one, or one which an agent imagines)
together with the epistemic situation for all agents, assum-
ing that w is the actual world. Two such worlds are related
by ∼i if whenever the actual world is one of them, agent i
thinks it might as well be the other one. Note that we model
knowledge rather than beliefs (which might be false); pre-
cisely, we rely on an S5n semantics, and in particular, an
agent may know a formula Φ only if Φ is true.

Definition 6 (Kripke structure) A Kripke structure over X
is a tuple S = 〈W, (∼i)i∈I , V 〉, where W is nonempty set of
worlds, ∼i is an equivalence relation over W for all agents
i ∈ I , and V : W → 2X is a valuation function, which
associates an assignment to X to each world in W .

are (feasible) loops in the automaton, the policy can be executed
for an infinite number of steps.

Figure 1 shows a Kripke structure with three worlds
w,w′, w′′ (reflexive links are omitted for simplicity). Vari-
able x is true in w and w′′, and false in w′. Note that different
worlds may have the same valuation. The ∼1-equivalence
classes are {w,w′} and {w′′}. Hence when the actual situ-
ation is w, agent 1 thinks it might be w′ instead, and hence,
it thinks that 2 may think that the actual world is w′′. Con-
trastingly, when the actual state is w or w′, agent 1 knows
that the actual state is not w′′. It can also be seen that when
the actual world is w, agent 1 does not know the value of x,
while it knows that x is true when the actual world is w′′.

Kripke structures are essentially used for giving seman-
tics to epistemic formulas (over X and I ), which are logical
formulas Φ generated by the following grammar:

Φ ::= x | ¬Φ | Φ ∨ Φ | KiΦ | KWiΦ

where x ranges over X , i over I , KiΦ is read “agent i knows
that Φ holds”, and KWiΦ is read “agent i knows whether
Φ holds or not”. An epistemic formula Φ is said to be sub-
jective for agent i if all propositional variables x are in the
scope of a Ki or KWi modality. This means that Φ refers
to the knowledge of i only; in particular, i is able to evaluate
such a formula, while in general it does not know enough
of the actual world to evaluate an objective (propositional)
formula about it. Finally, the epistemic depth d(Φ) of Φ is
the deepest nesting of modalities in Φ.

The truth condition S, w |= Φ is read “S, w satisfies Φ”,
and means that Φ is true at world w in the Kripke structure S .
It is defined by induction on Φ, with the obvious definition
for Boolean connectives:

• S, w |= x if x is assigned to true by V (w);

• S, w |= KiΦ if ∀w′, (w ∼i w
′ =⇒ S, w′ |= Φ) holds;

• S, w |= KWiΦ if S, w |= KiΦ or S, w |= Ki¬Φ holds.

We insist that despite the fact that the actual world w is
given in the definition, in general the agents do not know
what the actual world is. For instance, on Figure 1 we have
S, w |= ¬K1x ∧ K1(x ∨ ¬KW2x). In this paper, we use
epistemic formulas as branching conditions in policies, and
Kripke structures for providing them with operational se-
mantics. In these structures, possible worlds essentially cor-
respond to histories for the QDec-POMDP model at hand,
and two histories are undistinguishable of each other for an
agent i if they induce the same local history for i .

Multi-Agent Knowledge-Based Programs
We are now ready to introduce our new representation of
joint policies for QDec-POMDPs. We build on Knowledge-
Based Programs (KBPs) (Fagin et al. 2003) and on their use
as policies for single-agent conformant planning (Lang and
Zanuttini 2012). In a nutshell, single-agent KBPs represent
policies by “programs” built using sequential composition,
and branching and iterating with conditions about what the
agent knows. We first generalize them to allow branching
on the last observation received, through the constructor jo
(“just observed”). This allows us to properly generalize re-
active representations such as policy trees.

Let M = 〈I , X,A,Ω, T 〉 be a QDec-POMDP model.

6272



Definition 7 ((MA)KBP) A Knowledge-Based Program
(KBP) for agent i is an expression generated by:

κ ::= ε | a | κ;κ | if Θ then κ else κ fi | while Θ do κ od

where ε is the empty program, a ∈ A is an action, and Θ is
either an epistemic formula over X and I which is subjective
for i , or a Boolean combination of atoms of the form jo(ω)
for observations ω ∈ Ω. A Multi-Agent Knowledge-Based
Program (MAKBP) is a vector of KBPs, one per agent i ∈ I .

We sometimes enclose a KBP inside bold brackets ([ . . . ])
to promote readability.

The epistemic depth d(κ) of a KBP κ is defined to be the
maximal epistemic depth of a condition Θ occurring in it,
and that of an MAKBP κ is defined to be the maximal epis-
temic depth of all individual KBPs κi . We write Kd for the
class of all MAKBPs of epistemic depth at most d.5 Finally,
the size |κ| of a KBP is defined to be the number of symbols
used for writing it, including the symbols used for writing
the branching conditions, and |κ| is defined to be

∑
i∈I |κi |.

Example 8 (continued) Let strike and radio be variables
encoding that there is an air crew strike and that it is an-
nounced on the radio, resp., and let planeA encode that Al-
ice is in the plane. The plan of Example 1 would be repre-
sented by the MAKBP κ = (κA, κB), with

κA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

try-plane;
if KA(¬planeA) then

take-train;
turn-radio-on;
listen-radio;
if KA(¬KBstrike) then to-airport fi

fi

κB =

{ turn-radio-on;
listen-radio;
if KB(strike) then to-station else to-airport fi

Note that conceptually, jo(ω) can be seen as the atom
Ki(oi = ω), if the dynamics of the problem is extended
so that each state stores the last observation received by i in
an extra variable oi . We also insist that jo constructs (resp.
epistemic branching conditions) in the KBP of i refer to the
last observation received by i itself (resp. to the knowledge
of i itself, possibly about other agents’ knowledge). Other-
wise the KBP would not make sense, as i would not be able
to evaluate its branching conditions at execution time.

Operational Semantics
We now define an operational semantics for MAKBPs,
namely, a model for the agents to execute them. Importantly,
recall that we consider decentralized execution (each agent
executes its KBP independently of the other agents), but cen-
tralized planning, so that at execution time the agents know
the QDec-POMDP Π as well as the whole MAKBP κ.

The operational semantics which we give is intended to
be the straightforward one: each agent executes its own KBP

5The class K0 consists of KBPs which do not branch, or branch
only on combinations of jo(ω) atoms, since epistemic conditions
are subjective and hence have depth at least 1.

faithfully, and all reason perfectly about the possible evolu-
tions of the environment and of knowledge. However, pro-
viding a language which involves reasoning, as MAKBPs,
with an operational semantics is a matter of choice, and we
could as well study semantics involving approximate rea-
soning (e.g., bounded-depth epistemic reasoning). We leave
this as a very interesting perspective for future work.

At execution time, when an agent i evaluates a branching
condition such as [if KiKi′Φ], it needs to reason about the
current knowledge of i ′. This requires in particular to reason
on what observations i ′ has collected so far/on what actions
it has taken. However, due to partial observability, i may
not know exactly what actions i ′ has taken so far, even if
it knows what KBP i ′ is executing. To cope with this, our
semantics includes reasoning about the program counters in
the KBP of each agent. The intended meaning of 〈Γ, a, κ〉 is
that, provided that all formulas in Γ are currently true, i is
about to execute action a, then it will execute the KBP κ.
Definition 9 (program counter) Let i be an agent. A pro-
gram counter for i is a triple c = 〈Γ, a, κ〉 with Γ ={
Θ(1), . . . ,Θ(k)

}
, where each Θ(j) is either an epistemic

formula subjective for i , or a Boolean combination of jo(ω)
atoms, called the guard of c, a ∈ A is called the first action
of c, and κ is a KBP called its continuation.

We will reason on what program counters may be “ex-
ecuted” after what others. We first define the set FPC (κ)
of first program counters of a (nonempty) KBP κ as fol-
lows. If κ is of the form [a] (resp. [a ; κ′]), then FPC (κ)
is the singleton {〈∅, a, ε〉} (resp. {〈∅, a, κ′〉}). If κ is of the
form [if Θ then κ′ else κ′′ fi], then FPC (κ) is defined
to be {〈{Θ} ∪ Γ′, a′, κ′′′〉 | 〈Γ′, a′, κ′′′〉 ∈ FPC (κ′)} ∪
{〈{¬Θ} ∪ Γ′′, a′′, κ′′′′〉 | 〈Γ′′, a′′, κ′′′′〉 ∈ FPC (κ′′)}, and
while constructs are handled similarly. Finally, we define the
control-flow graph of κ; intuitively, an edge c →κ c′ in G(κ)
means that in an execution of κ, the first action of c will be
followed by that of c′, provided the guard of c′ is true.
Definition 10 (control-flow graph) Let κ be a KBP. The
control-flow graph of κ is the directed graph G(κ) =
(V,→κ) where (1) V is the smallest set of program coun-
ters which contains FPC (κ), and contains FPC (κ′) when-
ever it contains a program counter with continuation κ′, and
(2) →κ contains an edge from c = 〈Γ, a, κ′〉 to c′ if and only
if c′ is in FPC (κ′).
Example 11 (continued) Bob’s KBP κB in Example 8 has
four program counters:

c0B = (∅, turn-radio-on, [listen-radio; if . . . fi]),
c1B = (∅, listen-radio, if . . . fi),
c2B = ({KB(strike)}, to-station, ε),
c3B = ({¬KB(strike)}, to-airport, ε),

and G(κB) has these as vertices, with c0B →κB
c1B , c1B →κB

c2B , and c1B →κB
c3B .

For simplicity, we assume that there is a unique first pro-
gram counter in κ, written c0(κ) or c0 (that is, that FPC (κ)
is a singleton); given an initial belief state B0, this can al-
ways be enforced by precomputing the value in B0 of all
tests performed at the beginning of κ.
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With this in hand, we give an operational semantics to
MAKBPs, by defining the Kripke structure in which the
agents evaluate branching conditions. The following defi-
nition defines both the structure and, implicitly, how it is
progressed at execution time. Intuitively, this structure re-
flects what agents know about the epistemic structure (of
all agents) as well as about the state variables X and the
program counters of all agents. Technically, it is made of
all possible extended histories, where an extended t-history
h
t

is a sequence s0c0ω0s1c1ω1 . . . stct consisting of the
successive states and joint observations together with the
(joint) program counters executed; a unique extended his-
tory is associated to each history s0a0ω0s1a1ω1 . . . stat

in the straightforward manner. Moreover, two extended his-
tories are undistinguishable by an agent if and only if they
have generated the same observations for it.6

Definition 12 (structure at time t) Let M be a QDec-
POMDP model, B0 be an initial belief state, and κ be an
MAKBP. The structure for M,B0,κ at time t, is the Kripke
structure St(κ) = 〈W t, (∼t

i)i∈I , V 〉 over X , defined by in-
duction on t as follows:

1. W 0 = {s0c0 | s0 ∈ B0},
2. ∀i ∈ I , ∼0

i= W 0 ×W 0,
3. W t+1 is the set of all worlds htstctωtst+1ct+1 with

(a) htstct ∈ W t,
(b) ∀i ∈ I , St(κ),htstct |= Γt

i , with Γt
i the guard of cti ,

(c) (st+1,ωt) ∈ T (st,at), where at is the joint action
made of the first actions of ct,

(d) ∀i ∈ I , cti →κi
ct+1
i ,

4. ∀i ∈ I , htstctωtst+1ct+1∼t+1
i h′ts′tc′tω′ts′t+1

c′t+1

iff htstct ∼t
i h

′ts′tc′t and ωt
i = ω′

i
t,

5. and ∀x ∈ X , V (htstctωtst+1ct+1)(x) = st+1[x].
Items 1 and 2 in Definition 12 state that it is com-

mon knowledge for the agents that the initial state is one
in B0 and that they are all about to start executing their
KBPs, and that nothing more is known. In the definition of
W t+1, Item 3a states that possible worlds (extended his-
tories) at time t+ 1 are extensions of possible worlds at
time t; Item 3b, that the program counter cti was executable;
Item 3c, that the new state and observations are consistent
with the dynamics of M ; and Item 3d, that it is possible that
ct+1
i is now the current program counter of i . Finally, Items 4

and 5 state that i distinguishes between histories only based
on its local observations,7 and that the valuation of a world
is determined by the current state of the environment.

Note that the situation at time t does not depend on the ac-
tual history, nor on the agent. It rather represents all possible
evolutions of the environment and knowledge of the agents,
i.e., what may have happened rather than what did happen.

6 For the readers familiar with dynamic epistemic logic, our
construction amounts to the iterated product update of the initial
situation encoding common knowledge of B0, by an event model
built from the control-flow graphs of the KBPs.

7We do not need to specify that an agent distinguishes two his-
tories in which it took different actions, since KBPs are determin-
istic: this can occur only if it receives different observations.

Example 13 (continued) Write c0A, c
1
A for Alice’s program

counters (∅, try-plane, if . . . fi) and (KA(¬planeA), take-
train, . . . ), resp. The initial belief state consists of two pos-
sible worlds (we write only the relevant variables):

h0 = ¬strike0 (c0A, c0B)0, h′0 = strike0 (c0A, c
0
B)

0

At timestep 1, some possible worlds are:

h1 = h0 ¬strike1 planeA1 ¬radio1 (c1A, c
1
B)

1

h′1 = h′0 strike1 ¬planeA1 radio1 (c1A, c
1
B)

1

h′′1 = h′0 strike1 ¬planeA1 ¬radio1 (c1A, c
1
B)

1

where h′1,h′′1 differ on whether the radio announced the
strike at this step. Since the only observation is by Alice
(whether planeA is true), we have h1 ∼1

B h′1 ∼1
B h′′1

(Bob considers all three equally plausible), but h1 �∼1
A h′1

and h1 �∼1
A h′′1 (Alice knows whether she is in the plane).

Still, we have h′1 ∼1
A h′′1, since Alice has not listened to

the radio yet. Interestingly, at this point Bob does not know
whether there is a strike, but he knows that Alice does (since
he knows that she observed this as a result of trying to fly).

We finally define the operational semantics of KBPs, by
defining when a history is consistent with an MAKBP.

Definition 14 (operational semantics) A t-history ht is
said to be consistent with an MAKBP κ if for all timesteps
t′ < t, each agent evaluates the epistemic branching con-

dition Φ in its KBP by deciding St′(κ),h
t′ |= Φ, where

h
t′

is the extended history associated to ht′ , and progresses
its program counters and takes actions according to the
straightfoward semantics for ;, if, while, and jo(ω).8

We emphasize that this semantics is well-defined. Pre-
cisely, since all epistemic conditions in the KBP of i are

subjective for i (Definition 7), the test St′(κ),h
t′ |= Φ

is equivalent to i deciding whether the test is true at all
situations which it considers actually possible, that is, to
St′(κ),h′t′ |= Φ for all histories h′t′ consistent with the ob-
servations which it has received.9 Given that each agent also
has all the information needed for building St′(κ) (namely
M,B0,κ), because planning is centralized, the test indeed
makes sense for each agent individually, at execution time.

Finally, we emphasize that we do not intend to design
agents which compute or embark an explicit representation
of St(κ) at execution time. This notion serves only defin-
ing the operational semantics. Indeed, which action to per-
form at execution time can be computed from an intensional
representation of St(κ), with a procedure similar to model
checking for succinct dynamic epistemic logic (Charrier and
Schwarzentruber 2017) (see also our Proposition 18).

Notwithstanding the fact that there is not a single “cor-
rect” semantics, let us emphasize that our operational se-
mantics builds on the multi-agent logic of knowledge S5n

8We define condition jo(ω) to evaluate to ⊥ at the first timestep.
9Equivalently, the test needs only be performed in the agent’s

internal, multipointed view of the situation (Aucher 2010).
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and hence, that whenever agent i evaluates, say, KiKi′Φ to
�, it is indeed the case that i ′ knows Φ. Hence our semantics
correctly captures faithful execution with perfect reasoning
about the joint execution, by all agents.

Expressiveness and Succinctness
We now show that MAKBPs can represent any joint policy,
at least as succinctly as standard representations like policy
trees, and possibly exponentially more succinctly.

For this, we need to fix a concrete representation of QDec-
POMDPs. Slightly generalizing the STRIPS-like represen-
tation proposed by Brafman, Shani, and Zilberstein (2013),
we assume that for each joint action a, a set of quadruples
Ta = {(ϕ(j), e

(j)
+ , e

(j)
− ,ω(j)) | j ∈ J} is given, where each

ϕ(j) is a propositional formula over X , each e
(j)
+ , e

(j)
− is a

set of propositions (with e
(j)
+ ∩ e

(j)
− = ∅), and each ω(j) is a

joint observation given as a tuple. Given a state s and a joint
action a, this encodes T (s,a) = {(s ⊕ e

(j)
+ � e

(j)
− ,ω(j)) |

j is s.t. s |= ϕ(j)}, with s⊕ e+ � e− = s′ s.t.{ ∀x ∈ e+, s
′[x] = �,

∀x ∈ e−, s′[x] = ⊥,
∀x ∈ X \ (e+ ∪ e−), s′[x] = s[x].

Finally, we assume that B0 is given as a propositional for-
mula over X , whose B0 is the set of models.

Note that one can imagine other compact representations,
especially representations based on influence diagrams or
dynamic Bayesian networks (Boutilier, Dearden, and Gold-
szmidt 2000). Our results would also hold with such rep-
resentations, provided they allow to efficiently check that a
given history is indeed generated by the dynamics, and to
efficiently progress the values of the state variables.

To compare representations, we consider a quite general
definition of a t-policy tree for a model 〈I , X,A,Ω, T 〉 and
an agent i ∈ I : an action a ∈ A is a 0-policy tree, and
if a is an action, Ω1,Ω2, . . . ,Ωk form a partition of Ω, and
τ1, τ2, . . . , τk are (t − 1)-policy trees, then τ = (a,Ω1 :
τ1,Ω2 : τ2, . . . ,Ωk : τk) is a t-policy tree. The semantics is
that when an agent executes such a tree, it first takes action
a, then upon receiving an observation ω, it goes on by ex-
ecuting the tree τj , where Ωj is the subset of Ω containing
ω. The size |τ | (resp. |τ |) of a tree τ (resp. joint tree τ ) is
defined to be its total number of nodes.
Proposition 15 Let τ be a joint policy tree for a QDec-
POMDP model M . Then there is an MAKBP κ which is
equivalent to τ and has size linear in |τ |.
PROOF. For all agents i ∈ I , define κi to be κ(τi), where
κ(τ) is defined inductively as follows. If τ is reduced to a,
then κ(τ) is defined to be the KBP [a]. Otherwise τ must be
of the form (a,Ω1 : τ1,Ω2 : τ2, . . . ,Ωk : τk), and κ(τ) is
defined to be the KBP [a ; if

∨
ω∈Ω1

jo(ω) then κ(τ1) else
if
∨

ω∈Ω2
jo(ω) then κ(τ2) . . . else if

∨
ω∈Ωk

jo(ω) then
κ(τk) else ε fi]. (Note that the else clause is never entered.)
Clearly, κ(τ) is equivalent to τ and of size linear in |τ |. �

Since by their very definition, joint policy trees can rep-
resent any policy (modulo equivalence), we have complete
expressiveness as an immediate corollary of Proposition 15.

Corollary 16 All (deterministic) joint policies for QDec-
POMDPs can be represented as MAKBPs.

Importantly, the same result as Proposition 15 could be
given for other reactive representations, such as finite state
controllers (FSCs), were a goto construct added to the syn-
tax of KBPs; this would indeed allow two parts of a KBP
to share their continuation. Moreover, such a generalization
would not change any result in this paper, and we only ignore
this possibility to keep the presentation simple. Anyway, the
result which we give next concerns any reactive class of rep-
resentations, and hence does take FSCs into account.

Exponential Gains
We now exhibit a family of QDec-POMDPs for which (as-
suming NP �⊆ P/poly) there is no family of valid reactive
policies of polynomial size, but for which there is a polysize
family of valid MAKBPs, hence showing that the represen-
tation by MAKBPs can yield exponential gains in space.10

This result is directly inherited from the single-agent
case (Lang and Zanuttini 2013, Prop. 2). However, this does
not imply per se that reasoning about the other agents’
knowledge is useful as far as succinctness is concerned (rea-
soning about its own knowledge might have been enough).
We show that this is indeed useful, and even that increasing
the epistemic depth allowed for MAKBPs always properly
increases succinctness. Namely, for all d, we show that there
is a family (Πn,d)n∈N of QDec-POMDPs which has a fam-
ily (κn,d)n∈N of valid MAKBPs of depth d, but no polysize
valid MAKBPs of depth d′ with d′ < d, nor any in any re-
active representation (assuming NP �⊆ P/poly).

Construction Broadly speaking, Πn,d encodes a problem
in which some information passes through a series of d pairs
of agents (i�, i ′�) (� = 0, . . . , d−1), so that at each step, only
one agent in the pair gets the information, as controlled by
an (unobservable) variable x�; this agent must take one of
two actions, depending on the information received.

The piece of information passed is precisely x�−1, that is,
whether it is i�−1 or i ′�−1 who obtained the previous infor-
mation. Finally, once passed, the value of x�−1 is reset, so
that i�, i�′ cannot reason on its value any more. In this man-
ner, i�, i�′ must choose their action depending on whether
they know that i�−1 obtained the previous information, or
they know that i ′�−1 did; by induction, they must reason
on whether they know that i�−1 knows whether i�−2 knows
whether. . . , that is, on an epistemic formula of depth d.

Finally, for the last level, whether id−1 or i ′d−1 obtains
the information is controlled by whether a propositional for-
mula ϕ is satisfiable, instead of a simple variable xd−1; as-
suming NP �⊆ P/poly, this prevents the last agent id to have
a polysize reactive policy, as this would give a nonuniform
polytime algorithm for propositional satisfiability.

More precisely, the dynamics of Πn,d is designed so that
the sequence of actions is forced in any valid policy. For this,

10The complexity class P/poly (or “nonuniform P”) is the class
of problems for which for all n, there is an algorithm whose de-
scription is polysize in n and which correctly decides all instances
of size n in polytime. The conjecture NP �⊆ P/poly is standard.
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we add a vector 	t of variables to the set X , meant to encode
the current timestep, we add an encoding of s′[	t] = s[	t] + 1
to the effect of each joint action, and we make each joint ac-
tion a lead to a sink state if taken at a disallowed timestep.
All this can easily be encoded with a vector 	t of loga-
rithmic size and a polynomial number of extra quadruples
(ϕ, e+, e−, ·) (where · represents a dummy observation).

The rest of the construction is as follows. A set of n state
variables xϕ,0, . . . , xϕ,n−1 represents propositions, and a

3CNF formula ϕ =
∧8n3−1

j=0 γ(j) on these variables is en-
coded in the state (over 8n3 × 3 × (1 + �log n�) Boolean
variables). The n first steps in any valid policy for Πn,d force
a specific agent is to modify the values of xϕ,0, . . . , xϕ,n−1

so that they encode a model ϕ, if possible, and to set variable
xd−1 to � if and only if ϕ is satisfiable; for more details, we
refer the reader to (Lang and Zanuttini 2013, Prop. 12).

The problem also has a variable x� for � = 0, . . . , d − 2,
with unobservable value. At each timestep t� = 8n3 + n +
1 + �, both i� and i ′� take an action which reveals the value
of x�−1 to i� (resp. to i ′�) if st� [x�] is � (resp. ⊥). Moreover,
except for x0, whose value never changes, x�−1 is reset to ⊥
at the same time. This transition can be encoded efficiently,
through the four quadruples (ϕ, e+, e−,ω) of the form
(x�−1 ∧ x�, ∅, {x�−1}, (·, . . . , ·, x�−1, ·, . . . , ·)), (¬x�−1 ∧
x�, ∅, {x�−1}, (·, . . . , ·,¬x�−1, ·, . . . , ·)), etc. (where again,
· represents a dummy observation).

Finally, a last agent id observes the CNF ϕ, and the bits
encoding ϕ are reset to ⊥. At the last timestep H , the agents
must together take a joint action so that

• one of i0, i ′0 takes action a (resp. a′) if sH [x0] is � (resp.
⊥), and the other takes a no-op,

• for � = 1, . . . , d− 1, one of i�, i ′� takes action a (resp. a′)
if i�−1 (resp. i ′�−1) takes action a or a′,

• id takes a (resp. a′) if id−1 (resp. i ′d−1) takes a or a′.

Any other joint action taken at this step sets leads to a sink
state. The dynamics can be encoded efficiently as there are a
polynomial (in n) number of joint actions allowed at all, and
overall the size of Πn,d is polynomial in n.

We are now ready to state our main result.

Proposition 17 For all d ≥ 2, the family (Πn,d)n∈N is s.t.

1. there is a family (κn,d)n∈N of MAKBPs of depth d, so that
κn,d is valid for Πn,d and is polysize (in n),

2. assuming NP �⊆ P/poly, for any class R of reactive rep-
resentations, there is no family (πn,d)n∈N so that πn,d is
valid for Πn,d and has a polysize representation in R,

3. for d′ < d, there is no family (κn,d′)n∈N of MAKBPs of
depth at most d′, so that κn,d′ is valid for Πn,d.

SKETCH OF PROOF. For Item 1, the valid MAKBPs are
the sequences of actions enforced by the problem. The only
exceptions are for is, for which we use the construction
of (Lang and Zanuttini 2013, Prop. 12), and for the last ac-
tion, for which it is easily seen that it is enough for all agents
i�, i

′
� to execute [if K(KWi�−1

(. . . (KWi1x0))) then a else
if K¬(KWi�−1

(. . . (KWi1x0))) then a′ else no-op fi],
which indeed has depth d.

For Item 2, assume that there is such a family. Then take
any 3CNF ϕ and simulate the MAKBP. If id plays a then ϕ
is satisfiable, otherwise it is unsatisfiable. This gives a poly-
time, polysize algorithm for deciding the satisfiability of a
3CNF formula over n variables, hence a nonuniform poly-
time algorithm for 3SAT, a contradiction.

Finally, for Item 3, we can show that for any valid
MAKBP κ, the pointed structures St(κ),ha and St(κ),ha′

(t > 8n3 + n + d + 1) are bisimilar up to depth d − 2, i.e.,
that the subgraphs of St(κ) centered at ha,ha′ and of ra-
dius d − 1 are isomorphic (Blackburn, Rijke, and Venema
2001), whenever ha and ha′ have the same values for x�,
� = 0, . . . , d− 3, but a different one for xd−2 (by induction
on d). Intuitively, this captures the fact that no epistemic con-
dition Φ of depth less than Kid(KWid−1

(. . . (KWi1x0)))
can tear apart histories of the form ha (where id must take
action a) from histories of the form ha′ . As a consequence,
any MAKBP allowing id to take the correct action at the last
timestep must have depth at least d. �

Algorithmic Results
We now investigate the complexity of the main computa-
tional problems related to MAKBPs, viz. execution and ver-
ification, with input given in compact form as in the previ-
ous section. Note that the complexity of the general plan-
ning problem of deciding whether there exists an MAKBP
which is valid for a given QDec-POMDP is the same as for
any other representation, since MAKBPs are fully expres-
sive (Corollary 16). Precisely, it is NEXP-complete (Braf-
man, Shani, and Zilberstein 2013, Corollary 1).

Recall that the execution problem asks what action i
should take, given M,B0,κ, ht

i . The membership proof in
the next proposition follows the same structure as that, given
by (Charrier and Schwarzentruber 2017), that model check-
ing for succinct dynamic epistemic logic is in PSPACE. This
is not by coincidence, as progression for MAKBPs can be
seen as DEL product updates (see Footnote 6).

Proposition 18 The execution problem for MAKBPs is
PSPACE-complete.

Proposition 19 The problem of deciding whether a given
MAKBP is valid for a given QDec-POMDP at a finite hori-
zon H ∈ N, given in unary,11 is PSPACE-complete.

SKETCH OF PROOF. For membership, by definition an
MAKBP is not valid for Π if and only if there is a history
consistent with it and which does not reach the goal. Since
PSPACE is closed under nondeterminism and complemen-
tation, we have the result. For hardness, we reduce the exe-
cution problem (Prop. 18) to verification by using an action
which sets a variable xg to �, and defining the goal g to be
xg . Then deciding whether the MAKBP is valid amounts to
deciding whether this action is executed, hence the result. �

These propositions show in particular that MAKBPs can
be executed and verified without explicitly computing nor
maintaining the (exponential) knowledge structure St(κ) at
execution time. Hence the gain in succinctness with respect

11This amounts to considering that the input has at least size H .
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to reactive policies is not only at design time, when writing
the policies, but also at execution time, when embarking and
reasoning with them can be done in polynomial space.

Finally, since we allowed the while construct in KBPs,
we also investigate verification at an indefinite horizon. The
proof uses essentially the same ideas as the proof that epis-
temic planning with preconditions on knowledge is undecid-
able (Bolander and Andersen 2011). Observe however that
this result is not obvious, as the same problem is decidable
in the single-agent case (Lang and Zanuttini 2012, Prop. 6).

Proposition 20 Determining if a given MAKBP terminates
in finite time in all histories, for given QDec-POMDP model
M and initial belief state B0, is undecidable.

Perspectives
Our first, obvious, perspective is to generalize Multi-
Agent KBPs to the context of quantitative (stochastic) Dec-
POMDPs (Oliehoek and Amato 2016). To this aim, we will
use epistemic logic with probabilities (Fagin and Halpern
1994) and its dynamic extension (Kooi 2003; van Eijck and
Schwarzentruber 2014) instead of standard epistemic logic.
Doing so will make a bridge between or work and the re-
cently introduced notion of occupancy state (Dibangoye et
al. 2016), which can be seen as the stochastic counterpart
of our knowledge structures St(κ). Another interesting per-
spective is to investigate approximate operational seman-
tics for MAKBPs, for instance, semantics with reasoning
at bounded modal depth, which may lead to a decidable
verification problem. We also think that the expressivity of
our framework allows to formalize real applications, such as
Hanabi. Finally, the question of how to synthetize MAKBPs
(that is, to plan) is very important; for this point, we intend
to follow the direction of multi-agent epistemic regression.
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CNRS pré-GDR IA. The authors want to thank in partic-
ular Frédéric Maris, Tiago de Lima, Guillaume Aucher,
and Alexandre Niveau for their contribution to the working
group and to the early construction of this work.

Abdallah Saffidine is the recipient of an ARC DECRA
Fellowship (DE150101351).

References
Aucher, G. 2010. An internal version of epistemic logic.
Studia Logica 94(1):1–22.
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