
Multiagent Simple Temporal Problem:
The Arc-Consistency Approach

Shufeng Kong,1 Jae Hee Lee,1 Sanjiang Li1,2
1Centre for Quantum Software and Information, FEIT, University of Technology Sydney, Australia

2UTS-AMSS Joint Research Laboratory, AMSS, Chinese Academy of Sciences, China
shufeng.kong@student.uts.edu.au, {jaehee.lee, sanjiang.li}@uts.edu.au

Abstract

The Simple Temporal Problem (STP) is a fundamental tem-
poral reasoning problem and has recently been extended to
the Multiagent Simple Temporal Problem (MaSTP). In this
paper we present a novel approach that is based on enforcing
arc-consistency (AC) on the input (multiagent) simple tem-
poral network. We show that the AC-based approach is suf-
ficient for solving both the STP and MaSTP and provide ef-
ficient algorithms for them. As our AC-based approach does
not impose new constraints between agents, it does not vio-
late the privacy of the agents and is superior to the state-of-
the-art approach to MaSTP. Empirical evaluations on diverse
benchmark datasets also show that our AC-based algorithms
for STP and MaSTP are significantly more efficient than ex-
isting approaches.

1 Introduction

The Simple Temporal Problem (STP) (Dechter, Meiri, and
Pearl 1991) is arguably the most well-known quantitative
temporal representation framework in AI. The STP consid-
ers time points as the variables and represents temporal in-
formation by a set of unary or binary constraints, each spec-
ifying an interval on the real line. Since its introduction in
1991, the STP has become an essential sub-problem in plan-
ning or scheduling problem (Barták, Morris, and Venable
2014).

While the STP is initially introduced for a single schedul-
ing agent and is solved by centralized algorithms, many real-
world applications involve multiple agents who interact with
each other to find a solution like the following example:

Example 1. When Alice is looking for a position at com-
pany X , she might need to arrange an interview appointment
with X . Suppose that her colleague Bob is also applying for
the position and Alice and Bob are both applying for an-
other position at another company Y . To represent and solve
such an interview scheduling problem, we need a multiagent
framework (see Figure 1 for an illustration).

Recently, the extension of STP to multiagent STP
(MaSTP) has been provided in (Boerkoel and Durfee 2013),
which presents a formal definition of the MaSTP as well as

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

XAlice

BobY

Figure 1: An illustration of Example 1. Alice, Bob, company
X , company Y are four agents, each owning a local simple
temporal network. The circles represent variables and edges
constraints. Red edges represent constraints that are shared
by two different agents.

a distributed algorithm, called D�PPC, for computing the
complete joint solution space.

However, as D�PPC is based on the P3C algo-
rithm (Planken, de Weerdt, and van der Krogt 2008), which
triangulates the input constraint graph, it has the drawback
of creating new constraints between agents that are possibly
not directly connected. In Figure 1, D�PPC triangulates the
inner cycle by adding at least one new constraint either be-
tween X and Y or between Alice and Bob. Neither of these
new constraints are desirable, as they introduce constraints
between two previously not directly connected agents and
thus present a threat to the privacy of the relevant agents.

As the recent technological advancements have allowed
for solving larger problems that are highly interwoven and
dependent on each other, efficiency and privacy have be-
come critical requirements. To address this challenge, we
propose a new approach to solve the MaSTP, which is based
on arc-consistency.

A constraint R between two variables x, y is called arc-
consistent (AC), if for every value dx from the domain of x
there is a value dy in the domain of y such that (dx, dy) ∈ R.
While AC is an important tool for solving finite (multi-
agent) constraint satisfaction problems (CSPs) (Montanari
1974; Baudot and Deville 1997; Nguyen and Deville 1998;

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6219



Hamadi 2002) at first glance it is not clear how it can be
applied to solving CSPs with real domains such as the STP,
because either the existing AC algorithms are fine-grained
and work with each single element of a domain to enforce
AC, which is impossible for real domains, or they are coarse-
grained, but cannot guarantee their termination, as real do-
mains can be infinitely refined when constraints are propa-
gated.1

Our contributions in this paper are as follows.

• We provide the first AC-based approach for solving STP
and analyze its computational complexity (Section 3).

• We provide the first AC-based approach for solving multi-
agent STP, which preserves the privacy of the agents, and
analyze its computational complexity (Section 4).

• We experimentally show that both our centralized and dis-
tributed algorithms outperform their existing counterparts
for solving STP (Section 5).

The next section gives a formal introduction to STP.

2 The Simple Temporal Problem

This section briefly introduces the STP. Details can be found
in (Dechter, Meiri, and Pearl 1991).

The simple temporal problem (STP) is a constraint satis-
faction problem where each constraint is a set of linear in-
equalities of the form

avw ≤ w − v ≤ bvw, (1)

where avw, bvw are constants and v, w are variables defined
on a continuous domain representing time points. The con-
straint in (1) is abbreviated as Ivw = [avw, bvw]. As (1)
is equivalent to −bvw ≤ v − w ≤ −avw, we also obtain
Iwv = I−1

vw = [−bvw,−avw]. The domain of each variable
v is an interval Iv = [av, bv], where Iv could be a single-
ton or empty. Assume that o is a special auxiliary variable
that represents the fixed zero temporal point. Then the do-
main Iv can also be regarded as a constraint from o to v and
Iv = [av, bv] = [aov, bov] = Iov .

Algebraic operations on STP constraints are defined as
follows. The intersection of two STP constraints defined on
variables v, w yields a new constraint over v, w that rep-
resents the conjunction of the constraints. It is defined as
Ivw ∩ I ′vw := [max{avw, a′vw},min{bvw, b′vw}].

The composition of an STP constraint Ivu over variables
v, u and another STP constraint Iuw over u,w yields a new
STP constraint over v, w that is inferred from the other two
constraints and is defined as Ivu⊗Iuw := [avu+auw, bvu+
buw]. Here we require that [a, b]⊗∅ = ∅ for any a ≤ b.
Remark 1. For STP constraints, the composition and inter-
section are associative and, as noted in (Dechter, Meiri, and
Pearl 1991), composition distributes over non-empty inter-
section for intervals, i.e., I ⊗ (J ∩K) = (I ⊗ J)∩ (I ⊗K)
for any three intervals I, J,K such that J ∩K �= ∅.

1Dechter, Meiri, and Pearl (1991) for example, suggest dis-
cretizing the domains to overcome this issue, in which case the
total number of contraint propagations would depend on the sizes
of the domains. The performance of our AC algorithm for (multia-
gent) STP does not depend on the sizes of the domains.

Definition 1. An instance of STP is called a simple temporal
network (STN) and is a tuple 〈V,D,C〉, where V is a finite
set of variables, D = {Iv | v ∈ V } is a set of intervals, and
C is a set of STP constraints defined on V .
We assume that all variables in V appear in C and at most
one constraint exists between any pair of variables v and
w. Moreover, if Ivw = [a, b] is the constraint in C from v
to w, we always assume that the constraint Iwv = I−1

vw =
[−b,−a] is also in C. As previously mentioned, the domain
Iv of each variable v can be regarded as either a unary con-
straint, or a binary constraint Iov = Iv , where o is a fixed
variable representing the zero time point.

An STN naturally induces a graph in the following sense.
Definition 2. The constraint graph GN = (V,E) of an STN
N = 〈V,D,C〉 is an undirected graph, where the set E of
edges consists of constrained unordered pairs of variables in
C, i.e.,

E = {{v, w} | v, w ∈ V, v �= w, Ivw ∈ C}.
Let GN = (V,E) be the constraint graph of an STN N .

We can use a labelled directed graph to illustrate N , where
for any undirected edge {v, w} ∈ E there is exactly one
directed edge (v, w) that is labelled with the corresponding
interval [avw, bvw].

A path π from v to w in GN is a sequence of variables
u0, u1, ..., uk such that v = u0, w = uk, and {us, us+1}
is an edge in E for each s = 0, . . . , k − 1 (k is called the
length of π). We write

⊗
π for the composition of all these

Ius,us+1 , i.e.,⊗
π = Iu0,u1 ⊗ Iu1,u2 ⊗ ...⊗ Iuk−1,uk

(2)

If v = w, then we call π a cycle at v. For a cycle π, let
[a, b] =

⊗
π. We call π a negative cycle if b < 0.

Definition 3. A solution of an STN N = 〈V,D,C〉 is an
assignment, that assigns to each variable v ∈ V a time point
from Iv ∈ D such that all constraints in C are satisfied. N
is said to be consistent if N has a solution. Two STNs are
said to be equivalent if they have the same solution set.
Definition 4 (Minimality). Let N = 〈V,D,C〉 be a con-
sistent STN and let v and w be variables in V . A constraint
Ivw from v to w is said to be minimal if every assignment
that assigns time points from domains Iv and Iw to v and w,
respectively, and satisfies Ivw can be extended to a solution
of N . A domain Iv of v ∈ V is said to be minimal if every
assignment of a time point from Iv to v can be extended to a
solution of N . We say N is minimal if every constraint in C
as well as every domain in D is minimal (note that, since we
regard domains as constraints between the zero time point o
and variables, we also require the domains to be minimal).

3 Solving the STP with Arc-Consistency

In this section we show that enforcing arc-consistency is suf-
ficient to solve the STP.
Definition 5. Let N = 〈V,D,C〉 be an STN. Suppose v
and w are two variables in V , Iv and Iw are, respectively,
their domains, and Ivw is a constraint in C from v to w.

6220



We say that Ivw is arc-consistent (AC) (relative to Iv and
Iw) if for any tv ∈ Iv there exists some tw ∈ Iw such that
tw − tv ∈ Ivw, i.e., avw ≤ tw − tv ≤ bvw. We say that
N is AC if both Ivw and Iwv are AC for every constraint
Ivw ∈ C.

An STN N ′ = 〈V,D′, C〉 with D′ = {I ′v | v ∈ V }
is called the AC-closure of N , if N ′ is the largest arc-
consistent STN which is equivalent to N , in the sense that
for every other arc-consistent STN N ′′ = 〈V,D′′, C〉 with
D′′ = {I ′′i | v ∈ V }, we have that I ′′v ⊆ I ′v for all v ∈ V .

Lemma 1. Let N = 〈V,D,C〉 be an STN and v, w ∈ V
two variables that are constrained by Ivw in C. Then Ivw is
arc-consistent relative to Iv and Iw, iff Iv ⊆ Iw ⊗ Iwv .

Proof. It suffices to show that

Iw ⊗ Iwv = {x ∈ R | ∃y ∈ Iw s.t. y − x ∈ Ivw} (3)

Let Iv = [a, b], Iw = [c, d] and Ivw = [e, f ]. Then

{x ∈ R | ∃y ∈ Iw s.t. y − x ∈ Ivw}
= {x ∈ R | ∃c ≤ y ≤ d s.t. e ≤ y − x ≤ f}
= {x ∈ R | ∃c ≤ y ≤ d s.t. y − f ≤ x ≤ y − e}
= {x ∈ R | c− f ≤ x ≤ d− e}
= [c, f ]⊗ [−f,−e] = Iw ⊗ Iwv,

which proves Eq. (3).

Lemma 2. Let N = 〈V,D,C〉 be an arc-consistent STN
and v, w ∈ V two variables that are constrained by Ivw in
C. Then Iv ⊆ Iw ⊗ Iwv .

Proof. This follows directly from Lemma 1 and that Ivw is
AC relative to Iv and Iw.

The following result directly follows from Lemma 2.

Corollary 3. Let N = 〈V,D,C〉 be an arc-consistent STN.
Let π be a path in N from w to v. Then Iv ⊆ Iw ⊗⊗

π.

Lemma 4. Let N = 〈V,D,C〉 be an arc-consistent STN
and v, w variables in V . If N is consistent, then Iv ⊆ Iw ⊗
Imwv , where Imwv is the minimal constraint from w to v.

Proof. Since N is consistent, Imwv is nonempty. Recall that
Imwv is the intersection of the compositions along all paths
in N from w to v (cf. (Dechter, Meiri, and Pearl 1991, §3))
and composition distributes over non-empty intersection for
intervals. The result follows directly from Corollary 3.

Lemma 5 ((Shostak 1981)). Suppose N = 〈V,D,C〉 is an
STN. Then N is inconsistent if and only if there exists a neg-
ative cycle.

Lemma 6. Given a consistent STN N = 〈V,D,C〉 with
n = |V |, for any path π of length ≥ n there is a path π′ of
length < n such that

⊗
π′ ⊆ ⊗

π.

Proof. Since the length of π is ≥ n, π must have a cycle
at a variable v. As the cycle is not negative, removing the
cycle and leaving only v in the path results in a path π′ with⊗

π′ ⊆ ⊗
π. Repeating this procedure until there is no

cycle gives the desired result.

Lemma 7. Let N = 〈V,D,C〉 be an STN and N ′ its AC-
closure. Then N is consistent iff N ′ has no empty domain.

Proof. We prove N is inconsistent iff N ′ has an empty do-
main. As N and N ′ are equivalent, if N ′ has an empty do-
main, then N is inconsistent.

Now suppose N is inconsistent. Then by Lemma 5, there
exists a negative cycle π in N at some w such that

⊗
π =

[l, h] with h < 0. Now let v be a variable in N with Iwv =
[e, f ] and let I ′v = [a, b], I ′w = [c, d] be the domains of v and
w in N ′, respectively. Choose k ∈ N sufficiently large, such
that kh < b− d− f . Then, by Lemma 4 we have

I ′v ⊆ I ′w ⊗
(⊗

πk ⊗ Iwv

)
(4)

= [c, d]⊗ ([kl, kh]⊗ [e, f ])

= [c+ kl + e, d+ kh+ f ],

where πk is the concatenation of k copies of path π. Because
kh < b− d− f , (4) is possible only if I ′v is empty.

Theorem 8. Let N = 〈V,D,C〉 be a consistent STN and
N ′ its AC-closure. Then all domains in N ′ are minimal.

Proof. If the constraint graph GN is connected, i.e., for any
two variables v, w, there is a path in GN that connects v
to w, then we may replace the constraint from v to w with
the nonempty minimal constraint Imvw (or add Imvw, if there
was no constraint between v and w). We write the refined
STN as N ∗. For any two variables v, w, by Lemma 4, Iv is
contained in Iw ⊗ Imwv and Iw is contained in Iv ⊗ Imvw. This
shows that N ∗ is the same as the minimal STN of N , and
thus, establishes the minimality of each Iv .

In case the constraint graph is disconnected, we consider
the restriction of N to its connected components instead.
The same result applies.

Two special solutions can be constructed if N is arc-
consistent and has no empty domain.

Proposition 9. Let N = 〈V,D,C〉 be an arc-consistent
STN with D = {Iv | v ∈ V } and Iv = [av, bv] for each
v. If no Iv is empty, then the assignments A = {av | v ∈ V }
and B = {bv | v ∈ V } are two solutions of N .

Proof. Let N ′ = 〈V,D′, C ′〉 be the minimal STN of N . By
Theorem 8, we have D′ = D and N ′ is equivalent to N . The
above claim follows as the assignments A = {av | v ∈ V }
and B = {bv | v ∈ V } are two solutions of the minimal STN
N ′ (cf. (Dechter 2003, Corollary 3.2)).

Theorem 10. Enforcing AC is sufficient to solve STP.

Proof. Let N be an STN and N ′ its AC-closure. If N ′ has
an empty domain, then N has no solution by Lemma 7. If
N ′ does not have an empty domain, then we can use Propo-
sition 9 to find a solution.

Remark 2. (i) As solving an STN is equivalent to solving a
system of linear inequalities, the solution set of an STN is a
convex polyhedron. Thus any convex combination of the two
solutions A and B is again a solution of the STN. (ii) Enforc-
ing AC can in essence find all solutions of an STN: Suppose

6221



Algorithm 1: ACSTP

Input : An STN N = 〈V,D,C〉 and its constraint
graph G = (V,E), where |V | = n.

Output: An equivalent network that is AC, or
“inconsistent”.

1 Q ← ∅

2 for k ← 1 to n do
3 foreach v ∈ V do
4 I ′v ← Iv
5 foreach w ∈ V s.t. {v, w} ∈ E do
6 Iv ← Iv ∩ Iw ⊗ Iwv

7 if Iv = ∅ then return “inconsistent”
8 if I ′v = Iv then Q ← Q ∪ {v}
9 else Q ← Q \ {v}

10 if #Q = n then return N
11 return “inconsistent”

N is arc-consistent and has no empty domain. We pick an
arbitrary variable v that has not been instantiated yet, then
assign any value from Dv to v, and enforce AC on the re-
sulting network. We repeat this process until all variables are
instantiated. (iii) Proposition 9 can also be obtained by first
showing that STP constraints are both max/min-closed, and
then using the result in (Jeavons and Cooper 1995, Thm 4.2),
which states that the AC-closure of a constraint network over
max/min-closed constraints have the maximal and the min-
imal values of the domains as two solutions. As a conse-
quence of this, Theorem 8 can also be obtained, because the
solution set of an STN is convex (cf. Remark 2 (i)).

A Centralized AC Algorithm for the STP

In this section we propose an AC algorithm, called ACSTP,
to solve STNs. The algorithm is presented as Algorithm 1.

Theorem 11. Given an input STN N , Algorithm 1 returns
“inconsistent” if N is inconsistent. Otherwise, it returns the
AC-closure of N .

Proof. We first note that intersection and composition of
constraints do not change the solution set of the input STN
N . This has two implications: First, if a domain Iv becomes
empty during the process of the algorithm, then the solution
set of N is empty and N is inconsistent. Second, if the al-
gorithm terminates and its output N ′ is AC, then N ′ is the
AC-closure of N . Consequently, it suffices to show that if
the algorithm terminates and returns N ′, then N ′ is AC.

We first consider the case, where the algorithm returns
N ′ in line 10 at the kth iteration of the for-loop (lines 2–10)
for some 1 ≤ k ≤ n. We show that N ′ is AC. Let Ikv be
the domain of v obtained after the kth iteration of the for-
loop. Due to lines 6 and 8, we have for all {v, w} ∈ E that
Ikv ⊆ Ik−1

v ∩ (Ik−1
w ⊗ Iwv) and Ik−1

w = Ikw. Thus we have
for {v, w} ∈ E that Ikv ⊆ Ikw ⊗ Iwv , which is by Lemma 1
equivalent to saying that Ivw is AC w.r.t. domains Ikv and
Ikw. Hence, the output N ′ is AC.

Now suppose that the algorithm exited in line 11 returning
“inconsistent”. Thus, at the nth iteration of the for-loop we
have #Q < n in line 10. We prove that N is inconsistent by
contradiction. Assume that N is consistent. For any v ∈ V
and any k ≥ 1, we write Πk

v for the set of paths from o (the
auxiliary variable denoting the zero time point) to v with
length ≤ k in the constraint graph of N . We claim

Ik−1
v ⊆

⋂
π∈Πk

v

⊗
π (5)

for any k ≥ 1. Then, with Imv being the minimal domain of
v, we have

Imv ⊆ In−1
v ⊆

⋂
π∈Πn

v

⊗
π = Imv ,

because Imv is the intersection of the compositions along all
paths in N from o to v (cf. (Dechter, Meiri, and Pearl 1991,
§3)), where it suffices to only build compositions along paths
of length ≤ n by Lemma 6. Thus Inv = In−1

v = Imv for all
v ∈ V , which is a contradiction to our assumption that at the
nth iteration of the for-loop we have #Q < n in line 10.

We now prove (5) by using induction on k. First, for k =
1, since Π1

v contains only one path of length 1 (i.e., the edge
{o, v}), we have I0v = Iv =

⋂
π∈Π1

v

⊗
π. Now suppose (5)

is true for k − 2 for all w ∈ V . Then by line 6 and our
induction hypothesis we have

Ik−1
v ⊆ Ik−2

v ∩
(⋂

w

Ik−2
w ⊗ Iwv

)

⊆ Ik−2
v ∩

⎛
⎝⋂

w

⎛
⎝ ⋂

π∈Πk−1
w

⊗
π

⎞
⎠⊗ Iwv

⎞
⎠

⊆
⎛
⎝ ⋂

π∈Πk−1
v

⊗
π

⎞
⎠ ∩

⎛
⎝ ⋂

(π∈Πk
v)∧(|π|≥2)

⊗
π

⎞
⎠

=
⋂

π∈Πk
v

⊗
π,

which proves (5).

Theorem 12. Algorithm 1 runs in time O(en), where e is
the number of edges of the constraint graph of the input STN
and n is the number of variables.

Proof. There are at most n iterations of the for-loop and
each iteration involves O(e) operations.

Remark 3. Algorithm 1 can also be understood as comput-
ing the shortest path from a source vertex o to every other
vertex v and the shortest path from every other vertex v to
the source vertex o. This can be realized in time O(en) by
using a shortest path tree algorithm with negative cycle de-
tection (cf. (Tarjan 1983, Section 7.2) and (Korte and Vygen
2012, Section 7.1).

6222



4 Solving the MaSTP with Arc-Consistency

In this section we extend ACSTP to a distributed algorithm
DisACSTP to solve multiagent simple temporal networks
(MaSTNs).

Definition 6. (Boerkoel and Durfee 2013) A multiagent
simple temporal network (MaSTN) is a tuple M = 〈P, CX〉,
where

• P = {Ni | i = 1, . . . , p} is a set of local STNs, where
each Ni = 〈Vi, Di, Ci〉 is an STN belonging to agent i
and we require that Vi ∩ Vj = ∅ for any two different
agents i, j = 1, . . . , p.

• CX is a set of external constraints, where each constraint
is over two variables belonging to two different agents.

Constraint graphs for MaSTNs can be defined analogously
as that for STNs, where we use EX for the set of edges cor-
responding to constraints in CX . See Figure 1 for an illus-
tration. In Figure 1, the edges in EX are represented as red
lines.

Definition 7. Suppose M = 〈P, CX〉 is an MaSTN. Let
Ivw ∈ CX with v ∈ Vi, w ∈ Vj be an external constraint. We
say that Ivw is an external constraint of agent i, and write CX

i
for the set of external constraints of agent i. We call v and
w a shared and an external variable of agent i, respectively.
We write V X

i for the set of external variables of agent i. In
Figure 1, the vertices for shared variables are represented as
red circles.

DisACSTP is presented in Algorithm 2. In DisACSTP
each agent i gets as input its portion Ni of the input MaSTN
M and the set CX

i of its external constraints, and runs its
own algorithm. Similar to ACSTP, DisACSTP updates the
domains of Ni at each iteration of the for-loop and main-
tains a queue Qi to record the information about the un-
changed domains. When a domain becomes empty during
the updates, then the agent can terminate the algorithm and
conclude that the input MaSTN M is inconsistent. There
are however aspects in DisACSTP that are different from
ACSTP, which stem from the fact that in MaSTP an agent
cannot have the global knowledge of the states of other
agents’ processes without sharing certain information with
other agents. These aspects are the following:

1. The total number n of the variables in the input MaSTN
is initially not known to individual agents. This, however,
can easily be determined using an echo algorithm (Chang
1982). We can therefore regard n as given as an input to
DisACSTP.

2. As the agents may run their processes at different paces, at
each iteration of the for-loop (lines 2–34), they synchro-
nize the domains of their external variables (lines 3–4).
Otherwise, some agents might use stale external domains
and make wrong conclusions.

3. When a domain becomes empty while running
DisACSTP, an agent broadcasts (lines 9–11) this
information to other agents so that they can terminate
their algorithms as soon as possible.

Algorithm 2: DisACSTP

Input : Ni: agent i’s portion of MaSTN M;
V X
i : the set of agent i’s external variables;

CX
i : the set of agent i’s external constraints;

parent(i): the parent of agent i w.r.t. T (M);
children(i): the children of agent i w.r.t.
T (M);
n: the number of variables of M.

Output: Agent i’s portion of the AC-closure of M or
“inconsistent”.

1 Qi ← ∅

2 for k ← 1 to n do
3 Send the domains of the shared variables to the

neighbors.
4 Receive the domains of the external variables

from the neighbors.
5 foreach v ∈ Vi do
6 I ′v ← Iv
7 foreach w ∈ Vi ∪ V X

i s.t. {v, w} ∈ Ei ∪ EX
i

do
8 Iv ← Iv ∩ Iw ⊗ Iwv

9 if Iv = ∅ then
10 Broadcast “inconsistent”.
11 return “inconsistent”
12 if I ′v = Iv then Qi ← Qi ∪ {v}
13 else Qi ← Qi \ {v}
14 if #Qi = #v then
15 if root(i) then
16 Send inquiry (“Are all Qi full?”, k) to

children(i)
17 while true do
18 m ← RECEIVEMESSAGE()
19 if m is domains of external variables

from a neighbor then
20 break

21 if m is inquiry (“Are all Qi full?”, k) then
22 if leaf(i) then
23 Send feedback (“yes”, k) to

parent(i)
24 else Send m to children(i)
25 if m is feedback (“yes”, k) then
26 if all feedbacks received from

children(i) then
27 if root(i) then
28 Broadcast “arc-consistent”
29 return Ni

30 else Send m to parent(i)

31 if m is “arc-consistent” then
32 return Ni

33 if m is “inconsistent” then
34 return “inconsistent”

35 return “inconsistent”

6223



4. If the queue Qi of an agent i is full (i.e., it contains all
of the agent’s variables in Vi) after an iteration of the for-
loop, then the agent shares this information with all other
agents in M so as to jointly determine whether the queues
of all agents are full and the network is arc-consistent
(lines 15–16 and 21–30).

5. If the queue Q of an agent is not full after an iteration of
the for-loop, then the agent broadcasts this information to
all other agents, so that they can move to the next iteration
of the for-loop as soon as possible.

All the preceding aspects are subject to communication of
certain information between agents. DisACSTP coordinates
this communication while (i) preserving the privacy of each
agent and (ii) reducing the duration of any idle state of an
individual agent. Concretely:

• Each agent shares information only with the agents who
are connected through an external constraint. We call
them the neighbors of the agent. This neighborhood-
relationship among the agents induces a graph that we call
henceforth the agent graph.

• Each agent shares with its neighbors only the domains
of its shared variables. No other information is shared
(such as its network structure, constraints, private vari-
ables and their domains) and only the neighbors w.r.t. the
agent graph can share the information. This property is
a critical advantage over D�PPC (Boerkoel and Durfee
2013), as D�PPC often creates new external constraints
during the process and reveal more private information of
the agents than necessary.

• Each agent uses a broadcasting mechanism to share
global properties of the input MaSTN, i.e., an agent first
sends a message (e.g., “inconsistent”) to its neighbors,
then the neighbors forward the message to their neigh-
bors and so on, until all agents receive the message. To
reduce the number of messages, duplicates are ignored by
the agents.
An agent i broadcasts the following messages: “arc-
consistent”, “inconsistent” and “Qi is not full”, where the
last message is indirectly broadcasted by agent i skipping
lines 14–34 and moving to the next iteration of the for-
loop and then sending its shared domains to its neighbors.
This initiates a chain reaction among the idle neighbors of
agent i who have not moved to the next iteration yet, as
they quit the idle states (lines 19–20) and move to the next
iteration of the for-loop and then send also their shared
domains to their idle neighbors (lines 3–4).

• There is a dedicated agent who checks at each iteration
of its for-loop (given its queue is full) whether the queues
of all other agents are full at the same iteration. This ded-
icated agent is determined by building a minimal span-
ning tree (e.g., by using an echo algorithm (Chang 1982))
T (M) of the agent graph. The agent who is the root
(henceforth the root agent) of this tree becomes then the
dedicated agent.
The root agent sends an inquiry to its children to
check whether the queues of all its descendants are full

(lines 15–16). The inquiry is then successively forwarded
by the descendants whose queues are full. We have to dis-
tinguish here between two cases:
(1) If all descendants’ queues are full, then the inquiry
reaches all the leaf agents and returns back as feedbacks
(lines 22–23) until the root agent receives all the feed-
backs (lines 25–30) and broadcasts “arc-consistency”.
(2) If a descendant’s queue is not full, then the descendant
moves on to the next iteration of the for-loop and initi-
ates a chain reaction among other agents by sending the
domains of its shared variables to its neighbors (cf. the
second paragraph of the third bullet point).

Due to the properties so far considered, DisACSTP is
guaranteed to simulate the behavior of ACSTP while allow-
ing concurrent domain update operations.

Theorem 13. Let M = 〈P, CX〉 be an MaSTN. Let Nmax be
a network with emax = max

{
ei + eX

i

∣∣ 1 ≤ i ≤ p
}

, where
ei and eX

i are the number of edges of the constraint graph
of Ni and the number of external constraints of agent i,
respectively. Then Algorithm 2 enforces AC on M in time
O(emaxn).

5 Evaluation

In this section we experimentally compare our algorithms
against the state-of-the-art algorithms for solving STNs.
For centralized algorithms, we compare our ACSTP al-
gorithm against Planken, de Weerdt, and van der Krogt’s
P3C algorithm (2008); for distributed algorithms, we com-
pare our DisACSTP algorithm against Boerkoel and Dur-
fee’s D�PPC algorithm (2013). All experiments for dis-
tributed algorithms used an asynchronous simulator in
which agents are simulated by processes which communi-
cate only through message passing and default communica-
tion latency is assumed to be zero. Our experiments were
implemented in Python 3.6 and carried out on a computer
with an Intel Core i5 processor with a 2.9 GHz frequency
per CPU, 8 GB memory 2.

As measures for comaring performances we use the num-
ber of constraint checks and the number of non-concurrent
constraint checks (NCCCs) performed by the centralized al-
gorithms and the distributed algorithms, respectively. Given
an STN N = 〈V,D,C〉, a constraint check is performed
when we compute relation r ← Ivw∩(Ivu⊗Iuw) and check
if r = Ivw or r �⊆ Ivw.

ACSTP vs. P3C

Datasets We selected instances from the benchmark
datasets of STNs used in (Planken, de Weerdt, and van der
Krogt 2012) for evaluations. We considered the scale-free
graphs (Scale-free-1) with 1000 vertices and density pa-
rameter varying from 2 to 50. We also considered the scale-
free graphs (Scale-free-2) with varying vertex count. The
scale-free density parameter for this selection is 5. Be-
side these artificially constructed graphs, we also considered

2The source code for our evaluation can be found in https://
github.com/sharingcodes/MaSTN

6224



5 10 20 30 40 50
105

106

107

108

Network density

P3C

ACSTP

(a) Scale-free-1

300 400 500 600 700 800

105

106

107

n

P3C

ACSTP

(b) Scale-free-2

400 600 800 1,024

104

105

n

P3C

ACSTP

(c) New York

Figure 2: Evaluation of ACSTP and P3C. The y-axes (on the log scale) represent the number constraint checks.

2 4 8 12 16

104

105

106

107

Number of agents

D�PPC

DisACSTP

0 200 400 600 800

105

106

107

Number of ext. constraints

D�PPC

DisACSTP

(a) DBH

2 4 8 12 16

104

105

Number of agents

D�PPC

DisACSTP

80 160 240 320 400 480

104

105

106

Number of tasks

D�PPC

DisACSTP

(b) WS

Figure 3: Evaluation of DisACSTP and D�PPC. The y-axis (on the log scale) represent the number of NCCCs.

graphs that are based on the road network of New York City
(New York). This dataset contains 170 graphs on 108–3906
vertices, 113–6422 edges.

Results The results are presented in Figure 2, where base-
10 log scales are used for the y-axes. For the scale-free
graphs we observe that ACSTP is 100–1000 times faster
than P3C. The dataset New York only contains very sparse
networks (each network’s density is less than 1%), thus both
algorithms could easily solve these networks. However, we
still observe that ACSTP is about 5–12 times faster than
P3C.

DisACSTP vs. D�PPC

Datasets We selected instances from the benchmark
datasets of MaSTNs used in (Boerkoel and Durfee 2013)
for evaluations. The first dataset BDH was randomly gener-
ated using the multiagent adaptation of Hunsberger’s (2002)
random STN generator. Each MaSTN has N agents each
with start time points and end time points for 10 activi-
ties, which are subject to various local constraints. In ad-
dition, each MaSTN has X external contraints. We evalu-
ated the algorithms by varying the number of agents (N ∈
{2, 4, 8, 12, 16}, X = 50×(N−1)) and the total number of
external constraints (N = 16, X ∈ {100, 200, 400, 800}).

The second dataset WS is derived from a multiagent fac-
tory scheduling domain (Wilcox and Shah 2012), where N
agents are working together to complete T tasks in a man-

ufacturing environment. We evaluated algorithms by vary-
ing the number of agents (N ∈ {2, 4, 8, 12, 16}, T =
20 × N) and the total number of tasks (N = 16, T ∈
{80, 160, 240, 320, 400, 480}).
Results The results are presented in Figure 3, where base-
10 log scales are again used for the y-axes. For the DBH
random networks (Figure 3a) we observe that DisACSTP
is 5–30 times faster than D�PPC. For the WS scheduling
networks (Figure 3b) DisACSTP is 2–10 times faster than
D�PPC. For both datasets we observe that, with increasing
x-values, the y-values (i.e., NCCCs) for DisACSTP grow
slower than those for D�PPC.

6 Conclusion

In this paper we presented a novel AC-based approach for
solving the STP and the MaSTP. We have shown that arc-
consistency is sufficient for solving an STN. Considering
that STNs are defined over infinite domains, this result is
rather surprising. Our empirical evaluations showed that the
AC-based algorithms are significantly more efficient than
their PC-based counterparts. This is mainly due to the fact
that PC-based algorithms add many redundant constraints
in the process of triangulation. More importantly, since our
AC-based approach does not impose new constraints be-
tween agents that are previously not directly connected, it
respects as much privacy of these agents as possible. We
should note here that even though our distributed algo-

6225



rithm DisACSTP showed remarkable performance, it can be
further fine-tuned by using different termination detection
mechanisms (cf. (Mattern 1987) and (Raynal 2013, Ch. 14)).

It would be interesting to see how the result in this pa-
per can be used for solving the general disjunctive tempo-
ral problems (Stergiou and Koubarakis 2000). Potential ex-
tensions of our paper also include adapting our AC algo-
rithms to incremental algorithms for the STP (Planken, de
Weerdt, and Yorke-Smith 2010), dynamic situations (Mor-
ris, Muscettola, and Vidal 2001) and uncertainty (Venable
and Yorke-Smith 2005).

Acknowledgments

We thank the anonymous reviewers, who pointed out the
connections to max/min-closed constraints and the shortest-
path problem. The work of SL was partially supported by
NSFC (No. 11671244), and the work of JL was partially
supported by the Alexander von Humboldt Foundation.

References

Barták, R.; Morris, R. A.; and Venable, K. B. 2014.
An Introduction to Constraint-Based Temporal Reasoning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning 8(1):1–121.
Baudot, B., and Deville, Y. 1997. Analysis of distributed
arc-consistency algorithms. Technical Report 97-07, Uni-
versité catholique de Louvain.
Boerkoel, J. C., and Durfee, E. H. 2013. Distributed rea-
soning for multi-agent simple temporal problems. Journal
of Artificial Intelligence Research 47:95–156.
Chang, E. J. H. 1982. Echo Algorithms: Depth Parallel Op-
erations on General Graphs. IEEE Transactions on Software
Engineering SE-8(4):391–401.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.
Dechter, R. 2003. Constraint processing. San Francisco:
Morgan Kaufmann Publishers.
Hamadi, Y. 2002. Optimal distributed arc-consistency. Con-
straints 7(3-4):367–385.
Hunsberger, L. 2002. Algorithms for a Temporal De-
coupling Problem in Multi-agent Planning. In Eighteenth
National Conference on Artificial Intelligence, 468–475.
Menlo Park, CA, USA: AAAI Press.
Jeavons, P. G., and Cooper, M. C. 1995. Tractable
constraints on ordered domains. Artificial Intelligence
79(2):327–339.
Korte, B., and Vygen, J. 2012. Combinatorial Optimiza-
tion, volume 21 of Algorithms and Combinatorics. Springer
Berlin Heidelberg.
Mattern, F. 1987. Algorithms for distributed termination
detection. Distributed computing 2(3):161–175.
Montanari, U. 1974. Networks of constraints: Fundamental
properties and applications to picture processing. Informa-
tion Sciences 7:95–132.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans with Temporal Uncertainty. In Proceed-
ings of the 17th International Joint Conference on Artificial
Intelligence - Volume 1, IJCAI’01, 494–499. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.
Nguyen, T., and Deville, Y. 1998. A distributed arc-
consistency algorithm. Science of Computer Programming
30(1-2):227–250.
Planken, L.; de Weerdt, M.; and van der Krogt, R. 2008.
P3C: A New Algorithm for the Simple Temporal Problem.
In Proceedings of the Eighteenth International Conference
on International Conference on Automated Planning and
Scheduling, ICAPS’08, 256–263. Sydney, Australia: AAAI
Press.
Planken, L. R.; de Weerdt, M. M.; and van der Krogt, R. P.
2012. Computing all-pairs shortest paths by leveraging
low treewidth. Journal of Artificial Intelligence Research
43:353–388.
Planken, L.; de Weerdt, M.; and Yorke-Smith, N. 2010. In-
crementally Solving STNs by Enforcing Partial Path Consis-
tency. In Proceedings of the Twentieth International Con-
ference on International Conference on Automated Plan-
ning and Scheduling, ICAPS’10, 129–136. Toronto, On-
tario, Canada: AAAI Press.
Raynal, M. 2013. Distributed Algorithms for Message-
Passing Systems. Berlin, Heidelberg: Springer Berlin Hei-
delberg.
Shostak, R. 1981. Deciding linear inequalities by computing
loop residues. J. ACM 28(4):769–779.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1):81–117.
Tarjan, R. E. 1983. Data Structures and Network Algo-
rithms. Number 44 in CBMS-NSF Regional Conference
Series in Applied Mathematics. Philadelphia, Pa: Society for
Industrial and Applied Mathematics.
Venable, K. B., and Yorke-Smith, N. 2005. Disjunctive Tem-
poral Planning with Uncertainty. In Proceedings of the 19th

International Joint Conference on Artificial Intelligence, IJ-
CAI’05, 1721–1722. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Wilcox, R., and Shah, J. 2012. Optimization of Multi-
Agent Workflow for Human-Robot Collaboration in Assem-
bly Manufacturing. In Infotech@Aerospace 2012. American
Institute of Aeronautics and Astronautics.

6226


