
Stackelberg Planning:
Towards Effective Leader-Follower State Space Search

Patrick Speicher, Marcel Steinmetz, Michael Backes,
Jörg Hoffmann, Robert Künnemann

CISPA, Saarland University, Saarland Informatics Campus
Saarbrücken, Germany

{patrick.speicher,robert.kuennemann}@cispa.saarland, backes@mpi-sws.org,
{steinmetz,hoffmann}@cs.uni-saarland.de

Abstract

Inspired by work on Stackelberg security games, we intro-
duce Stackelberg planning, where a leader player in a clas-
sical planning task chooses a minimum-cost action sequence
aimed at maximizing the plan cost of a follower player in
the same task. Such Stackelberg planning can provide use-
ful analyses not only in planning-based security applications
like network penetration testing, but also to measure robust-
ness against perturbances in more traditional planning appli-
cations (e. g. with a leader sabotaging road network connec-
tions in transportation-type domains). To identify all equilib-
ria – exhibiting the leader’s own-cost-vs.-follower-cost trade-
off – we design leader-follower search, a state space search
at the leader level which calls in each state an optimal plan-
ner at the follower level. We devise simple heuristic guidance,
branch-and-bound style pruning, and partial-order reduction
techniques for this setting. We run experiments on Stackel-
berg variants of IPC and pentesting benchmarks. In several
domains, Stackelberg planning is quite feasible in practice.

Introduction

Stackelberg security games have been extremely success-
ful in the formalization and solution of defensive tasks re-
garding physical infrastructures, such as patrolling an air-
port (Tambe 2011). In such games, the leader (the de-
fender) moves first, followed by the follower (the attacker).
A solution (a Stackelberg equilibirum) is a leader/follower
move pair that minimizes the defender’s loss given opti-
mal attacker play. The same principle has recently been ap-
plied to planning-based network security penetration test-
ing, short pentesting (e. g. (Boddy et al. 2005; Lucan-
geli, Sarraute, and Richarte 2010; Durkota and Lisý 2014;
Hoffmann 2015)): the defender chooses the placement of
honeypots (fake hosts), in a way minimizing the expected
reward of an attacker whose attack is thwarted in case it runs
into a honeypot (Durkota et al. 2015b; 2015a; 2016). In sce-
narios like these, the leader may benefit from randomizing
his strategy.

Here, we introduce Stackelberg planning games, where
each of the two players is modelled as a full-scale classi-
cal planning agent. We conjecture that Stackelberg planning

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be used in various applications beyond simulated pen-
testing as a way to measure robustness against worst-case
perturbances. For example, in transportation, the “leader”
may be a saboteur, or a malicious environment, planning
to disrupt the road network, while the “follower” may be
the agent that plans transportation in a (damaged) network.
Optimal leader behavior then captures minimal damage to
the road network causing maximum transportation efficacy
loss, thus measuring the road network’s robustness against
damage given the desired transportation objectives. Simi-
lar analyses can make sense, e. g., for warehouse robotics,
Mars rovers, airport ground traffic, power supply networks,
pipeline networks, greenhouse conveyor belts, etc. Interest
in domains like these is amply reflected in the International
Planning Competition (IPC) benchmarks. We thus focus on
the case where the leader’s strategy is pure and can be ob-
served by the follower.

In our Stackelberg planning formalization, the leader and
follower control different actions in a classical planning task
with non-negative action costs. The follower has a goal; the
leader does not have a goal, and instead pursues the objective
to maximize the follower’s plan cost. Hence an equilibrium
is a pair of leader/defender plans where the leader cannot
decrease own cost without also decreasing optimal follower-
plan cost. We aim at producing all such equilibria (akin to
a Pareto frontier). We believe this is useful – compared to
aggregating leader and follower costs into a single utility –
as it exhibits the actual trade-off (software updates vs. data
loss; damaged road segments vs. transportation cost; etc).
Different variants of Stackelberg planning may, of course,
be useful too and are left for future research.

Our framework per se is somewhat novel in that prior
work on planning games considered general self-interested
planning agents each pursueing an own goal (Bowling,
Jensen, and Veloso 2003; Larbi, Konieczny, and Marquis
2007; Brafman et al. 2009).1 Our main contribution is on the
algorithmic and experimental side, however, tackling leader-
follower move combinations where each “move” is a plan-
ning problem in its own right. We design leader-follower

1General game playing (e. g. (Genesereth, Love, and Pell 2005;
Love, Hinrichs, and Genesereth 2008; Thielscher 2010; Haufe,
Schiffel, and Thielscher 2012)) is also related, but more remotely
still due to the modelling differences between planning vs. the
logic-pogramming based Game Description Language.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6286



search, interleaving two search levels where each state in
the leader level of the search spawns a planning problem at
the follower level. Towards efficiency at the leader level, we
devise simple heuristic guidance, branch-and-bound style
pruning against incumbent solutions, as well as partial-order
reduction techniques. We run experiments on Stackelberg
variants of IPC and pentesting benchmarks. Expectedly, a
crucial performance factor in Stackelberg planning is the
number of leader actions considered. In several domains,
reasonably large numbers are feasible in practice.

Stackelberg Planning

We define Stackelberg planning tasks following the classical
STRIPS framework. A Stackelberg planning task is a tuple
Π = (P,AL,AF , I,GF ) of a set of facts P , a set of leader
actions AL, a set of follower actions AF , an initial state
I ⊆ P , and the follower goal GF ⊆ P . We require that
AL ∩ AF = ∅, and we denote by A = AL ∪ AF the set of
all actions. A state of Π is a subset of facts s ⊆ P . S denotes
the set of all states. Every action a ∈ A is associated with
a precondition prea ⊆ P , an add list adda ⊆ P , a delete
list dela ⊆ P , and a non-negative cost ca ∈ R

+
0 . An action

a is applicable in a state s if prea ⊆ s. In that case, the
state resulting from applying a to s is s[[a]] := (s \ dela) ∪
adda. An action sequence 〈a1, . . . , an〉 is applicable in a
state s if a1 is applicable in s, and 〈a2, . . . , an〉 is applicable
in s[[a1]]. The resulting state is denoted s[[〈a1, . . . , an〉]].
The cost of an action sequence is c〈a1,...,an〉 =

∑n
i=1 cai

.
The syntax and state transition semantics just specified is

standard classical planning except for the partitioning of ac-
tions across the leader L and follower F . The particularities
of our Stackelberg planning framework pertain to the task’s
solutions, which we define as follows.

A leader strategy is a sequence of leader actions πL ap-
plicable in I. We denote by SL ⊆ S the set of all states
reachable from I through a leader strategy. Let s ∈ SL

be any such state. The leader’s best move to s is a leader
strategy πL∗ to s whose cost is minimal among all leader
strategies ending in s; we denote that cost by L∗(s). A fol-
lower strategy in s is a sequence of follower actions πF that
is applicable in s, and that achieves the follower goal, i. e.,
GF ⊆ s[[πF ]]. The follower’s best response in s is a fol-
lower strategy πF∗ in s with minimal cost; we denote that
cost by F ∗(s), or F ∗(s) = ∞ if no follower strategy exists.

The leader’s objective is to minimize her own cost L∗,
while maximizing the cost F ∗ of the follower’s best re-
sponse. We capture the trade-off between these two objec-
tives through the set of equilibria where L∗ cannot be re-
duced without also reducing F ∗. Precisely, we say that a
state s ∈ SL is an equilibrium if it is not dominated by any
other state t ∈ SL, where t dominates s if (L∗(t), F ∗(t))
dominates (L∗(s), F ∗(s)), and a pair (L,F ) dominates a
pair (L′, F ′) if L ≤ L′ and F ≥ F ′ and at least one of
these two inequalities is strict. The solution to a Stackelberg
planning task is the set S∗ ⊆ SL of all equilibria.

Observe that each equilibrium state s characterizes a sub-
set of equlibrium strategy pairs, namely the pairs (πL∗, πF∗)
of best move/response pertaining to s. In this sense, our def-

procedure leader-follower-search(Π)
Ŝ := ∅;
let Open be an empty queue;
push node N with N.s := I and N.L := 0 onto Open;
while Open �= ∅ do

pop N from Open;
/* Follower-Search Pruning (next Section) */
run an optimal planner to compute F ∗(N.s);
if N is not dominated by any N̂ ∈ Ŝ

remove from Ŝ every N̂ ∈ Ŝ dominated by N ;
Ŝ := Ŝ ∪ {N};

for every a ∈ AL, prea ⊆ N.s do
/* Partial-Order Reduction (Section after next) */
let N ′ be a new search node;
N ′.s := N.s[[a]]; N ′.L := N.L+ ca;
if already generated N ′.s with path cost ≤ N ′.L

continue
/* Leader-Search Pruning (next Section) */
push N ′ onto Open;

return {N̂ .s | N̂ ∈ Ŝ};

Figure 1: Leader-follower search. Search nodes N contain
the state N.s and the leader path cost N.L to s. They also
cache the follower’s best-response cost F ∗(N.s).

inition of equilibria in terms of states is equivalent to one in
terms of strategy pairs, but is more compact.

We remark that previous work on Stackelberg security
games (Tambe 2011; Durkota et al. 2015b), like the origi-
nal definition of Stackelberg games (von Stackelberg 1934),
defines overall utility as a function of both, the leader and
follower strategies. An equilibrium is then a strategy pair
where the follower strategy is a best response, and the over-
all leader utility is optimal among such strategy pairs. As
discussed in the introduction, our definition aims instead at
avoiding the aggregation of leader costs with follower costs,
to exhibit the full trade-off S∗ between these two functions.

Leader-Follower Search

As previously indicated, our base search algorithm, leader-
follower search, is a two-layer search solving a classical
planning task optimally in every node of a state space search
at the leader level. We will devise pruning and partial-order
reduction techniques in the following sections. The basic al-
gorithm is depicted in Figure 1.

The algorithm is straightforward. It explores the entire
leader state space, calling an optimal planner at the follower
level for each candidate state. The only major addition is
the maintenance of the incumbent solution Ŝ: the subset of
non-dominated search nodes found thus far. Dominance over
search nodes here is defined in terms of N.L and F ∗(N.s):
the former replaces L∗(N.s) which is (in general) not known
during the search, while the latter is already cached in the re-
spective search nodes at the time required.

The algorithm guarantees, for every s ∈ SL, that even-
tually a search node N is expanded where N.s = s and
N.L = L∗(s). Correctness follows immediately from that:

6287



Proposition 1. Upon termination of leader-follower search,
{N̂ .s | N̂ ∈ Ŝ} = S∗.

Observe that, to attain this guarantee, the search is exhaus-
tive: prior to termination, every state s ∈ SL is expanded
at least once, regardless of the expansion order. However, a
good expansion order is crucial for anytime behavior and for
the efficacy of the pruning techniques we introduce below.
(Near-)equilibria states should be found early on.

The latter poses an interesting challenge to the generation
of heuristic functions, namely a new type of estimation that
one may baptize Stackelberg heuristic functions, based on
relaxed Stackelberg planning problems that combine an op-
timistic estimation of leader costs with a pessimistic estima-
tion of associated follower costs. There are at least two de-
sirable outcomes of such estimation processes: a) for guid-
ing leader-follower search, an estimate of the distance to the
nearest equilibirum state; b) for admissible pruning, bounds
on the leader/follower cost pairs still achievable below a
given state. The comprehensive investigation of these ques-
tions has, in our view, the potential for an entire sub-area
of AI Planning. We discuss b) in the next section, devising
first pruning techniques; towards a) we implemented simple
heuristics without any lookahead on the leader side, prefer-
ring leader states with higher follower plan cost estimates.

Branch-and-Bound Style Pruning

We define two pruning criteria for leader-follower search:

1. Follower-search pruning prunes unnecessary calls to the
follower level, and can be done given the availability of
an upper bound on follower cost.

2. Leader-search pruning prunes entire unnecessary search
branches at the leader level. In order to identify such
branches, bounds on the trade-off between leader and fol-
lower cost are required.

Follower-Search Pruning

Follower-search pruning in Figure 1 identifies N that are
necessarily dominated by some N̂ ∈ Ŝ. For such N , we
do not need to compute F ∗(N.s). This is beneficial given
the complexity of such a computation (optimal planning),
and the number of times the computation will need to be
performed without pruning (for every search node N ).

To permit the desired pruning, it is enough to have an up-
per bound upF (s) on the follower’s best-response cost in a
state s, i. e., upF (s) ≥ F ∗(s). Namely, a given search node
N is necessarily dominated by some N̂ ∈ Ŝ if N is domi-
nated by N̂ even under the optimistic assumption (from the
leader’s point of view) that F ∗(N.s) = upF (N.s).

Upper bounds upF (s) can be computed, for example, by
running a satisficing planner to compute any (not necessar-
ily optimal) follower strategy. A much cheaper method, that
we use in our experiments, is to derive upF (s) from F ∗(t)
for a parent state t of s, s = t[[a]], using the following
observation: If the follower’s best-response πF∗ in state t
is not affected by a, i. e., πF∗ still constitutes a follower
strategy in s, then F ∗(s) ≤ F ∗(t), and hence we can use

upF (s) := F ∗(t) as the upper bound. If a does invalidate
πF∗, we use the trivial upper bound upF (s) = ∞.

Leader-Search Pruning

Leader-search pruning is more ambitious than follower-
search pruning. Rather than identifying nodes necessarily
dominated by Ŝ, it identifies nodes whose descendant nodes
are necessarily dominated by Ŝ. Given some node N ′ (the
new search node in Figure 1), we need to show that for every
descendant node N0 of N ′, there exists a node N̂ ∈ Ŝ that
dominates N0. If we succeed in showing this, then N ′ can
be pruned.

Observe that assessing this property necessarily requires
information about the trade-off between leader-cost vs.
follower-cost, below N ′: How much does the leader still
need to spend in order to increase follower cost, and by how
much? Is it possible to obtain a new trade-off not dominated
by any of the trade-offs currently contained in Ŝ?

A conceptually simple approach could be derived through
Stackelberg heuristic functions of type b) discussed in the
previous section. Precisely, one could strive to design a func-
tion hStackel mapping N ′ to a set H of (L+, F+) pairs opti-
mistically approximating the available trade-offs below N ′,
in that, for every descendant node N0 of N ′, there exists
(L+, F+) ∈ H that dominates (N0.L, F

∗(N0.s)). Given
such an estimation hStackel(N ′) = H , one can prune N ′ if,
for every pair (L+, F+) ∈ H , there exists N̂ ∈ Ŝ such that
(N̂ .L, F ∗(N̂ .s)) dominates (L+, F+).

While natural, the computational feasibility of this ap-
proach appears questionable, as an entire Pareto frontier
needs to be estimated. To derive a more feasible approach,
we instead perform the assessment for the concrete incum-
bent solution Ŝ, estimating whether or not it will be pos-
sible to beat these trade-offs. We formulate such estima-
tion through an upper bound upL(N ′, B) on the follower’s
best-response in any node reachable, for the leader, from N ′
within cost B. The advantage of this formulation is that suit-
able values for B can be gleaned directly from Ŝ:

Theorem 1. Every descendant of N ′ is dominated by some
N̂ ∈ Ŝ if the following conditions are satisfied:

(i) Ŝ is not empty,
(ii) upL(N ′,∞) ≤ maxN̂∈Ŝ F ∗(N̂ .s),

(iii) N ′.L > 0 or upL(N ′, 0) < F ∗(N̂ .s) where N̂ ∈ Ŝ is
such that N̂ .L = 0, and

(iv) for every N̂1 ∈ Ŝ with N̂1.L > 0 and N̂1.L ≥ N ′.L,
there exists N̂2 ∈ Ŝ such that N̂2.L < N̂1.L and
F ∗(N̂2.s) ≥ upL(N ′, N̂1.L−N ′.L).

Proof. Assume for contradiction that N ′ can reach a node
N0 that is not dominated by any N̂ ∈ Ŝ, even though the
conditions (i) – (iv) are all satisfied. If Ŝ is not empty, then
observe that Ŝ is guaranteed to contain at least one node
N̂ ∈ Ŝ with N̂ .L = 0. This holds because the algorithm in
Figure 1 always adds the node with N.s = I and N.L = 0

to Ŝ, and this node may only be replaced by some other node

6288



reached via a path with cost 0. If N0.L = 0, then in partic-
ular N ′.L = 0, and since N0 is not dominated by N̂ , it
holds that F ∗(N0.s) ≥ F ∗(N̂ .s). However as (iii) is sat-
isfied, either N ′

0.L > 0 for all nodes N ′
0 reachable from

N ′, or F ∗(N ′
0.s) ≤ upL(N ′, 0) < F ∗(N̂ .s) for all nodes

N ′
0 reachable from N ′ with N ′

0.L = 0, i. e., N ′
0 is dom-

inated by N̂ . Therefore, N0.L must be larger than 0. On
the other hand, since (ii) is satisfied, Ŝ must contain a node
N̂ such that F ∗(N0.s) ≤ upL(N ′,∞) ≤ F ∗(N̂ .s). Since
N0 is not dominated by any such N̂ , it immediately follows
that N0.L ≤ N̂ .L. Let N̂1 ∈ Ŝ be the node with minimal
N̂1.L value among the nodes with N̂1.L ≥ N0.L. As we
have shown before, N0.L > 0, and therefore N̂1.L > 0.
Because of (iv), there must hence exist N̂2 ∈ Ŝ such
that N̂2.L < N̂1.L and F ∗(N̂2.s) ≥ upL(N ′, N̂1.L −
N ′.L) ≥ F ∗(N0.s). However, the selection of N̂1 implies
that N̂2.L < N0.L. Thus, N̂2 actually dominates N0, what
is a contradiction to the assumption. We conclude that if N ′

can reach a node N0 that is not dominated by any N̂ ∈ Ŝ,
then one of the conditions (i) – (iv) must be violated.

At first glance, one might wonder why condition (iv) re-
quires the consideration of two nodes N̂1, N̂2 ∈ Ŝ. To see
why, assume a node N ′ that can only reach a single node
N0 whose L and F ∗ values are both either strictly smaller
or strictly larger than those of N̂ , for every N̂ ∈ Ŝ. When
considering only a single node N̂ ∈ Ŝ in the reachability
approximation, all we will find out is that within a cost bud-
get of N̂ .L, N ′ cannot reach any node where the follower’s
best-response cost is at least as large as F ∗(N̂ .s). Neverthe-
less, N0 is not dominated by any N̂ ∈ Ŝ, and thus N ′ should
be considered for expansion.

As of now, we use a very simple upper bound
upL(N ′, B): let upL(N ′, B) := upL∀ where upL∀ is an up-
per bound on the follower’s best-response in every state. For
example, using the trivial such upper bound upL∀ := ∞, as
soon as Ŝ contains a node N̂ with F ∗(N̂ .s) = ∞, i. e., a
state in which the follower can no longer achieve her goal,
all nodes N ′ with N ′.L > N̂.L will be pruned. To de-
rive tighter upper bounds upL∀ , in Stackelberg planning tasks
where the leader can never entirely preclude the follower
from reaching the goal, one can over-approximate the over-
all harm the leader can do to the follower. In our experi-
ments, we use a simple technique based on the delete re-
laxation. We first perform a delete-relaxed reachability fixed
point for the initial state, considering only leader actions. We
collect the facts p deleted by at least one leader action appli-
cable in the fixed point. We remove all these facts p from the
initial state, and we compute a follower best-response (an
optimal follower strategy) given this reduced initial state.

Partial-Order Reduction

As an additional means to reduce the leader search space, we
adapt a well known partial-order reduction technique, strong
stubborn sets (SSS) (Valmari 1989; Wehrle and Helmert
2012; Wehrle et al. 2013; Wehrle and Helmert 2014). The

basic idea behind SSS is to exploit action independency to
identify, for a given search state s, a subset A of applicable
actions so that expanding s using only A suffices to retain
the standard notions of completeness and optimality. Here,
we adapt this idea to preserve the guarantee given by Propo-
sition 1, i. e., that {N.s | N ∈ Ŝ} = S∗ upon termination of
leader-follower search.

The construction of an SSS follows three steps: (i) one
starts with a disjunctive action landmark, i. e., a set of ac-
tions one of which is needed to achieve the goal; (ii) one
backchains over open action preconditions to actions appli-
cable in s; and (iii) for each applicable action one includes
all interfering actions. (ii) and (iii) remain the same in our
context, and we specify them formally below. The main is-
sue here is (i), because in Stackelberg planning the goal of
the leader is not given explicitly. So we need to find a dif-
ferent way to seed the SSS with “something the leader will
definitely have to do in order to make progress”.

To that end, say that s = N.s is the leader search state
about to be expanded in leader-follower search as per Fig-
ure 1. Say that πF∗ is the follower’s best-response in s.
Consider any minimal-cost path I = s0, a1, s1, . . . , an, sn
through s = si to an equilibrium sn �= s. Observe that ei-
ther the path behind si must contain a leader action that
renders πF∗ inapplicable, or all actions on that path must
have cost 0: clearly, if both these conditions are false, then
s dominates sn in contradiction. We thus seed our SSS with
the set of all leader actions that may disable πF∗ and handle
0-cost actions separately.

In detail, we define SSS for leader-follower search as
follows. Let a1, a2 ∈ AL, a1 �= a2, be two leader ac-
tions. Following classical planning definitions of SSS we
say that a1 disables a2 if prea2

∩ dela1 �= ∅; a1 enables
a2 if adda1 ∩ prea2

�= ∅ and a1 does not disable a2; a1
and a2 conflict with each other if adda1 ∩ dela2 �= ∅ or
vice versa adda2

∩ dela1
�= ∅; a1 and a2 interfere if they

conflict with each other, or either disables the other. Fur-
thermore, we define regression in the usual manner, namely
for a set of facts G ⊆ P and an action a ∈ A, the re-
gression of G through a is defined if adda ∩ G �= ∅ and
dela ∩ G = ∅. If defined, the regression is given by the set
Regress(G, a) = (G \ adda) ∪ prea.

Now, A ⊆ AL is an SSS in s for πF∗ if the following
conditions are satisfied:

(i) A contains every leader action a ∈ AL where dela ∩
Regress(GF , πF∗) �= ∅;

(ii) for every a ∈ A not applicable in s, A contains all
actions that enable a; and

(iii) for every a ∈ A applicable in s, A contains all actions
that interfere with a.

Note that Regress(GF , πF∗) gives the minimal set of facts
that is required for the follower to achieve her goal through
πF∗. Facts appearing e. g. in the precondition of some ac-
tion a in πF∗, but not in Regress(GF , πF∗), are not relevant
for the applicability of πF∗ because, by definition of regres-
sion, these are added by some other action appearing before
a anyway. Considering also such facts would not harm the

6289



Nomystery

Visitall

Figure 2: Visualization of Pareto frontiers in Nomystery and
Visitall. Each line shows the Pareto frontier of an instance,
each data point an entry in the frontier.

correctness of the SSS construction, but may lead to larger
sets A, and hence less pruning. With the same arguments as
in classical planning (Wehrle and Helmert 2012), we obtain:

Theorem 2. Let A be an SSS in s for πF∗. Then, for every
leader strategy a1, . . . , an in s where πF∗ is no longer ap-
plicable in s[[a1, . . . , an]], there exists 1 ≤ i ≤ n such that
ai ∈ A, and ai, a1, . . . , ai−1, ai+1, . . . , an is applicable in
s, and s[[a1, . . . , an]] = s[[ai, a1, . . . , ai−1, ai+1, . . . , an]].

As an immediate consequence, we can ignore in the ex-
pansion of s all actions a ∈ AL whose cost is larger than 0
and which are not contained in A.

Experiments

To evaluate the scalability of our Stackelberg planning al-
gorithms, we extended several benchmark domains from the
International Planning Competition (IPC). Due to the intrin-
sic difficulty of solving classical planning tasks and hence
Stackelberg planning tasks optimally, we also report results
for a satisficing variant of the leader-follower search algo-
rithm, where we used an inadmissible search configuration
to find follower strategies. Our implementation is based on
Fast Downward (Helmert 2006). We ran all experiments on
2.20 GHz Intel Xeon machines, with runtime/memory limits
of 30 mins/4 GB (as typically used in IPC setups).

Benchmarks

To design our benchmarks, we adapted three domains re-
lating to transportation, namely Logistics (IPC’98), No-
mystery (IPC’11), and Visitall (IPC’14); the puzzle game
Sokoban (IPC’14); and a simulated pentesting domain Pen-
test adapted from prior work on this application.

Given an individual classical planning base task (a
benchmark domain instance), we obtain Stackelberg plan-
ning tasks as follows. We set the follower’s actions
and goal to be that of the base task. We design a

set of leader actions suitable for the domain and task
(see details below). To control the complexity stemming
from the number of leader actions, we generate multi-
ple Stackelberg planning instances, setting that number
within {1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 25, 32, 50, 64, 128, 256,
512, 1024, 2048, 4096} up to the number of leader actions
present in the task. We hence get up to 20 different Stack-
elberg planning instances per base task. In total, our bench-
mark suite contains 3263 instances.

In the three transportation-like domains, the leader actions
are designed based on the idea of evaluating road-network
robustness.2 Any one leader action removes one road con-
nection (an edge in the network graph) from the network.
We design two different variants (that we will refer to by
their number throughout this section): (i) the leader can ex-
ecute any such action at any time; (ii) in order to remove the
connection between X and Y, the leader must be located at
either X or Y. In (ii), the leader can change her location via
additional leader actions moving on the same road network;
once a connection is removed, the leader cannot use it any-
more, rendering even the leader planning problem on its own
non-trivial, requiring to reason about interferences.

In Sokoban, we test for robustness against modifications
to the board. Here, each leader action allows to block one
cell of the grid by placing a wall. We again consider two
variants: (i) there is no precondition to placing a wall; and
(ii) walls may only be placed in a cell adjacent to other walls.

For generating the Pentest base-instances, we adapted the
MDP generator by Steinmetz et al. (2016) to output clas-
sical planning tasks. We applied two changes: (i) each ex-
ploit action is now guaranteed to succeed, and (ii) the cost
of an exploit action is set to the negative logarithm of the
exploit success probability. This changes the overall objec-
tive from the MDP problem of finding a policy maximizing
the probability of achieving the goal, to the classical plan-
ning problem of finding an action sequence maximizing that
probability. Steinmetz et al.’s generator allows to scale both
the network size N and the number of exploits E in the net-
work. We used E := N for simplicity, and scaled N from 50 to
600 in steps of 50. For each N we generated three instances
using a different random seed, resulting in a total number of
36 base-instances. We designed the leader actions to corre-
spond to the activities of an administrator trying to secure
the network. Namely, we consider two possible fixes: clos-
ing a specific port on a specific host as a firewall rule; and
patching a software on a specific host, effectively removing
the associated exploits.

Pareto Frontier Examples

The solution for a Stackelberg planning instance is a Pareto
frontier S∗, which visualizes the leader/follower-cost trade-
off. To exemplarily illustrate that this S∗ can truly be of
interest, we show frontiers of several Nomystery and Visi-
tall instances in Figure 2. We used variant (ii) for both do-
mains, so the leader must be located at an adjacent loca-

2We remark on the side that this application was inspired by
a road-network break-down in our own city, blocking reasonable
access to the university campus for 3 weeks.

6290



(a) Logistics (b) Nomystery (c) Sokoban (d) Visitall

(e) Logistics (f) Nomystery (g) Sokoban (h) Visitall

Figure 3: Percentage of solved instances, as a function of the number of blockable cells (Sokoban) respectively removable
road-map connections (other domains). Plots (a) – (d) report the results for optimal Stackelberg planning, plots (e) – (h) for
greedy Stackelberg planning.

(a) (b)

Figure 4: Percentage of solved Pentest instances, as a func-
tion of the number of fixes. Optimal (a), greedy (b).

tion to remove a connection and there are leader move ac-
tions. Each individual line represents a complete frontier
and every marker represents an entry in the frontier, i.e. a
leader/follower-cost pair (L,F ). One can observe many in-
stances where it is possible to increase F to ∞ with very
little L, but also instances where one cannot increase F at
all, only by a small margin, or only with high L.

Optimal Stackelberg Planning

We next shed light on the feasibility of optimal Stackelberg
planning, and on the impact of our pruning methods. To find
optimal follower responses, we run A∗ with the state-of-
the-art admissible heuristic LM-cut (Helmert and Domshlak
2009). Due to the nature of Stackelberg planning, and our
benchmarks in particular, there is a high chance to exclude
all follower strategies. To be able to perform well in such
cases – i. e., to effectively prove the follower problem un-
solvable – we use, in addition to LM-cut, the PDB heuristic
that was part of Aidos, the winning portfolio in the 2016
Unsolvability IPC (Seipp et al. 2016). We noticed early on
in our experiments that the PDB heuristic helps a lot in a few
instances, although the overall impact is rather small.

At the leader level, we run iterative deepening depth-first
search. We order open states by decreasing follower optimal
response cost (preferring states with higher follower cost). If
there is no follower strategy for a state and no 0-cost leader
actions, then we can trivially discard this state. We refer to
the branch-and-bound follower-search pruning, as discussed
before, by FSP; to leader-search pruning based on the upper
bound upL∀ by LSP; and to our strong stubborn sets technique

by SSS. We report results for different combinations of these
techniques (including none, as a baseline) to examine their
impact.

The coverage results are shown in Figures 3 and 4. Note
that we aggregated both types of leader actions in Figures 3,
because the results were quite similar. In almost all Sokoban
instances (Figure 3 (c)), few changes to the board suffice to
prevent the follower from reaching her goal, yielding a shal-
low leader-level search tree. All our configurations tackle
such cases effectively, and relative coverage is between 80%
and 100% throughout. (The increase from 64 to 128 leader
actions is an artifact of a decreasing number of instances for
an increasing number of leader actions.)

In contrast, in Nomystery (Figure 3 (b)) and Pentest (Fig-
ure 4 (a)), the impact of the number of leader actions is large,
as one would expect. In Logistics and Visitall (Figure 3 (a)
and (d)), coverage is extremely low even with few leader
actions. This is due to the computational cost of computing
optimal follower responses, which is prohibitive in these two
domains.

Comparing performance across different configurations,
the coverage differences are small. The largest difference
occurs in Pentest, where the baseline configuration without
any pruning falls substantally short starting from 4 leader
actions. The overall best-performing configuration is the one
where all pruning techniques are enabled. The configuration
without SSS performs almost equally well except in Pentest.

A closer look at the performance of the different configu-
rations, beyond the coarse measurement afforded by cover-
age, shows that actually all our pruning methods yield vast
runtime advantages over the baseline. Figure 5 shows per-
instance runtime scatter plots. Clearly, runtime reductions
by orders of magnitude are common for all three methods.

Comparing LSP vs. SSS in Figure 5(d), we see that LSP
has a noticeable advantage in larger instances, which also
explains the slight edge in coverage. It is worth pointing out
here that LSP can only be useful if the computed upL∀ indeed
corresponds to the maximal follower response cost in S∗. In
our experiments, this was the case in all instances where S∗
could be fully constructed. This is, however, not guaranteed
to happen in general; in other cases the other two pruning

6291



Figure 5: Per instance comparison of runtime for (a) no pruning (x) vs. SSS (y); (b) no pruning (x) vs. LSP (y); (c) no pruning
(x) vs. FSP (y); (d) LSP (x) vs. SSS (y).

techniques may become more important. Regarding FSP, we
remark that this technique is strongest in our transportation
domains of type (ii), i.e., those with leader actions moving
along the road map. As such actions never invalidate the fol-
lower’s best response, this leads to perfect upper bounds and
thus frequent follower-search pruning.

Greedy Stackelberg Planning

We noticed that the computational cost of the optimal fol-
lower search is critical in many cases, and thus ran exper-
iments with a greedy variant of our algorithms. The only
change is that we use a satisficing instead of an optimal
planner at the follower level. This makes the follower-level
search way more effective, at the price of no longer giving a
guarantee on the correctness of the output (the pareto fron-
tier may be faulty as some leader states may have been as-
signed an overly high follower cost). Note that the curve in-
duced by the greedy pareto frontier solution can only be on
or above the curve induced by the optimal solution.

Specifically, at the follower level we now run the com-
monly used baseline satisficing planner, Fast Downward’s
greedy best-first search (GBFS) with a dual queue for pre-
ferred operators, using the inadmissible heuristic hFF (Hoff-
mann and Nebel 2001). To effectively prove follower prob-
lems unsolvable, as before we use Aidos’ PDB heuristic.

The coverage results are included with the ones for op-
timal Stackelberg planning in Figures 3 and 4. We observe
a dramatic coverage increase in those domains – Logistics
and Visitall– where computing optimal follower responses
is prohibitively costly. In the other domains, the difference
to optimal Stackelberg planning is relatively small. For Pen-
test and Nomystery, the follower level is not the bottleneck
of the overall search; for Sokoban, even optimal Stackelberg
planning has close to maximal coverage anyway.

Switching from optimal to satisficing follower search
in Nomystery increases coverage by about 10 percentage
points. The influence of the follower level is marginal in this
domain, and LSP pruning has a much higher impact (FSP +
SSS and the baseline fall short of the other configurations).
Similarly for Pentest, where the coverage gain from optimal
to greedy Stackelberg planning is even less pronounced.

That difference is huge though in Logistics and Visitall. In
both domains, the coverage of the best greedy configuration
(FSP + SSS + LSP) starts at about 90% and decreases lin-
early in the number of leader actions. Again, only the base-

line and FSP + SSS configurations are considerably weaker.
For the Visitall domain, we discovered that the sub-

optimality of greedy follower-level planning positively in-
fluences the impact of LSP pruning: with a satisficing fol-
lower planner, it can happen that the upper bound upL∀ ,
though obtained from a very coarse approximation, is
smaller than the follower costs computed by the satisfic-
ing planner. This is indeed often the case in Visitall, where
our follower planner is prone to choose highly sub-optimal
routes across the map. To our leader-level search, it then ap-
pears that many of the follower responses encountered in
search are worse than the already known upper bound, so
that LSP pruning cuts off the search very early. Computa-
tional performance thrives on this, yet the returned Pareto
frontiers are highly incomplete.

Importantly, Visitall is the only domain in which we ob-
served this phenomenon. To back this up, we compared the
quality of the greedy vs the optimal solutions for all do-
mains. We measured the size of the areas beneath the opti-
mal and greedy pareto frontier curves as a comparison. With
the most competitive configuration (FSP + SSS + LSP), the
areas under the greedy curves are on average about 10%
larger than the areas under the optimal ones. An exception is
the visitall domain where the area size is doubled.

Conclusion

Stackelberg planning is, we believe, an exciting new vari-
ant of planning that may be of high practical value in a
large range of potential planning applications. First, it allows
modelling defenses against attackers encoded as planning
agents. Second, it subsumes a notion of robustness against
sabotage and against worst-case perturbances by an environ-
ment. From an algorithmic point of view, it provides an in-
teresting middle ground between full-scale game-theoretic
planning and classical planning, generalizing the latter to
a single adversarial exchange of action sequences. We ex-
pect that many of the successful algorithmic techniques from
classical planning can be lifted to this setting, and indeed our
first results presented herein suggest that this is so.

Acknowledgments

This work was supported by the German Federal Ministry
of Education and Research (BMBF) through funding for the
Center for IT-Security, Privacy and Accountability (CISPA,
grant no. 16KIS0656).

6292



References

Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of action generation for cyber security using classical plan-
ning. In Biundo, S.; Myers, K.; and Rajan, K., eds., Pro-
ceedings of the 15th International Conference on Automated
Planning and Scheduling (ICAPS-05), 12–21. Monterey,
CA, USA: Morgan Kaufmann.
Bowling, M. H.; Jensen, R. M.; and Veloso, M. M. 2003. A
formalization of equilibria for multiagent planning. In Gott-
lob, G., ed., Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI’03), 1460–1462.
Acapulco, Mexico: Morgan Kaufmann.
Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz,
M. 2009. Planning games. In Boutilier, C., ed., Proceed-
ings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), 73–78. Pasadena, California, USA:
Morgan Kaufmann.
Durkota, K., and Lisý, V. 2014. Computing optimal poli-
cies for attack graphs with action failures and costs. In 7th
European Starting AI Researcher Symposium (STAIRS’14).
Durkota, K.; Lisy, V.; Kiekintveld, C.; and Bosansky, B.
2015a. Game-theoretic algorithms for optimal network se-
curity hardening using attack graphs. In Proceedings of the
2015 International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’15), 1773–1774.
Durkota, K.; Lisy, V.; Kiekintveld, C.; and Bosansky, B.
2015b. Optimal network security hardening using attack
graph games. In Yang, Q., ed., Proceedings of the 24th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI’15). AAAI Press/IJCAI.
Durkota, K.; Lisý, V.; Kiekintveld, C.; Bosanský, B.; and
Pechoucek, M. 2016. Case studies of network defense with
attack graph games. IEEE Intelligent Systems 31(5):24–30.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Haufe, S.; Schiffel, S.; and Thielscher, M. 2012. Auto-
mated verification of state sequence invariants in general
game playing. Artificial Intelligence 187:1–30.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2015. Simulated penetration testing: From
“Dijkstra” to “Turing Test++”. In Brafman, R.; Domshlak,
C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15). AAAI Press.

Larbi, R. B.; Konieczny, S.; and Marquis, P. 2007. Ex-
tending classical planning to the multi-agent case: A game-
theoretic approach. In Proceedings of the 9th European Con-
ference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty (ECSQARU’07), 731–742.
Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2008.
General game playing: Game description language spec-
ification. Technical Report LG-2006-01, Stanford Logic
Group.
Lucangeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Proceedings of the 2nd Work-
shop on Intelligent Security (SecArt’10).
Seipp, J.; Pommerening, F.; Sievers, S.; and Wehrle, M.
2016. Fast downward aidos. In UIPC 2016 planner ab-
stracts, 28–38.
Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Goal
probability analysis in mdp probabilistic planning: Explor-
ing and enhancing the state of the art. Journal of Artificial
Intelligence Research 57:229–271.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Fox, M., and Poole,
D., eds., Proceedings of the 24th National Conference of the
American Association for Artificial Intelligence (AAAI’10),
994–999. Atlanta, GA, USA: AAAI Press.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proceedings of the 10th International Conference
on Applications and Theory of Petri Nets, 491–515.
von Stackelberg, H. 1934. Market Structure and Equilib-
rium. Springer-Verlag.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Bonet, B.; McCluskey, L.; Silva, J. R.; and Williams, B.,
eds., Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12). AAAI
Press.
Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14). AAAI Press.
Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmüller, R.
2013. The relative pruning power of strong stubborn sets
and expansion core. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13). Rome, Italy: AAAI Press.

6293


