
Synthesis of Orchestrations of Transducers for Manufacturing

Giuseppe De Giacomo
Sapienza Università di Roma, Italy

degiacomo@dis.uniroma1.it

Moshe Y. Vardi
Rice University, Houston, USA

vardi@cs.rice.edu

Paolo Felli
Univ. of Bozen-Bolzano, Bolzano, Italy

pfelli@unibz.it

Natasha Alechina
University of Nottingham, UK

nza@cs.nott.ac.uk

Brian Logan
University of Nottingham, UK

bsl@cs.nott.ac.uk

Abstract

In this paper, we model manufacturing processes and facil-
ities as transducers (automata with output). The problem of
whether a given manufacturing process can be realized by a
given set of manufacturing resources can then be stated as
an orchestration problem for transducers. We first consider
the conceptually simpler case of uni-transducers (transducers
with a single input and a single output port), and show that
synthesizing orchestrations for uni-transducers is EXPTIME-
complete. Surprisingly, the complexity remains the same for
the more expressive multi-transducer case, where transducers
have multiple input and output ports and the orchestration is
in charge of dynamically connecting ports during execution.

1 Introduction

Manufacturing is transitioning from a ‘mass production’
model, in which large volumes of a product are produced
at a time, to a ‘manufacturing as a service’ model where
the products to be manufactured are not known in advance
and each product may differ from the products manufactured
immediately before and immediately after it (TSB 2012;
Rhodes 2015). In ‘manufacturing as a service’, manufactur-
ing resources are advertised and shared between members of
a ‘manufacturing cloud’, and products are manufactured by
different enterprises connected via a dynamically configured
supply chains (Lu, Xu, and Xu 2014). This trend toward flex-
ible, networked manufacturing systems has been termed the
Fourth Industrial Revolution, or Industry 4.0, and is viewed
as essential to maintain the competitiveness of manufactur-
ing in high-labor cost economies (Kagermann et al. 2013).

Determining the manufacturing and assembly tasks nec-
essary to produce a product and their ordering is termed pro-
cess planning (Groover 2007). In process planning, manu-
facturing tasks in a process recipe are matched against man-
ufacturing resources, e.g., computer/numerical-controlled
machines, robots etc., to give an executable process plan that
realizes the process recipe. The process plan specifies the
specific manufacturing resources to be used for each man-
ufacturing and assembly operation, and how materials and
parts move between the various manufacturing resources.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Process planning is traditionally carried out by manufactur-
ing engineers who are experts in the particular processes
used in a specific factory, and is largely a manual process.
Such a manual process is uneconomic for the small batch
sizes typical of the manufacturing as a service model. Even
when the batch size is large enough to justify a human-
authored process plan, the time required to produce a plan
does not allow manufacturers to bid to manufacture for prod-
ucts in real time. To fully realize the manufacturing as a ser-
vice vision, process planning must be fully automated.

There is a substantial literature on automation to achieve
flexibility in manufacturing, for example (Browne et al.
1984; Sethi and Sethi 1990; ElMaraghy 2005; Bi et al. 2008;
Koren et al. 1999; Mehrabi, Ulsoy, and Koren 2000; Smale
and Ratchev 2009; Felli, Logan, and Sardina 2016). There
has been little work, however, on the automated synthe-
sis of process plans. An exception is (de Silva et al. 2016;
Felli et al. 2017), where techniques based on AI behavior
composition (De Giacomo, Patrizi, and Sardiña 2013) are
proposed to determine whether a particular product is realiz-
able (can be manufactured by a particular set of manufactur-
ing resources), and how the product should be manufactured
using the resources. Their approach takes as inputs a pro-
cess recipe and a production topology specifying the avail-
able manufacturing resources and their interconnection, and
outputs a process plan controller that specifies the tasks to
be executed by each manufacturing resource in the produc-
tion line. Process recipes and manufacturing resources are
represented using labelled transition systems, and they de-
fine a special task simulation relation that captures the no-
tion of realizability. Controller synthesis is a byproduct of
computing the simulation relation, and is polynomial in the
size of the topology (which is exponential in the number of
resources and polynomial in their size) and exponential in
the size of the process recipe and number of resources.

The approach proposed in (de Silva et al. 2016; Felli et
al. 2017) involves considerable bookkeeping and is some-
what ad-hoc, which makes it difficult characterize how the
synthesis of controllers for manufacturing relates to the ex-
isting rich literature and tools on reactive synthesis, e.g.,
(Grädel, Thomas, and Wilke 2003; De Giacomo et al. 2010;
Ehlers et al. 2017). In particular, materials and unfinished
parts are represented explicitly and manufacturing opera-
tions transform sets of input parts into sets of output parts.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6161

Moreover, resources may perform additional low-level ac-
tions not explicitly prescribed by the process recipe, includ-
ing the movement of parts between resources through syn-
chronized transfer operations. In this work we generalize the
movement of parts and data in the system and consider both
physical and logical connections between machines; we also
abstract away the execution of additional low-level actions
by focusing only on the observable behavior of resources.
We develop a model based on the standard model of in-
put/output transducers that captures the essence of process
recipes and manufacturing resources, thus relating the syn-
thesis of process-plan controllers to classical reactive syn-
thesis. We start by modeling process recipes and manufac-
turing resources as (uni-)transducers. Uni-transducers are
automata with output that have a single input port and a
single output port. The definition of a composition of a set
of uni-transducers is simple, and allows us to introduce the
main ideas of our approach. We show that the orchestration
problem for uni-transducers (whether it is possible to syn-
thesize a controller that specifies the tasks to be executed
by each manufacturing resource in a way that exactly mim-
ics the process recipe) is decidable in EXPTIME, and that
it is also EXPTIME-hard by a reduction to standard behav-
ior composition. We then consider multi-transducers, which
are more expressive and provide a better model for manufac-
turing processes. They allow us to model, e.g., cutting parts
from raw materials and sending different parts to different
resources, and combing several input parts into a single as-
sembly. We use the hardness result for uni-transducers to
show that the orchestration problem for multi-transducers is
also EXPTIME-hard. Somewhat surprisingly, the orchestra-
tion problem for multi-transducers is also in EXPTIME.

Technically our problem is a significant extension of be-
havior and service composition studied in other areas of
CS and AI (Berardi et al. 2003; De Giacomo, Patrizi, and
Sardiña 2013), though the techniques developed there can-
not be directly applied in our setting. Instead, we resort to
game theoretic techniques used in LTL reactive synthesis
(Pnueli and Rosner 1989; Lustig and Vardi 2009; Ehlers et
al. 2017). For our specific problem, however, we can avoid
the technical difficulties typical of temporal reactive synthe-
sis, and utilise much simpler safety games (Grädel, Thomas,
and Wilke 2003; Cassez et al. 2005; De Giacomo et al. 2010;
Ehlers et al. 2017), obtaining a substantially more effective
setting that is readily implementable, algorithmically well-
behaved, and amenable to advanced forms of optimization.

Our work is also related to supervisory control. How-
ever, in supervisory control, the focus is on controlling a
plant so as to maintain a safety condition. In our case,
synthesis generates an orchestrator to coordinate several
available machines so as to realize a target plant. In the
simpler case of service composition, the similarities and
differences between supervisory control and orchestration
have been studied in detail in (Barati and St.-Denis 2015;
Felli, Yadav, and Sardiña 2017).

2 Uni-Transducer Setting
A transducer is a finite deterministic automaton with out-
puts, in particular, we consider here transducers which are

Mealy machines (Hopcroft and Ullman 1979). In this sec-
tion, we consider a simple setting where all machines take
a single input and produce a single output in each state. We
model both the manufacturing resources (machines) and the
process recipe as (uni-)transducers.
Definition 1. A (uni-)transducer T = (Σ,Δ, S, s0, f, g) is
a deterministic transition system with inputs and outputs,
where Σ is the input alphabet, Δ is the output alphabet, S is
the set of states, s0 the initial state, f : S × Σ −→ S is the
transition function (which takes a state and an input symbol
and returns the successor state) and g : S ×Σ −→ Δ is the
output function (which returns the output of the transition).

Note that we assume that a successor state is defined for
any pair of state and input symbol; this can be achieved by
introducing an ‘error state’ to which a transition is made if
the pair of state and symbol does not make sense, and which
has a self-loop on any symbol outputting an error symbol.

A transducer takes an infinite string of symbols from Σ
as an input, and outputs an infinite string of symbols from
Δ as an output. In a manufacturing setting, one can think
of the input and output sequences as manufacturing events.
For example, an input event may consist of a manufacturing
operation and a part to which the operation is to be applied.

Example 1 (Uni-transducer). To illustrate how transduc-
ers can be used to model manufacturing problems, consider
the following simple example. As in (Felli, Logan, and Sar-
dina 2016; de Silva et al. 2016), we assume that we are
given a process recipe specifying the manufacturing pro-
cess to be realized, and a set of manufacturing resources,
e.g., milling machines, painting machines, robots etc., that
comprise the manufacturing facilities of a particular fac-
tory. The recipe specifies that parts are first cleaned and
then painted. Square parts are painted green, round parts
are painted yellow. (More generally, the colour of a part
could be determined by, e.g., an RFID tag attached to the
part, but this keeps things simple.) We have three man-
ufacturing resources: a cleaning machine, and two paint-
ing machines, one that paints parts green and the other
paints them yellow. We model both the recipe and the man-
ufacturing resources as transducers, depicted in Figure 1.
The recipe is a transducer T = (Σ,Δ, S, s0, f, g) where
Σ = {cleansq, cleanrd, greensq, yellowrd}. Each ele-
ment of the input alphabet encodes an operation (clean,
paint green, paint yellow) and the part on which the oper-
ation is performed (square sq or round rd). The output al-
phabet Δ = {sqclean, rdclean, sqgreen, rdyellow, err}
encodes the result of performing an operation on a part;
for example, sqclean indicates a square part that has been
cleaned. err denotes an error condition, and is explained
below. S = {s0, s1, s2, se} where s0 is the initial state.
The transition and output functions are defined as follows:
f(s0, cleansq) = s1 and g(s0, cleansq) = sqclean (in
s0 on input of a square part, the system goes to state s1
and outputs a cleaned square part), f(s0, cleanrd) = s2
and g(s0, cleanrd) = rdclean, f(s1, greensq) = s0 and
g(s1, greensq) = sqgreen, f(s2, yellowrd) = s0 and
g(s2, yellowrd) = rdyellow. All other pairs of states and
inputs transit to the error state se which has a loop to itself

6162

s0 s1s2T
cleansq | sqcleancleanrd | rdclean

greensq | sqgreenyellowrd | rdyellow

s01T1

cleansq | sqclean

cleanrd | rdclean

s02T2

greensq | sqgreen

s03T3

yellowrd | rdyellow

Figure 1: Process recipe T and manufacturing resources T1,
T2 and T3. The error states sej are not depicted

on any symbol, outputting err. Similarly, the manufacturing
resources can be represented as transducers T1, T2 and T3

with the same Σ and Δ. For instance, the cleaning machine
can be modeled as T1 = (Σ,Δ, S1, s01, f1, g1), where S1 =
{s01, se1}, f1(s01, cleansq) = s01 and g1(s01, cleansq) =
sqclean, f1(s01, cleanrd) = s01 and g1(s01, cleanrd) =
rdclean. T2 and T3 are similar, and are shown in Figure 1.

2.1 Orchestration

We now consider the problem of synthesizing a controller
for a fixed set of resources to realize a process recipe in the
uni-transducer setting. The task of the controller is to de-
cide, at each cycle, to which resource the input should be
assigned.

We are given a set of available transducers {T1, . . . , Tm},
where each Tj = (Σ,Δ, Sj , s0j , fj , gj) (i.e., all Tj are over
the same input and output alphabet) which represent man-
ufacturing resources. We are also given a process recipe T ,
which is also a transducer with the same input and output
alphabets as the Tjs. The idea is to combine the resources to
be able to match the behavior of T . The behavior of T on in-
put w = a0a1 . . . is described by the following sequence of
states and outputs (where T s is the state and T o the output):
T s(a0) = f(s0, a

0)

T o(a0) = g(s0, a
0)

. . .
T s(a0 . . . ai) = f(T s(a0 . . . ai−1), ai)

T o(a0 . . . ai) = g(T s(a0 . . . ai−1), ai)

The observable output sequence of T on input w is τow,T =

T o(a0), . . . , T o(a0 . . . ai) . . .
Consider P = T1 × · · · × Tm (i.e., the transducer corre-

sponding to the whole production facility). A controller for
P is a function C : Σ+ −→ {1, . . . ,m} that, for each finite
input string, picks a transducer in P to make a transition.
The sequence of (global) states generated by the controller
on input w is

τsw,C = (s01, . . . , s
0
m), . . . , (si1, . . . , s

i
m) . . .

where only one of the local states changes in each transition:

si+1
h =

{
sih if C(a0 . . . ai) �= h
fh(s

i
h, a

i) if C(a0 . . . ai) = h

The output of C on P over the input w is τow,C =

b0, . . . , bi, . . ., where bi = gh(s
i
h, a

i). C realizes T if
τow,T = τow,C for all w.

Definition 2. Given a set of transducers T1, . . . , Tm and a
production recipe transducer T , the orchestration problem
is the question whether there is a controller C for P = T1×
· · · × Tm which realizes T .

Example 2 (Orchestration). Consider a sequence of in-
puts cleansq, greensq, cleanrd, yellowrd . . . The trans-
ducer T from Example 1 produces a sequence of outputs
sqclean, sqgreen, rdclean, rdyellow, . . . on this input. A
controller C for T1 × T2 × T3 imitates this behavior by the
following mapping:

cleansq �→ 1
cleansq, greensq �→ 2
cleansq, greensq, cleanrd �→ 1
cleansq, greensq, cleanrd, rdyellow �→ 3

2.2 Orchestrator Synthesis

The key idea behind our solution to the orchestration prob-
lem is that a controller C can be synthesized as a strategy
to solve safety games (Grädel, Thomas, and Wilke 2003;
De Giacomo et al. 2010; Ehlers et al. 2017).1 Safety games
are games between the agent and the environment; we for-
mulate them here as DFA games (De Giacomo and Vardi
2015), where the specification of the game is given by a De-
terministic Finite State Automaton (DFA). A safety game G
is defined by a tuple G = (X × Y, Q, q0, δ, F), where:

• X × Y is the alphabet of the game;
• Q are the states of the game;
• q0 is the initial state of the game;
• δ : Q×X×Y → Q is the transition function, i.e., a partial

function such that given the current state q and a choice
of symbols X and Y for the environment and the agent,
δ(q, (X,Y)) = q′ is the resulting state of the game.

• F = ∅ are the final states of the game, i.e., the game
should never terminate.

A round of the game consists of both the agent and the
environment setting the values of the variables they con-
trol. A (complete) play is a (possibly infinite) word in
(X × Y)∗ ∪ (X × Y)ω describing how the agent and en-
vironment set their variables at each round until the game
stops (possibly never). A play is winning for the agent if
such a play is infinite, that is the agent can continue play for-
ever. A strategy for the agent is a function f : (X)+ → Y
that, given a history of choices from the environment, de-
cides which variables Y to set to true/false next. A winning
strategy is a strategy f : (X)+ → Y such that for all play π
with Yi = f(πX |i) (i.e., Yi played according to f), we have
that π continues forever.

In our orchestration problem,X are the inputs of the target
transducer T , which are not under the control of the orches-
trator, and Y are the indexes of the transducer to which the
input is sent and which returns the corresponding output.

To actually compute the strategy, we start by defining the
controllable preimage PreC(E) of a set E of states of G as

1Also related to checking nonemptiness of looping tree au-
tomata (Vardi and Wolper 1986).

6163

the set of states s such that there exists a choice of values for
variables Y such that for all choices of values for variables
X , G progresses to states in E . Formally:

PreC(E) = {q ∈ Q | for all X ∈ Y
exists Y ∈ Y such that δ(q, (X,Y)) ∈ E}

We then define the set W in(G) of winning states of the
safety game G, i.e., the set of states from which the agent can
win G, as a greatest-fixpoint, by making use of approximates
W ini(G) denoting all states where the controller wins in at
most i steps:
• W in0(G) = S (all states of G);
• W ini+1(G) = Wini(G) ∩ PreC(W ini(G)).
Then, W in(G) =

⋂
i W ini(G). Notice that computing

W in(G) requires linear time in the number of states in G.
Indeed, after at most a linear number of steps W ini+1(G) =
W ini(G) = W in(G). A safety game G admits a winning
strategy iff q0 ∈W in(G).

Then, we define a strategy generator based on the win-
ning sets W ini(G). This is a nondeterministic transducer,
where nondeterminism is of the “don’t-care” variety: all
nondeterministic choices are equally good. The strategy
generator TG = (X × Y, Q, q0, �, γ) is as follows:
• X × Y is the alphabet of the transducer;
• Q are the states of the transducer;
• q0 is the initial state;
• � : Q×X → 2Q is the transition function such that

�(s,X) = {q′ | q′ = δ(q, (X,Y)) and Y ∈ γ(s,X)};

• γ : Q×X → Y is the output function such that

γ(q,X) = {Y | if q ∈W in(G)
then δ(q, (X,Y)) ∈W in(G)}.

The transducer TG generates strategies in the following
sense: for every way of restricting γ(q,X) to return only
one of its values (chosen arbitrarily), we get a strategy.

It is notable that there are efficient backward and for-
ward algorithms for solving safety games that are amenable
to symbolic implementation (Grädel, Thomas, and Wilke
2003; Cassez et al. 2005).

For our orchestration problem, we define the correspond-
ing safety game as follows. Given the target transducer T
and the available transducers {T1, . . . , Tm} we build the
safety game G = (Σ, {1, . . .m}, Q, q0, δ) where
• Σ is the input alphabet;
• Q = S×S1×· · ·×Sm∪{qerr} is the cartesian product of

the states of the target and the available transducers, plus
a special error state qerr; the state (s, s1, . . . , sm) stores
the state of each of the transducers, including the target;

• q0 = (s0, s01, . . . , s0m);
• δ : Q× Σ× {1, . . . ,m} → Q is defined as follows:

– δ((s, s1, . . . , sm), a, h) = (s′, s′1, . . . , s
′
m) with s′ =

f(s, a), s′h = fh(sh, a) and s′j = sj for j �= h, if
g(s, a) = gh(sh, a);

– δ((s, s1, . . . , sm), a, h) = qerr, for all a ∈ Σ, if
g(s, a) �= gh(sh, a).

Notice that the only state that does not have transitions is
qerr, which has no transitions at all. All other states do have
transitions for all a ∈ Σ. It is easy to see that every strategy
for the safety game G corresponds to a controller C for P
realizing T and vice versa. Hence we have:
Theorem 1. Checking whether there exists a controller C
for P that realizes T can be done by solving the safety game
G defined above.

By the discussion above, Theorem 1 gives us an imple-
mentable algorithm for synthesizing the controller.

Considering that the number of states of G is polynomial
in the states of T and exponential in the number m, and that
computing a winning strategy for G is linear, we get:
Theorem 2. Checking whether C realizes T can be done in
EXPTIME, and in particular is polynomial in T and expo-
nential in the number m of available transducers.

2.3 Lower Bound

We reduce service composition in the Roman model (Be-
rardi et al. 2003) which is known to be EXPTIME-
complete to the case of bounded orchestration (Muscholl
and Walukiewicz 2008; De Giacomo, Patrizi, and Sardiña
2013). Let us consider services of the form Bj =
(Σ, Sj , s0j , δj), where Σ is the set of actions shared by all
services, Sj is the finite set of states, s0j ∈ Sj is the initial
state and δj : Sj × Σ �→ Σ is the transition function. δj
may be partial, i.e., in certain states certain actions are not
allowed. For simplicity, as in (Muscholl and Walukiewicz
2008) where the EXPTIME-hardness is proven, we do not
consider final states as in (Berardi et al. 2003; De Giacomo,
Patrizi, and Sardiña 2013).

We extend δj to an execution function δ̂j , which is a total
function on states and words defined as follows:

δ̂j : Sj × Σ∗ → Sj ∪ {⊥}

where δ̂j(s, ε) = s and

δ̂j(s, w · a) =
{

δj(δ̂j(s, w), a)
if δ̂j(s, w) = s′ �= ⊥
and δj(s

′, a) is defined
⊥ otherwise

Note that given a word w such that δ̂j(s, w) = ⊥ then
δ̂j(s, w · a) = ⊥, for all a.

Now consider a set B1, . . . Bm of available services, and
a target service B0. An orchestrator O for B0 on B1, . . . Bm

is a partial function of the form O : Σ+ �→ {1, . . . ,m} such
that O(w) is defined iff δ̂0(s00, w) �= ⊥. We also define the
execution function δ̂O of B1, . . . Bm orchestrated by O as:

δ̂O : S1 × · · · × Sm × Σ∗ → (S1 × · · · × Sm) ∪ {⊥}

where δ̂O(s1, . . . , sm, ε) = s1, . . . , sm and

δ̂O(s1, . . . , sm, w · a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s′1, . . . , s
′
h . . . , s′m

if δ̂O(s1, . . . , sm, w) =
s′1, . . . , s

′′
h . . . , s′m �= ⊥

and O(w · a) = h
and δh(s

′′
h, a) = s′h

⊥ otherwise

6164

Using these notions we have that O realizes B0 over
B1, . . . , Bm iff, for all words w ∈ Σ∗:

δ̂0(s00, w) �= ⊥ implies δ̂O(s01, . . . , s0m, w) �= ⊥.
That is, every sequence of actions executable by the tar-
get B0 can also be executed by the available services
B1, . . . , Bm suitably orchestrated by O. This problem is
known to be EXPTIME-complete.

We now reduce this problem to orchestration of transduc-
ers. For every service Bj we consider a transducer Tj =
(Σ,Δ, Sj , s0j , fj , gj) where Δ = {
,⊥} and

• fj(s, a) =

{
δj(s, a) if δj(s, a) defined
s otherwise

• gj(s, a) =

{

 if δj(s, a) defined
⊥ otherwise

To the transducers T0, T1, . . . , Tm, we add an additional
dummy transducer: T⊥ = (Σ,Δ, {s⊥}, s⊥, f⊥, g⊥) where
f⊥(s⊥, a) = s⊥ and g⊥(s⊥, a) = ⊥, for all a ∈ Σ.

Let P = T0×T1×· · ·×Tm×T⊥. We define the controller
C : Σ+ → {1, . . . ,m,⊥} for P as follows:

C(w) =

{
O(w) if O(w) defined
⊥ otherwise

The theorem below states the correctness of the reduction.
Theorem 3. O realizes B0 over B1, . . . , Bm iff C realizes
T0.
Proof. Recall that C realizes T0 iff τow,T0

= τow,C for all
w ∈ Σ∗. Let us denote by out(w, T) the last element of
τow,T , then equivalently we may say that C realizes T0 iff
out(w, T0) = out(w,C) for all w ∈ Σ∗.

Only-if: Toward contradiction, suppose there exists
a word w such that if δ̂0(s00, w) �= ⊥ then also
δ̂O(s01, . . . , s0m, w) �= ⊥, but out(w, T0) �= out(w,C).
Observe that if out(w, T0) = ⊥ then δ̂0(s00, w) = ⊥ hence
C(w) = ⊥ and so out(w,C) = ⊥. So it must be the
case that out(w, T0) =
 and out(w,C) = ⊥. But by
construction out(w, T0) =
 implies δ̂0(s00, w) �= ⊥ and
out(w,C) = ⊥ implies that δ̂O(s01, . . . , s0m, w) = ⊥.

If: Toward contradiction, let word w · a be the smallest
word such that out(w ·a, T0) = out(w ·a, C), but δ̂0(s00, w ·
a) �= ⊥ and δ̂O(s01, . . . , s0m, w · a) = ⊥. Observe that if
out(w ·a, T0) = ⊥ then δ̂0(s00, w ·a) = ⊥, hence it must be
the case that out(w · a, T0) = out(w · a, C) =
. As w · a
is the smallest word that makes δ̂C(s01, . . . , s0m, w · a) =

⊥, it follows that δ̂0(s00, w) = (s1, . . . , sm) �= ⊥. Hence
either 1. O(w · a) is undefined, or 2. O(w · a) = h and
δh(sh, a) is undefined. In case 1. C(w · a) = ⊥ and hence
out(w · a, C) = ⊥. In case 2. C(w · a) = h, and, because
δh(sh, a) is undefined, out(w · a, C) = ⊥. In both cases we
get a contradiction. �

As composition in the Roman model is EXPTIME-hard
(Muscholl and Walukiewicz 2008), from Theorem 3 we im-
mediately get the following.
Theorem 4. Checking whether a controller C for P realizes
T0 is EXPTIME-hard.

3 Multi-Transducer Setting

In this section, we introduce a formalism that can repre-
sent the ability of manufacturing resources to take things
apart (e.g., cut raw material into parts), and to assem-
ble parts together into a single thing. In order to do this,
we need to model resources that can take multiple inputs
and produce multiple outputs. We model both the manu-
facturing resources and the recipe as multi-port transduc-
ers, or multi-transducers for short. A multi-transducer T =
(Σ, S, s0, f, g, k, l) is a deterministic transition system with
inputs and outputs, where k is the number of T ’s input ports
and l is the number of T ’s output ports. Σ is the alphabet (of
both inputs and outputs), S is the set of states, s0 the initial
state, f : S × Σk −→ S is the transition relation (takes a
state and k input symbols and returns the successor state),
and g : S × Σk −→ Σl is the output function.

Ports can be physical or virtual, that is, accept/output
physical objects such as parts, or signals such as messages
specifying that a particular operation should be performed.
We assume that a physical output port can be bound only
to one (physical) input port, while a virtual output port can
be bound to multiple (virtual) input ports. An input port,
however, should not be bound to more than one output port.
More generally, we can support arbitrary forms of binding
constraints disallowing undesirable binding combinations
(these can be specified propositionally, see Section 3.1).

Example 3 (Multi-transducer).

We modify Example 1 in two ways. First, we assume that
a square and a round part are processed in parallel, and then
glued together to form a simple toy. We also change the in-
put and output alphabet to consist of symbols corresponding
to physical parts and symbols corresponding to operations.
The recipe is as follows: take a square and a round part, clean
them both, paint the square part green and round part yellow,
and glue them together. On completion of the recipe, a final
transition simply requests the resulting product. Formally,
the target transducer is T = (Σ, S, s0, f, g, 4, 3) where Σ =
{sq, rd, sqrd, clean, green, yel, glue, glued, err, sqclean,
rdclean, sqgreen, rdyellow} and S = {s0, s1, s2, s3, se}.
A quadruple of inputs intuitively corresponds to at most two
physical inputs (parts sq and rd) and two commands (clean
for clean, green for paint green, yel for paint yellow, and
glue for glue). When fewer than four inputs are required, the
remaining places are unfilled (or contain the empty symbol
ε). Two virtual output ports output symbols describing the
evolution of the process: sqclean and rdclean indicate that
the parts have been cleaned; sqgreen and rdyellow that
they have been painted, and finally glued that they have
been glued together. A third physical output port outputs the
symbol sqrd for the final product at the end of the recipe.
The transducer T encoding the recipe is shown in Figure 2.
f(s0, (sq, rd, clean, clean)) = s1, g(s1, (sq, rd, clean,
clean)) = (sqclean, rdclean, ε); f(s1, (ε, ε, green, yel))
= s2, g(s2, (ε, ε, green, yel)) = (sqgreen, rdyellow, ε);
f(s2, (ε, ε, glue, ε)) = s3, g(s3, (ε, ε, glue, ε)) = (glued, ε,
ε), and finally f(s3, (ε, ε, ε, ε)) = s0, g(s3, (ε, ε, ε, ε)) = (ε,
ε, sqrd). Any other input results in a transition to se with
output (err, err, err).

6165

3.1 Orchestration

We are given a set of multi-transducers T1, . . . , Tm, where
each Tj = (Σ, Sj , s0j , fj , gj , kj , lj) (i.e., all Tj are over the
same alphabet) representing manufacturing resources. We
are also given a recipe T that is a multi-transducer with the
same alphabet as the Tjs.

The behavior of T on input w = a0a1 . . ., where ai ∈
Σk, is described by the following sequence of states and out-
puts:
T s(a0) = f(s0,a

0)

T o(a0) = g(s0,a
0)

. . .
T s(a0 . . .ai) = f(T s(a0 . . . ai−1),ai)

T o(a0 . . .ai) = g(T s(a0 . . .ai−1),ai)

The observable output sequence of T on input w is
τo(w, T) = T o(a0), . . . , T o(a0 . . .ai) . . .

We denote by inx,y the input port y of multi-transducer
Tx, and by outx,y the output port y of Tx. For convenience
we extend this notation by using index x = 0 to denote the
inputs and outputs of the environment. Note that these have
a reversed role: the output of the environment is the input
of the target/set of transducers, and the input to the environ-
ment is the output of the target/set of transducers. We denote
by val(inx,y)/val(outx,y) the value at the input/output port
y of transducer Tx. We also denote by val(inx)/val(outx)
the vector of values at the input/output ports of Tx.

A port binding, or simply binding, is a pair of the form
(outx′,y′ , inx,y) which represents a connection between
the output port y′ of multi-transducer x′ and input port y
of multi-transducer x. A set c of port bindings, henceforth
called binding set, must be consistent with a set of binding
constraints B, specified as boolean combinations of atoms
of the form (outx′,y′ , inx,y); a binding set c is said to be
legal iff c |= B. We use the set B to impose three kinds of
requirements:

i for all x, y (with x ∈ {0, 1, . . . ,m} and y ∈
{1, . . . , kx}) there exists at most one x′, y′ such that
(outx′,y′ , inx,y) ∈ c (if, for some z ∈ {1, . . . , kx},
inx,z does not appear in c, its value is assumed to be
empty, i.e., val(inx,z) = ε);

ii all physical output ports outx′,y′ occur in at most one
binding (outx′,y′ , inx,y) ∈ c; and

iii arbitrary requirements specifying, e.g., the possible
physical connections between machines on the shop
floor, or the set of virtual connections determined by the
possible communication routes between resources.

We denote the set of all possible port binding sets by Cntl.
Consider P = T1 × · · · × Tm (i.e., the transducer corre-

sponding to the whole production facility). A controller C
for P is a strategy C : (Σk)+ −→ Cntl. The sequence
of (global) states and outputs generated by the controller on
w = a0 . . .ai . . . is, respectively,

τw,C = (s01, . . . , s
0
m), . . . , (si1, . . . , s

i
m) . . .

τow,C = b0, . . . ,bi, . . .

where

• C(a0 . . .ai) = ci and ci is legal;

• val i(inx,y) = val i(outx′,y′) for (outx′,y′ , inx,y) ∈ ci

(recall that val i(inx,y) = ε whenever inx,y does not ap-
pear in ci);

• si+1
x = fx(s

i
x, val

i(inx)) for x ∈ {1, . . . ,m};
• val i(outx) = gx(s

i
x, val i(inx)) for x = {1, . . . ,m};

• val i(out0) = ai (note the inversion of out/in for 0);

• val i(outx,y) = bi
y′ if (outx,y, in0,y′) ∈ ci.

C realizes T if τo(w, T) = τo(w,C) for all w. The or-
chestration problem for multi-transducers is the same as for
uni-transducers: is there a C for P such that C realizes T .

Note that the orchestration for the multi-transducer case
works differently from the uni-transducer case. In the uni-
transducer case, the controller selects only one transducer
to make a move. In the multi-transducer case, the controller
binds ports, and all transducers T1, . . . , Tm get input (possi-
bly empty) and move at every step.

s0 s1

s2s3

int,1

int,2

int,3

int,4

outt,1
outt,2
outt,3

sq, rd, clean, clean | sqclean, rdclean, ε

ε, ε, green, yel |
sqgreen, rdyellow, εε, ε, glue, ε | glued, ε, ε

ε, ε, ε, ε | ε, ε, sqrd

T

s01

s11

s21

T1

in1,1

in1,2

out1,1
out1,2

sq, clean | ε, sqclean

rd, clean | ε, rdclean

ε, getpart | sq, ε

ε, getpart | rd, ε

∗

∗

∗

s02 s12

T2

in2,1

in2,2

out2,1
out2,2

sq, green | ε, sqgreen

ε, getpart | sq, ε

∗ ∗

s03 s13

T3in3,1

in3,2

out3,1
out3,2

rd, yel | ε, rdyellow

ε, getpart | rd, ε
∗

∗

s04 s14

T4

in4,1

in4,2

in4,3

out4,1
out4,2

sq, rd, glue | ε, glued

ε, ε, getpart | sqrd, ε

∗ ∗

s06

T6

in6,1

out6,1

ε | getpart

Figure 2: Target transducer T and resource transducers T1,
. . . , T6 (T5 is identical to T1 and it is not shown). Physical
ports are shown greyed, and error states sej , for each j, are
not shown. (∗) on self-loops stands for ε, · · · , ε | ε, ε.

Example 4 (Orchestration).
We show how to realize the recipe from Example 3 us-

ing the manufacturing resources in Figure 2. Transducers
T1 and T5 are two identical cleaning machines, T2 paints
square parts green, T3 paints round parts yellow, T4 glues
square parts and round parts together, and T6 models the
part-handling (transport) system. All transducers have the
same alphabet Σ as in Example 3. Each transducer Tj has
initial state s0j and an error state sej .

In T1 the physical port in1,1 is used to receive symbols de-
noting the part to clean, while the virtual port in1,2 is used
to receive a symbol indicating the operation to execute (in
this case, either clean to clean the part, or getpart to output
the part on out1,1). The virtual port out1,2 outputs the sym-
bol sqclean after cleaning a part. The functions f and g are
as in Figure 2. In particular, note that f1(s01, (ε, ε)) = s01
and g1(s01, (ε, ε)) = (ε, ε), and the same for s11 and s12,
i.e., when there is no input binding, T1 remains idle, loop-
ing on the current state. Any other combination of states and

6166

inputs other than those above results in a transition to se1
and a loop outputting (err, err). T2 to T5 are analogous to
to T1. T6 models a part-handling system that controls when
parts can be transferred through physical ports. In this exam-
ple, part transfer is always enabled: the transducer outputs
a symbol getpart at each step, which (by appropriate port
binding) the controller can use to cause, e.g., T1 to trans-
fer a cleaned square part to T2. In more complex examples,
restrictions on the possible bindings can be imposed by the
binding constraints B, such as ¬(out5,1, in3,1).

Let us consider the orchestration for the input sequence
(sq, rd, clean, clean), (ε, ε, green, yel), (ε, ε, glue, ε), (ε,
ε, ε, ε). On input w = (sq, rd, clean, clean), the controller
can select the bindings: (out0,1, in1,1) and (out0,2, in1,2) to
send the part sq and the command clean to the input ports of
T1; (out0,3, in5,1) and (out0,4, in5,2) to send rd and clean
to T5; (out1,2, in0,1) and (out5,2, in0,2) to send the symbols
sqclean and rdclean, emitted by T1 and T5, to the environ-
ment’s virtual input ports. T6 is not required for this step
as sq and rd are loaded into the production cell from out-
side. As a result, τow,T = τow,C . At the second step on input
w = (sq, rd, clean, clean), (ε, ε, green, yel), C can select
the bindings: (out0,3, in2,2) and (out0,4, in3,2) to send the
commands green and yel to the virtual input ports of T2

and T3; (out6,1, in1,2) and (out6,1, in5,2) to output parts
from T1 and T5; and (out1,1, in2,1) and (out5,1, in3,1) to
physically transfer the parts to the physical input ports of
T2 and T3. The bindings (out2,2, in0,1) and (out3,2, in0,2)
send sqgreen and rdyellow to the environment to match
τow,T . For w = (sq, rd, clean, clean), (ε, ε, green, yel),
(ε, ε, glue, ε), C can select the bindings: (out0,3, in4,3)
and (out6,1, in2,2); (out6,1, in3,2) and (out2,1, in4,1); and
(out3,1, in4,2) and (out4,2, in0,1). This corresponds to send-
ing the glue command to the third input port of T4, trans-
fering the two parts from T1 and T5 to the physical input
ports of T4, and sending the symbol glued to the environ-
ment. For the final transition, the bindings (out6,1, in4,3)
and (out4,1, in0,3) are sufficient.

3.2 Orchestrator Synthesis

Surprisingly, synthesizing a controller for multi-transducers
that solves the orchestration problem is essentially no more
difficult than in the case of uni-transducers, in spite of the
fact that we need to control multiple inputs and outputs in the
available transducers and the port bindings, which change
dynamically over time.

Again we adopt automata-theoretic techniques and resort
to solving a safety game. Given the target transducer T and
the available transducers {T1, . . . , Tm}, we build the safety
game Gmulti = (Σk, Cntl, Q, q0, δ) where

• Σk is the input alphabet of the target T ;

• Cntl is the set of possible control actions (i.e., possible
port binding sets);

• Q = S×S1×· · ·×Sm∪{qerr} is the cartesian product of
the states of the target and the available transducers, plus
a special error state qerr; the state (s, s1, . . . , sm) stores
the state of each of the transducers including the target;

• q0 = (s0, s01, . . . , s0m);

• δ is defined as follows: δ((s, s1, . . . , sm),a, c) =
(s′, s′1, . . . , s

′
m,) if the following conditions hold

– s′ = f(s,a)

– c is legal;
– val(inx,y) = val(outx′,y′) for (outx′,y′ , inx,y) ∈ c;
– s′x = fx(sx, val(inx)) for x ∈ {1, . . . ,m};
– val(outx) = gx(sx, val(inx)), for x = {1, . . . ,m};
– val(out0) = a (again note the inversion of out/in for
0);

– val(outx,y) = g(s, val(out0))y′ if (outx,y, in0,y′) ∈
c, that is, the value by′ of the output port y′ of the tar-
get is the same of the value of the output port y of the
available transducer x, when c binds y to y′.

δ((s, s1, . . . , sm),a, c) = qerr, otherwise.

Again, the only state that does not have transitions is qerr,
which has no transitions at all. All other states have transi-
tions for all a ∈ Σk. It is easy to see that every strategy that
solves the safety game Gmulti corresponds to a controller C
such that C realizes T and vice versa. Hence we have:

Theorem 5. Checking whether there exists a C such that C
realizes T can be done by solving the safety game Gmulti

defined above.

As in the case of uni-transducers, Theorem 5 gives us an
implementable algorithm for synthesizing the controller.

Next we turn to complexity. The EXPTIME-hardness of
the simpler case of uni-transducers also applies in the more
general case of multi-transducers. For membership, we ob-
serve that the number of states of Gmulti is polynomial in
the states of T , exponential in the number of available tar-
gets m and exponential in the number of the input ports of
T . Hence, considering that solving a safety game is linear in
the number of its states, we get:

Theorem 6. Checking whether C realizes T is EXPTIME-
complete, and in particular polynomial in the states of T ,
exponential in the number of available transducers m and
exponential in the number of input ports of T and m.

4 Discussion and Future Work

We have shown that the problem of whether a given man-
ufacturing facility can realize a process recipe is decid-
able and EXPTIME-complete when recipes and manufac-
turing resources are represented as transducers. We pro-
vide an algorithm for synthesizing a controller that real-
izes a recipe. Our approach avoids the technical difficul-
ties of LTL reactive synthesis (Pnueli and Rosner 1989;
Lustig and Vardi 2009), such as determinization, and allows
for effective implementation.

Our aim in this work is to automate manual process plan-
ning; as such we have not addressed the quantitative aspects
of production. However, as our approach computes all cor-
rect orchestrations at once, the controller we synthesize can
serve as a basis for quantitative reasoning (as is currently
done in manual process planning, where optimization of the
plan is separate step). We consider deterministic models, as

6167

is common in traditional process planning—manufacturing
engineers typically assume that manufacturing resources re-
liably implement manufacturing operations. Nevertheless,
our approach can be extended to cover stochastic settings
along the lines of (Yadav and Sardiña 2011; Brafman et al.
2017). Another extension would be to introduce temporal
constraints on port bindings, and perhaps a preference order
on binding constraints (e.g., hard and soft constraints). We
can also consider incremental repair of the controller when
the set of available resources or the set of constraints change,
along the lines of (De Giacomo, Patrizi, and Sardiña 2013).

So far, we addressed the bounded orchestration prob-
lem: i.e., the number of available manufacturing resources is
fixed. A more ambitious extension is considering unbounded
orchestration: is there some number of manufacturing re-
sources of a certain type that can realize a given recipe. We
conjecture that for uni-transducers, this problem would still
be decidable, while for multi-transducers, it is undecidable.

Acknowledgments. Work was partially supported by the
Sapienza project “Immersive Cognitive Environments”,
NSF grants CCF-1319459 and IIS-1527668, and by NSF
Expeditions in Computing project ”ExCAPE: Expeditions
in Computer Augmented Program Engineering”.

References

Barati, M., and St.-Denis, R. 2015. Behavior composition meets
supervisory control. In 2015 IEEE International Conference on
Systems, Man, and Cybernetics, 115–120.

Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and
Mecella, M. 2003. Automatic composition of e-services that export
their behavior. In 1st International Conference on Service-Oriented
Computing, 43–58.

Bi, Z. M.; Lang, S. Y.; Shen, W.; and Wang, L. 2008. Reconfig-
urable manufacturing systems: the state of the art. International
Journal of Production Research 46(4):967–992.

Brafman, R. I.; De Giacomo, G.; Mecella, M.; and Sardiña, S.
2017. Service composition under probabilistic requirements. In
Proceedings of ICAPS 2017 Workshop on Generalized Planning.

Browne, J.; Dubois, D.; Rathmill, K.; Sethi, S. P.; and Stecke, K. E.
1984. Classification of flexible manufacturing systems. The FMS
magazine 2(2):114–117.

Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime, D. 2005.
Efficient on-the-fly algorithms for the analysis of timed games. In
16th International Conference on Concurrency Theory, 66–80.

De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL and
LDL on finite traces. In 24th International Joint Conference on
Artificial Intelligence, 1558–1564.

De Giacomo, G.; Felli, P.; Patrizi, F.; and Sardiña, S. 2010. Two-
player game structures for generalized planning and agent compo-
sition. In 24th AAAI Conference on Artificial Intelligence, 297–
302.

De Giacomo, G.; Patrizi, F.; and Sardiña, S. 2013. Automatic
behavior composition synthesis. Artificial Intelligence 196:106–
142.

de Silva, L.; Felli, P.; Chaplin, J. C.; Logan, B.; Sanderson, D.; and
Ratchev, S. 2016. Realisability of production recipes. In 22nd
European Conference on Artificial Intelligence, 1449–1457.

Ehlers, R.; Lafortune, S.; Tripakis, S.; and Vardi, M. Y. 2017. Su-
pervisory control and reactive synthesis: a comparative introduc-
tion. Discrete Event Dynamic Systems 27(2):209–260.
ElMaraghy, H. A. 2005. Flexible and reconfigurable manufacturing
systems paradigms. International Journal of Flexible Manufactur-
ing Systems 17(4):261–276.
Felli, P.; de Silva, L.; Logan, B.; and Ratchev, S. 2017. Pro-
cess plan controllers for non-deterministic manufacturing systems.
In 26th International Joint Conference on Artificial Intelligence,
1023–1030.
Felli, P.; Logan, B.; and Sardina, S. 2016. Parallel behavior com-
position for manufacturing. In 25th International Joint Conference
on Artificial Intelligence, 271–278.
Felli, P.; Yadav, N.; and Sardiña, S. 2017. Supervisory control for
behavior composition. IEEE Transactions on Automatic Control
62(2):986–991.
Grädel, E.; Thomas, W.; and Wilke, T. 2003. Automata, Logics,
and Infinite Games: A Guide to Current Research, Volume 2500 of
Lecture Notes in Computer Science. Springer
Groover, M. P. 2007. Automation, production systems, and
computer-integrated manufacturing. Prentice Hall
Hopcroft, J., and Ullman, J. 1979. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley
Kagermann, H.; Helbig, J.; Hellinger, A.; and Wahlster, W.
2013. Recommendations for Implementing the Strategic Initia-
tive INDUSTRIE 4.0: Securing the Future of German Manufac-
turing Industry; Final Report of the Industrie 4.0 Working Group.
Forschungsunion.
Koren, Y.; Heisel, U.; Jovane, F.; Moriwaki, T.; Pritschow, G.; Ul-
soy, G.; and Van Brussel, H. 1999. Reconfigurable manufacturing
systems. CIRP Annals-Manufacturing Technology 48(2):527–540.
Lu, Y.; Xu, X.; and Xu, J. 2014. Development of a hybrid manu-
facturing cloud. Journal of Manufacturing Systems 33(4):551–566.
Lustig, Y., and Vardi, M. Y. 2009. Synthesis from component
libraries. In de Alfaro, L., ed., Proceedings of FOSSACS, 395–409.
Mehrabi, M. G.; Ulsoy, A. G.; and Koren, Y. 2000. Reconfigurable
manufacturing systems: key to future manufacturing. Journal of
Intelligent Manufacturing 11(4):403–419.
Muscholl, A., and Walukiewicz, I. 2008. A lower bound on web
services composition. Logical Methods in Computer Science 4(2).
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. In POPL.
Rhodes, C. 2015. Manufacturing: Statistics and Policy. Briefing
Paper. House of Commons Library.
Sethi, A. K., and Sethi, S. P. 1990. Flexibility in manufacturing:
a survey. International Journal of Flexible Manufacturing Systems
2(4):289–328.
Smale, D., and Ratchev, S. 2009. A capability model and taxon-
omy for multiple assembly system reconfigurations. In 13th IFAC
Symposium on Information Control Problems in Manufacturing,
volume 13, 1923–1928.
2012. A landscape for the future of high value manufacturing in
the UK. Technical report, Technology Strategy Board.
Vardi, M., and Wolper, P. 1986. Automata-theoretic techniques
for modal logics of programs. Journal of Computer and Systems
Sciences 32(2):182–221.
Yadav, N., and Sardiña, S. 2011. Decision theoretic behavior com-
position. In 10th International Conference on Autonomous Agents
and Multiagent Systems, 575–582.

6168

