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Abstract

Decentralized (PO)MDPs provide a rigorous framework for
sequential multiagent decision making under uncertainty.
However, their high computational complexity limits the
practical impact. To address scalability and real-world im-
pact, we focus on settings where a large number of agents
primarily interact through complex joint-rewards that depend
on their entire histories of states and actions. Such history-
based rewards encapsulate the notion of events or tasks such
that the team reward is given only when the joint-task is
completed. Algorithmically, we contribute — 1) A nonlinear
programming (NLP) formulation for such event-based plan-
ning model; 2) A probabilistic inference based approach that
scales much better than NLP solvers for a large number of
agents; 3) A policy gradient based multiagent reinforcement
learning approach that scales well even for exponential state-
spaces. Our inference and RL-based advances enable us to
solve a large real-world multiagent coverage problem mod-
eling schedule coordination of agents in a real urban subway
network where other approaches fail to scale.

1 Introduction

Decentralized MDPs and POMDPs (Dec-(PO)MDPs) pro-
vide a rigorous framework for collaborative multiagent se-
quential decision making under uncertainty and partial ob-
servability (Bernstein et al. 2002). They model settings
where agents act based on different partial observations
about the environment and about each other to maximize a
global objective. Applications of Dec-POMDPs include co-
ordinating planetary rovers (Becker et al. 2004), multi-robot
coordination (Amato et al. 2015) and throughput optimiza-
tion in a wireless network (Pajarinen, Hottinen, and Peltonen
2014). Solving Dec-POMDPs is computationally challeng-
ing with NEXP-Hard complexity (Bernstein et al. 2002).

For scalability and practical application, several variants
of Dec-POMDPs have been developed including state transi-
tion and observation independence (Becker et al. 2004; Nair
et al. 2005; Kumar, Zilberstein, and Toussaint 2011; Diban-
goye et al. 2013), weak coupling among agents (Witwicki
and Durfee 2010) and collective interactions (Sonu, Chen,
and Doshi 2015; Robbel, Oliehoek, and Kochenderfer 2016;
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Nguyen, Kumar, and Lau 2017a; 2017b). Our focus is on
agent interactions with complex event-based rewards which
depend on entire state-action histories of multiple agents.
We use the transition independent Dec-MDP model (TIDec-
MDP) (Becker et al. 2004) where agents have their indepen-
dent local MDPs. Agents are coupled through event-based
global rewards dependent on their execution histories. In-
tuitively, events capture if agents accomplished some high-
level task. Becker et al. show such event-driven rewards are
highly expressive being able to model temporal relations
among agents (e.g., agent A’s activity facilitates or hinders
agent B’s activity rewards). Joint-rewards are given when at
least x or at most x or exactly x out of k events occur. Such
expressiveness is useful to model several practical prob-
lems such as multiagent coverage (Yehoshua and Agmon
2016). Several approaches have been developed to solve
TIDec-MDPs and related models. (Dibangoye et al. 2013)
use occupancy measures over the joint state-space of agents
to compute agent policies. Their focus is on standard re-
ward setting, and do not address event-based rewards. Bilin-
ear programming based approach of (Petrik and Zilberstein
2011) is limited to two agents. (Scharpff et al. 2016) solve
transition independent multiagent MDPs where an agent’s
policy can depend on the global state while the global state
is unobservable in TIDec-MDPs. Thus, our work addresses
this gap by developing scalable approaches for large multia-
gent settings (�2 agents) and event-based rewards.

Our contributions are: 1) we present a nonlinear program-
ming (NLP) formulation for TIDec-MDPs with event-based
rewards. The NLP formulation is more scalable than the ap-
proach for 2-agent TIDec-MDPs in (Becker et al. 2004).
Becker et al.’s approach models some types of joint-rewards,
e.g., at least or at most x events, by adding additional bits to
states leading to exponential state-space increase. Our NLP
formulation does not require any modifications to the state-
space and is highly compact; 2) we present an inference-
based approach that translates the NLP to that of infer-
ence in a graphical model by extending the planning-as-
inference strategy (Toussaint, Harmeling, and Storkey 2006;
Kumar, Zilberstein, and Toussaint 2015). A key difference
is that we directly solve the underlying nonconvex, nonlin-
ear program without requiring expensive forward-backward
message-passing. Unlike the NLP, our inference approach
always involves solving one small convex program per agent
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(regardless of the total number of agents/events) thus highly
scalable, and has good anytime performance; 3) we develop
a policy gradient based multiagent RL approach that exploits
advances in deep RL to represent and optimize agent poli-
cies as deep neural networks (NN) using stochastic gradient
ascent. We show how to backpropagate gradients through
event-based rewards, which are not present in standard RL
settings. The RL approach is particularly suitable for large
problems with (possibly) exponential state-spaces.

We experiment on: (a) Mars-rover problem from (Becker
et al. 2004), and (b) Multiagent coverage under uncertainty
and partial observability. Coverage problems have received
a lot of attention in multiagent and robotics literature with
several applications such as vacuum cleaning robots, search-
and-rescue, intrusion detection, mine clearing among oth-
ers (Yehoshua and Agmon 2016; Galceran and Carreras
2013). We focus on multiagent coverage by patrol units
across a mass rapid transit (MRT) system. In contrast to
previous multiagent coverage settings (Yehoshua and Ag-
mon 2016) which require full communication during execu-
tion time, our approach assumes partial observability where
agents observe only their local state and cannot observe the
status of other agents. This is also closer to reality in un-
derground MRT systems where full communication is in-
feasible. Each agent is responsible for some private loca-
tions. Inspecting a private location at least once every k
time steps give a local reward to the agent. Thus, the agent
is incentivized to spread its inspections to different loca-
tions across time. There are shared locations also which de-
note interchange stations where multiple agents can inspect.
Thus, agents should coordinate their inspections to shared
locations given that any one agent-inspection is enough to
claim the reward. We test our multiagent RL approach on
the real MRT map of Singapore. The state-space is exponen-
tial for this setting — given n locations, state space is O(2n)
per agent. We show that our multiagent RL scales well for
this problem whereas EM and NLP fails, and also provides
much better solution quality than independently optimizing
agent policies, confirming the effectiveness of incorporating
joint-events for computing gradients. Thus, our work signif-
icantly advances the scalability of multiagent planning for
real-world problems.

2 Model Definition

We define an n-agent transition independent Dec-MDP us-
ing the tuple 〈S,A, P,R〉 (Becker et al. 2004):

• Factored state space defined as S =×n
i=1S

i, where Si is
the state space for agent i.

• Factored action space A=×n
i=1A

i, where Ai is the action
space for agent i.

• Given the joint state s = 〈si〉ni=1 and joint-action a =
〈ai〉ni=1, the transition to next state s has probability
P (s|s, a)=×n

i=1P
i(si|si, ai), where P i is agent i’s local

state transition function. This factorization of the transi-
tion function results in the transition independence prop-
erty of the model.

• Local observability: Each agent fully observes its own lo-
cal state sit at each time step t. Agent i does not observe
the local state of any other agent during execution time.

• Local rewards: Each agent has its own local reward func-
tion ri(si, ai), and the global reward is additively defined
as r(s, a)=

∑n
i=1 r

i(si, ai).
The above model defines a set of n-independent MDPs as
agents’ transition, observation, and the reward functions are
all independent. We next describe how joint-rewards are de-
fined that depend on actions of multiple agents. Such event-
based joint-rewards are the key to defining a rich class of
non-linear interaction among agents that can model several
practical scenarios. Solving Dec-MDPs with such rich joint-
reward structure is the main focus of our work.
Events: Joint-rewards are defined based on the high-level
notion of events. We first review their definitions with de-
tailed treatment in (Becker et al. 2004).
Definition 1. A primitive event for an agent i, e =
(ŝi, ai, ŝi′), is a tuple including agent’s local state, an ac-
tion, and an outcome state. An event E = {e1, . . . , eh} is a
set of primitive events.

Let Φi denote a valid local state-action execution se-
quence [si1, a

i
1, s

i
2, a

i
2, . . .] for an agent i (subscripts denote

time).
Definition 2. A primitive event e=(ŝi, ai, ŝi′) occurs in his-
tory Φi, denoted as Φi |= e iff the tuple (ŝi, ai, ŝi′) appears
as a sub-sequence of Φi. An event E occurs in the history
Φi (or Φi |= E) iff ∃e ∈ E : Φi |= e

Intuitively, events model the accomplishment of some
high-level task by the agent. An event E is composed of
multiple primitive events to account for the uncertainty in
the domain and multiple ways of accomplishing the same
task. E.g., consider the multiagent MRT patrolling domain.
We define the high-level task for the agent is to visit a par-
ticular station once between time steps t and t + k. Primi-
tive events would correspond to visiting the station at time t,
(t+1) through (t+k). As long as any one of these primitive
events occurs in a history, it implies the accomplishment of
the task.
Definition 3. A primitive event e is proper if it can occur at
most once in each possible history of a given MDP:

∀Φi=Φi
1eΦ

i
2 : ¬(Φi

1 |= e) ∧ ¬(Φi
2 |= e)

Definition 4. An event E is proper if it consists of
mutually exclusive proper primitive events w.r.t. a given
MDP.

Mutually exclusive condition implies that any two primi-
tive events e, e′ ∈ E cannot occur together within any pos-
sible history Φi or we shall never observe Φi |= e∧Φi |= e′
for any Φi. Becker et al. show how non-proper events can be
cast as proper events using techniques such as making time
as part of the state or including additional bits in the state
to memorize the occurrence of some primitive events. For
algorithmic development, we focus on proper events.
Joint-Reward: A joint-reward is described as a constraint
among agents that specifies how the interaction among
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Variables: xi
t(s

i, ai) ∀t, ∀si, ai∀i;
Variables: x(Ej

k) ∀j ∈ Gk, ∀k ∈ ρ (1)

max
x

n∑
i=1

H∑
t=1

∑
si,ai

xi
t(s

i, ai)ri(si, ai) +
∑
k∈ρ

ck
∏

j∈Gk

x(Ej
k) (2)

∑
ai

xi
t+1(s

i′, ai)−
∑
si,ai

xi
t(s

i, ai)P (si′|si, ai)=0 ∀t, ∀si′, ∀i (3)

∑
ai

xi
1(s

i, ai) = bi1(s
i) ∀si, ∀i (4)

x(Ej
k) =

∑
e∈E

j
k

H∑
t=1

xj
t(se, ae)P

j(s′e|se, ae) ∀j ∈ Gk, ∀k ∈ ρ (5)

Table 1: Nonlinear program (NLP) for event-based TIDec-
MDP

agents affects the global value of the system. A constraint k
exists among a subset of agents Gk (|Gk| ≥ 2). It is defined
as a tuple 〈〈Ej

k ∀j ∈Gk〉, ck〉. Semantically, the constraint
k specifies that if each involved agent in Gk satisfies its part
of the constraint, then the global reward ck is given. For-
mally, let Φ1 through Φn denote histories for all the agents.
Constraint 〈〈Ej

k ∀j ∈ Gk〉, ck〉 specifies that the reward ck
is added to the global value iff Φj |= Ej

k for each agent
j ∈ Gk. Let ρ be the set of all constraints; same logic is
followed for each constraint k ∈ ρ.

Expressiveness: As per the above constraint semantics,
global reward ck is given if all events in a constraint occur.
Several other types of constraint structures are possible. E.g.,
the global reward can be given at the occurrence of at most
x events, exactly x events or at least x events. Becker et al.
show how such variants can be reformulated using all event
occurring semantics. However, in their approach, translating
different constraint types to the standard all event syntax re-
quires adding additional bits to states, which increases the
state-space exponentially. In contrast, our work addresses
different constraint types directly without the need to ex-
pand the state-space. Thus, our modeling and algorithmic
techniques are significantly more effective and scalable.

Policy and joint-value function: For TIDec-MDPs, the
optimal local policy depends on agent’s local observed
state (Goldman and Zilberstein 2004). We represent agent i’s
stochastic policy as mapping from local state to a distribu-
tion over actions or πi(ai|si). We have fixed-horizon histo-
ries, say H . Given local policies πi, the probability P (e;πi)
of a proper, primitive event e = (ŝi, ai, ŝi′) occurring during
any execution of πi is:

P (e;πi) =
H∑
t=1

P (sit= ŝi;πi)πi(ai|ŝi)P i(ŝi′|ŝi, ai) (6)

As all primitive events in a proper event E are mutually
exclusive, we have P (E;πi) =

∑
e∈E P (e;πi). Given the

starting state si1 for an agent i, ρ as the set of constraints, the

global value function is defined as:

GV (s1;π) =
n∑

i=1

V i(si1;π
i) + JV (ρ;π) (7)

JV (ρ;π) =
∑
k∈ρ

ck
∏
j∈Gk

P (Ej
k;π

j) (8)

where V i is the value function of agent i’s local MDP. Our
goal is to compute the joint-policy π that optimizes the
global value function (7).

3 Optimization Based Formulation

An optimal algorithm is presented in (Becker et al. 2004)
to solve TIDec-MDPs with event-based rewards. Given the
NP-Hardness of the problem, the optimal approach is not
scalable to a large number of several agents. We therefore
first present a nonlinear math programming (NLP) formula-
tion for TIDec-MDPs. The NLP formulation has been suc-
cessfully used for approximately solving POMDPs (Amato,
Bernstein, and Zilberstein 2007b; Charlin, Poupart, and Sh-
ioda 2007) and Dec-POMDPs (Amato, Bernstein, and Zil-
berstein 2007a; 2010) using off-the-shelf solvers such as
SNOPT (Gill, Murray, and Saunders 2005).

Table 1 shows the NLP formulation for TIDec-MDPs.
This program is similar to the standard MDP dual LP formu-
lation using occupancy variables for state-action pairs (Put-
erman 1994). Variables xi

t(s
i, ai) denote the probability of

being in state si and taking action ai at time t for agent i.
The first part of the objective computes the total local reward
of all agents, and the second summation computes the total
joint-value based on (8). Constraint (3) is the standard flow
conservation constraint for each state of each agent; (4) con-
nects the initial belief b1 at time step 1 with x variables; (5)
computes the probability of events using (6). The stochastic
policy π(a|s) can be computed as x(s, a)/

∑
a x(s, a). The

multilinear term modeling event-based rewards in the objec-
tive make this program nonlinear and nonconvex.

We can modify the objective (2) to handle other global
reward types such as at least 1 event. Consider the setting
〈〈Ej

k ∀j ∈Gk〉, ck〉 where the reward ck is given if at least
one event out of |Gk| happens. The probability of at least
one event happening is one minus the probability that none
of the events happen. It is modeled as:

∑
k∈ρ

ck

(
1−

∏
j∈Gk

(
1− x(Ej

k)
))

(9)

We can similarly handle other joint-reward types such as ex-
actly x events or at most x events by deriving the contribu-
tion of such joint-rewards to the objective analogous to (9).
In addition, we can also have multiple types of joint-rewards
for our model by simply adding their contribution to the ob-
jective (2) of the math program. Notice that our approach of
directly modifying nonlinear objective terms does not add
additional bits to states, thus do not result in exponential
state-space increase as in (Becker et al. 2004).

Program in Table 1 can in principle be solved using stan-
dard NLP solvers. However, we observed empirically that
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r̂

T =1:H(a)

(b)

aTa1
r̂

SAT

s1 sTs2

a2

Figure 1: (a) Standard mixture model for MDP; (b) our sin-
gle Bayesian network for policy optimization of an MDP

with the increasing number of agents, NLP solvers were un-
able to scale, slow and often ran out of memory. To address
this, we next present a probabilistic inference based refor-
mulation of the program in Table 1 that results in a much
more scalable approach for large multiagent systems.

4 Inference for TIDec-MDPs

Planning-as-inference is a recent paradigm that translates
the planning problem to that of probabilistic inference. Pol-
icy optimization in MDPs and POMDPs can be recast to
that of maximum likelihood estimation (MLE) problem in a
graphical model (Toussaint, Harmeling, and Storkey 2006),
and have also been applied to multiagent planning (Pajari-
nen and Peltonen 2011; Wu, Zilberstein, and Jennings 2013;
Kumar, Zilberstein, and Toussaint 2015). Recently, the prob-
lem of marginal MAP, which calculates the mode of the
marginal posterior distribution of a subset of variables with
the remaining variables marginalized is shown to be equiv-
alent to decision making further establishing close connec-
tions between planning and inference (Liu and Ihler 2012;
2013). Expectation-maximization (EM) (Dempster, Laird,
and Rubin 1977) is a commonly used technique to solve such
planning-as-inference formulations.

We also develop here an inference based approach to
solve TI-Dec-MDPs. We present a graphical model such that
MLE in this model is equivalent to solving the program in
Table 1. We use the EM algorithm for MLE in this graph-
ical model. Our work differs from previous applications of
EM to planning — 1) Previous works model the sequen-
tial aspect of decision making by using dynamic Bayes nets
(DBNs) of varying length for reformulation as an inference
problem. E.g., Figure 1(a) shows a T -length DBN for an
MDP. In contrast, we aim to solve the math program en-
coding the policy optimization problem directly. E.g., Fig-
ure 1(b) shows a much simpler Bayesian net (BN) that en-
codes MDP policy optimization; 2) As we directly solve the
math program, there is no need for the expensive forward-
backward message-passing in large DBNs which can be-
come inaccurate for infinite-horizon problems; 3) Previous
DBN based methods can address immediate rewards only
but unable to model event-based complex global rewards
which depend on entire execution histories of agents. Our
approach addresses this drawback by directly translating the
program in Table 1 as an inference problem. To the best of
our knowledge, our approach is one of the first to solve large
nonlinear, nonconvex math programs using the probabilistic

inference machinery.

4.1 Solving Dual LP for an MDP Using Inference

We first show how to formulate the dual LP for an MDP
as an inference problem, which will be a sub-step in infer-
ence model for TIDec-MDPs. Given an MDP with transi-
tion function P (s′|s, a), reward function r(s, a) and initial
state distribution b1, our goal is to compute the policy op-
timizing total reward over a finite-horizon H . The dual LP
for this MDP is the single-agent analogue of the program
in Table 1 without nonlinear terms modeling event-based
reward in objective (2) and without constraint (5). Previ-
ous works model this problem using MLE in a mixture of
DBNs of varying length T (shown in Figure 1(a)). Our re-
formulation instead is a simple BN with two random vari-
ables SAT and r̂ as shown in Figure 1(b). The variable r̂
is a binary random variable. The variable SAT has domain
{〈s, a, t〉∀s∈S, ∀a∈A, ∀t=1:H}.
We set the parameters of this BN as follows:

P (r̂ = 1|s, a, t) = r̂sa =
r(s, a)− rmin

rmax − rmin
(10)

P (s, a, t) = xt(s, a)/H (11)

Intuitively, the conditional probabilities P (r̂ = 1|·) model
the scaled reward of the original MDP, and the probabilities
P (s, a, t) model the occupancy measures or xt variables of
the dual LP. The following result shows the equivalence of
MLE and the dual LP for MDP.
Theorem 1. Let the parameters of the BN be set as
per (10),(11). Maximizing the likelihood P (r̂ = 1;x) of ob-
serving r̂ = 1 in the BN subject to constraints (3),(4) over
parameters x optimally solves the dual LP for the MDP.

Proof. The dual LP objective is given as dualObj =∑
s,a,t xt(s, a)r(s, a). We have the probability in the BN of

Figure 1(b) as:

P (r̂ = 1;x) =
∑
s,a,t

P (s, a, t)P (r̂ = 1|s, a, t)

=
1

H

∑
s,a,t

xt(s, a) r̂sa =
1

H

∑
s,a,t

xt(s, a)r(s, a)− rmin

rmax − rmin

The last expression implies P (r̂= 1;x) ∝ dualObj. Thus,
maximizing likelihood would also solve the dual LP for
MDP. Notice that we enforce constraints (3),(4) over param-
eters x while maximizing the likelihood making sure that
our solution is always feasible.

Theorem 1 provides the standard setting for the EM algo-
rithm application. The observed data is r̂ = 1, variable SAT
is hidden, and parameters to optimize are x. EM is an it-
erative approach that starts with random initial parameters
x and maximizes the following expected log-likelihood to
obtain a better estimate x�.

Q(x,x�) ∝
∑
s,a,t

P (r̂=1, s, a, t;x) logP (r̂=1, s, a, t;x�)

∝
∑
s,a,t

r̂sa xt(s, a) log x
�
t (s, a)
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y
j|Gk|
k

n+|ρ|SAT i r̂ r̂

yj1k

yj2kM=1:n M=n+1:

Figure 2: Mixture model for TIDec-MDP; M is mixture
variable with discrete domain from 1 through n+ |ρ|; there
is one BN (left) for each agent i=1 : n; one BN (right) for
each joint-reward k∈ρ

where we have omitted terms independent of x�. The convex
optimization problem EM solves in each iteration is:

max
x�

∑
s,a,t

r̂sa xt(s, a) log x
�
t (s, a) (12)

∑
a

x�
t+1(s

′, a)−
∑
s,a

x�
t (s, a)P (s′|s, a)=0 ∀s′∈S, t=1:H

∑
a

x�
1(s, a) = b1(s) ∀s ∈ S

The above program directly operates with occupancy mea-
sures x, and does not require any forward-backward
message-passing like other applications of EM to plan-
ning (Toussaint, Harmeling, and Storkey 2006). Even
though EM algorithm is not guaranteed to converge to a
global optima, we show that it is globally optimal for MDPs:
Proposition 1. EM algorithm converges to the global opti-
mum of the log-likelihood for the MDP inference model in
Figure 1(b).
Proof is in the longer version of the paper. We next show how
to solve the NLP in Table 1 for TIDec-MDPs analogous to
the inference model and reasoning developed in this section.

4.2 Inference Model for TIDec-MDP

We now present a mixture of BNs such that MLE in the mix-
ture is equivalent to solving the NLP in Table 1. In EM, opti-
mizing the expected log-likelihood (or the M-step) becomes
decoupled resulting in a separate optimization problem for
each agent regardless of the number of joint rewards or the
number of agents in a joint-reward. This is a significant scal-
ability boost as NLP solvers directly optimize the monolithic
program in Table 1 which quickly becomes unscalable due
to a large number of variables/nonlinear terms, whereas EM
solves an independent convex program for each agent.

Figure 2 shows the mixture of BNs for TIDec-MDPs. We
create one BN for each agent i (left Figure 2) and one BN
for each global reward k ∈ ρ. The left BN simulates the total
local reward from agent i’s MDP, similar to the BN for an
MDP. The structure and interpretation of this BN is same as
in previous section. The mixture variable M can take any
integer value in range [1, n+ |ρ|] to index each BN, and has
a fixed uniform distribution (=1/(n+ |ρ|)).

To simulate event-based rewards, the right BN (in Fig-
ure 2) is created for each global reward k ∈ ρ. The variable

r̂ is binary as before. In addition, we create one binary vari-
able yjk for each agent j ∈ Gk involved in the global reward
〈〈Ej

k ∀j ∈ Gk〉, ck〉. Intuitively, yjk = 1 implies agent j’s
event Ej

k occur; vice versa for yjk = 0. W.l.o.g. we assume
all rewards ck are positive (otherwise we can subtract rmin

from them), and θ is a positive constant. Let yk denote the
random vector (yjk∀j∈Gk). Probabilities for this BN are as:

P (yjk=1)=x(Ej
k); P (yjk=0)=1−x(Ej

k) ∀j ∈ Gk (13)

P (r̂=1|yk)=

{
(θ + ck)/ rmax iff yjk=1∀j ∈ Gk

θ/ rmax otherwise
(14)

where positive constant rmax is chosen such that (θ +
ck)/ rmax is less than one (i.e. valid probabilities). Intu-
itively, (13) connect probabilities of variables yjk with pa-
rameters x(Ej

k) used in the NLP of Table 1, (14) model the
condition that global reward ck is given only when all events
Ej

k happen, otherwise a default reward is awarded.
Theorem 2. Let the parameters of the BNs in the mixture
model (Figure 2) be set as per (10),(11),(13),(14). Maximiz-
ing the likelihood P (r̂ = 1;x) of observing r̂ = 1 in the
BN subject to constraints (3),(4),(5) over parameters x op-
timally solves the NLP for the TIDec-MDP.

Proof is provided in the longer version of the paper.
M-step Given theorem 2, we can again use the EM algo-
rithm similar to section 4.1 to iteratively optimize the ex-
pected log-likelihood. We directly show the M-step opti-
mization problem (analogous to problem (12)) for TIDec-
MDPs. It involves solving one independent convex opti-
mization problem for each agent i.

max
xi�

∑
si,ai,t

r̂isiai x
i
t(s

i, ai) log xi�
t (si, ai)+

∑
k∈ρ(i)

ĉk
( ∏

j∈Gk

x(Ej
k)
)
log x�(Ei

k)− θ̂
∑

k∈ρ(i)

Hk(x
i, xi�) (15)

∑
ai

xi�
t+1(s

i′, ai)−
∑
si,ai

xi�
t (si, ai)P (si′|si, ai)=0∀t, ∀si′ (16)

∑
ai

xi�
1 (si, ai) = bi1(s

i) ∀si, ∀i (17)

x�(Ei
k) =

∑
e∈Ei

k

H∑
t=1

xi�
t (se, ae)P

j(s′e|se, ae) ∀k ∈ ρ(i) (18)

where r̂isiai is the normalized local reward for the lo-
cal MDP of agent i; ĉk is the normalized global reward
(ck/ rmax); θ̂ is θ/ rmax; ρ(i) denotes the set of joint-rewards
in which agent i participates. For a global reward k, Hk de-
note the cross entropy between previous iteration’s param-
eters xi and current parameter xi�:−[xi(Ei

k) log x
i�(Ei

k) +

xi(Ẽi
k) log x

i�(Ẽi
k)], where xi(Ẽi

k) = 1− xi(Ei
k).

The above M-step optimization highlights the scalability
of the EM algorithm which solves one separate optimiza-
tion problem for each agent i. Note that even though the M-
step solves each agent’s sub-problem separately, these sub-
problems are still correlated as each sub-problem involves
information from other agents and events from previous iter-
ation’s solution. Since previous iteration’s solution is fixed,
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different sub-problems can still be solved separately. Each
sub-problem is convex and much smaller than the large NLP
in Table 1. Thus, the EM algorithm significantly boosts the
scalability for a large number of agents.
Other joint-reward types: The EM approach is also ex-
tendible to other joint-reward types. In Figure 2, we con-
struct one separate Bayesian network (BN) for each joint-
reward k ∈ ρ. Based on the type of the joint-reward k (at
most x events or at least x events), we can set the parameters
of its corresponding BN appropriately by modifying (14).

5 RL for Event-Based Rewards
The previous section presented a scalable EM algorithm for
TIDec-MDPs. However, the scalability still suffers when
the state-space of each agent i is exponential, which is
often the case for several patrolling and coverage prob-
lems (Yehoshua, Agmon, and Kaminka 2015). To address
such settings, we develop a reinforcement learning (RL)
approach that uses function approximators such as deep
neural nets (NN) to represent agent policies and optimizes
them using the policy gradient approach (Williams 1992;
Sutton et al. 1999). Policy gradient is a natural counterpart
to the EM algorithm— Schulman et al. (2015) show that EM
optimizes a surrogate loss function by minimizing an upper
bound on this function, whereas policy gradient uses gradi-
ent descent to minimize the same loss function. Empirically,
we observed that for small and medium-sized problems, EM
is faster (RL is slower but comparable in solution quality).
The main advantage of RL lies for large problems where EM
cannot scale well due to its tabular policies.

Given the start state s1 at time step 1 for all the agents;
each agent i’s policy parameterized using θi (which repre-
sent NN parameters), our goal is to compute the gradient of
global-value function (7):

∇θiGV (s1;π)=∇θiV
i(si1;π

i)+∇θi

∑
k∈ρ(i)

ck
∏

j∈Gk

P (Ej
k) (19)

=∇θiV
i(si1;π

i)+
∑

k∈ρ(i)

ck∇θiP (Ei
k)

∏
j∈Gk\{i}

P (Ej
k) (20)

where we have used the fact that agent i’s policy does not
affect agent j’s local value function V j and event probabili-
ties P (Ej) to simplify the expression; ρ(i) denotes the set of
joint-rewards in which agent i participates. The gradient of
local MDP value function ∇θiV i(si1;π

i) can be computed
using the technique in (Sutton et al. 1999). We next focus on
how the gradient backpropagates from event-based rewards.
Given that we have P (E;πi)=

∑
e∈E P (e;πi), gradient is:

∇θiP (E;πi)=
∑
e∈E

∇θiP (e;πi) (21)

We next compute the gradient of a proper, primitive event
or ∇θiP (e;πi). Let e = {ŝi, âi, ŝi′} be a primitive event for
agent i. The probability of this event is given as:

P (e)=

H∑
t=1

Pπ(ŝi|t)πi(âi|ŝi)P (ŝi′|ŝ, âi)

=

H∑
t=1

∑
si1:t+1,a

i
1:t

Pπ(si1:t+1, a
i
1:t)I(〈sit, ai

t, s
i
t+1〉=〈ŝi, âi, ŝi′〉)

where I is the indicator function returning one when input
logical condition is true, zero otherwise. The gradient is:

∇θiP (e)=

H∑
t=1

∑
si1:t+1,a

i
1:t

Pπ(si1:t+1, a
i
1:t)

[ t∑
t′=1

∇θi log π
i(ai

t′ |sit′)
]
×

I(〈sit, ai
t, s

i
t+1〉=〈ŝi, âi, ŝi′〉) (22)

where we used the log derivative trick (Schulman
et al. 2015) that allows sampling-based evaluation of
∇θiP (e). Consider a complete state-action trajectory Φi =
(si1:H+1, a

i
H). For any Φi, the proper, primitive event e can

only occur at most once (see definition 3). Based on this
fact, we derive the stochastic gradient estimate as (complete
derivation in paper’s extended version):

∇θiP (e) =
1

|ξ|
∑

Φi∈ξ:Φi|=e

( t(e,Φi)∑
t′=1

∇θi log π
i(at′ |st′)

)
(23)

ξ is the set of complete state-action samples from
Pπ(si1:H+1, a

i
1:H); we sum over those samples Φi such that

event e occurs in Φi at some point in time (denoted using
t(e,Φi)). We can use the above gradient within (21) to com-
pute the gradient of an event, and use it in (20) to compute
the required gradient. Given sample set ξ for each agent,
we can also empirically compute the probability estimates
of primitive events e, and use it to compute empirical es-
timate of events P (Ej

k), which can be used in (20). Thus,
we have shown how the policy gradient ∇θiGV for TIDec-
MDPs can be computed using sampling.
Other joint-reward types: We can also derive policy
gradient for other types of events mentioned in section 2.
E.g., we show the gradient of JV (ρ;π) (in eq (8)) when
constraints k ∈ ρ are of the type at least one event:

∇θiJV =
∑

k∈ρ(i)

ck∇θiP (Ei
k)

∏
j∈Gk\{i}

(
1− P (Ej

k)
)

(24)

One can compute ∇θiP (Ei
k) as earlier.

Multiagent credit assignment: A key problem while learn-
ing from global rewards in multiagent setting is that the
gradient computed for an agent i does not explicitly rea-
son about the contribution of that agent to the global team
reward. As a result, the gradient becomes noisy given that
other agents are also exploring, leading to poor quality so-
lutions (Foerster et al. 2017; Bagnell and Ng 2005). Fortu-
nately, creating a separation among local MDPs of agents
and joint event-based rewards automatically addresses this
problem of noisy gradient in TIDec-MDPs. E.g., consider
the gradient (24) for at least one event w.r.t. agent i’s pa-
rameters. Intuitively, if another agent j has a high proba-
bility of finishing event Ej

k(or P (Ej
k) ≈ 1), then the term

(1−P (Ej
k)) in ∇θiJV would discourage agent i to increase

its probability P (Ei
k). Similarly, if all other agents j have

a very low probability of performing Ej
k then (1 − P (Ej

k))

would be high encouraging agent i to perform its event Ei
k

for higher joint-value. Thus, event-based rewards help make
policy gradients precise and accurate in TIDec-MDPs.
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(a) Runtime Analysis (b) EM: Anytime Nature (c) Experiments Solved ratio (d) Average Reward ratio

Figure 3: Runtime and Solution Quality Results for Mars rover domain

6 Experiments

We tested on two domains—Mars rover and the Multiagent
coverage problem. Domain details and other experimental
settings are provided in the extended version of the paper.

Mars rover domain: This domain is adapted from (Becker
et al. 2004). Agents have private and shared locations from
which they can collect data. Joint-rewards are given when
all the involved agents perform their corresponding events
on the shared location.

Runtime: Figure 3a shows the runtime results for NLP and
EM for the four categories, 〈Easy,Medium,Hard,All〉,
of problems on the x-axis. The results are averaged over
〈30, 40, 35, 105〉 instances corresponding to the four cat-
egories (‘All’ includes all the instances). The categories
〈Easy,Medium,Hard〉 include 〈10, 30, 40〉 agents, 〈4, 5, 7〉
locations per agent and 〈10, 18, 25〉 agents sharing a com-
mon site respectively.

Figure 3a shows that EM has a much lower runtime on
an average. Only those problems that got solved by NLP
within the cutoff time of 30 minutes were included in the
figure (EM being an anytime algorithm, always returns a so-
lution). For the hard instances, EM was much faster than
the NLP solver showing that EM’s strategy of solving in-
dependent program per agent results in significant speedups
over NLP. Figure 3b highlights the anytime nature of EM by
showing the normalized solution quality of EM for each iter-
ation averaged over 35 Hard instances. The solution quality
increases monotonically with iterations till convergence and
reaches to 〈98.7%, 99.6%〉 of final converged quality within
the first 〈100, 200〉 iterations. Similar trends hold for Easy
and Medium problems.

Solution Quality: Figures 3c and 3d present solution qual-
ity results for NLP and EM. In particular, the x-axis of both
the figures show the cutoff time in minutes, i.e., maximum
allowable time for the algorithms to return a solution. The
y-axis of Figure 3c shows the ratio ((# of instances solved by
NLP/# of instances solved by EM) (in %) for the time limit
indicated on the x-axis. Figure 3c shows that the ratio in-
creases monotonically as the time limit increases for all cat-
egories. For Hard instances, NLP could provide a solution
for only 40% of problems, and did not terminate for the rest
of the problems. In contrast, EM always converged within
30 min for all the instances, confirming its better scalability.

The y-axis of Figure 3d shows the ratio (in %) of total
average rewards obtained by NLP w.r.t. the EM within the
cutoff time on the x-axis. This figure captures the reward for
all the experiments performed. That is, if NLP does not re-
turn a solution within the cutoff time, a valid random policy
was assigned for evaluation purposes. Trends remain sim-
ilar as in Figure 3c. For Easy category, the ratio becomes
100% within 15 minutes while it remains below 71% for
Hard cases even after 30 minutes (and does not reach 100%
for any other category). To summarize, the anytime prop-
erty of EM provides a significant runtime as well as solution
quality advantage (with performance gap widening signifi-
cantly as we move from Easy to the Hard category of prob-
lems).

Multiagent coverage problem: For testing the scalability
of our multiagent RL (MARL), we experimented with the
multiagent coverage problem introduced in section 1 (de-
tailed domain settings are in the extended version of the
paper). The problem involves inspecting different locations
within a mass rapid transit (MRT) network. Reward is given
when a location is inspected at least once within a fixed
timeframe, such as every 1 hour or half hour. These prob-
lems are challenging for EM/NLP as the state-space is ex-
ponential in the number of locations in the MRT system. We
first tested MARL on relatively tractable instances that were
solvable by EM. These instances involved up to 2 lines in the
MRT map, with a maximum of 3 private locations per line,
and a maximum of 3 shared locations. Figure 5a shows that
MARL achieves similar solution quality as EM for all the in-
stances (within 97% of EM’s quality on average). However,
the average runtime of MARL (5 hours) was significantly
higher than EM’s runtime (10 minutes). Thus, for relatively
smaller instances both EM and MARL provide similar qual-
ity, but EM is preferable because of its lower runtime.

For hard settings, we tested on the Singapore MRT map
with 5 lines, each having 20 private locations per line, and 20
shared locations. Each line has a single agent able to move
among locations on the line. Shared locations correspond to
interchange stations where multiple lines meet. Thus, shared
locations can be inspected by multiple agents. The time hori-
zon was 1024 minutes (17 hours). The joint reward to inspect
any shared location was much higher than private locations
given that shared locations are heavily crowded and thus
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(a) Gain = 36.1% (b) Gain = 29.6% (c) Gain = 26.0% (d) Gain = 15.2%

Figure 4: Quality comparisons between coordinated RL (MARL) and independent policy optimization (I-RL) for varying reset
time k (in hours). Gain is % quality improvement by MARL over I-RL upon convergence

more important. To claim the reward, agents must success-
fully inspect a location once every k time steps (also called
reset time), and k (in hours) varied in the range {0.5, 1, 2, 4}.
The inspect action consumes 15 minutes, and moving to the
next location on the line takes 3 minutes. Inspecting a loca-
tion multiple times within the reset time window does not
fetch an additional reward. Thus, agents are required to in-
crease their coverage to gain additional rewards. Similarly,
for shared locations, inspection by any single agent is suffi-
cient to get the reward. Thus, agents are also incentivized to
coordinate with each other to avoid multiple agents inspect-
ing the same shared location within the reset time window.
We model such global rewards using the at least one event
semantics.

For these problems, EM and NLP were unable to scale
due to the large state-space of the problem. However, MARL
scaled well for these problems due to its neural network
based parametric policies and policy gradient based opti-
mization (settings for neural network and gradient ascent
are provided in the extended version of the paper). For fig-
ures 4 and 5b, y-axis shows average reward value at each
iteration which is computed as a moving average of last
100 iteration values (i.e., value at that iteration and previ-
ous 99 values). Figure 5b shows the average reward quality
achieved by MARL for different settings of the reset time k.
A smaller value of k implies agents can claim rewards fre-
quently. Therefore, we can observe that the reward is higher
for lower k values. For all the settings, despite the large
problem size with a long horizon, convergence was achieved
in about 5000 iterations.

(a) Easy (b) Hard

Figure 5: Solution Quality - Multiagent RL

Coordinated vs. Uncoordinated RL: We tested the MARL
approach against a baseline method that independently opti-
mized the policy of each agent using policy gradient based
RL (‘uncoordinated’ RL). We also observed that when
shared locations are fewer, agents need to coordinate tightly
to gain the reward from inspecting these shared locations. To
test this hypothesis, we reduced the number of shared loca-
tions down to 10, from 20 in the real map. Figure 4 shows
quality improvements by MARL over independent policy
optimization (I-RL). The figure shows four plots for values
of k (in hours) varied in the range {0.5, 1, 2, 4}. The un-
certainty in the figure represents the standard deviation in a
moving interval of 100 iterations. From the plots we can see
that the benefit of MARL is higher for lower reset time (k)
as it provides more opportunities to inspect shared locations
and claim higher reward from coordinated actions. These re-
sults clearly illustrate that our MARL approach provides sig-
nificant benefits when agents learn in a coordinated fashion
versus learning independently.

7 Conclusion

We addressed multiagent decision making in settings where
joint-rewards may depend upon entire state-action histories
of agents. Such history-dependent rewards can capture the
notion of events and tasks in multiagent planning. We devel-
oped a scalable approach for this setting by translating the
problem to that of inference in a graphical model. The re-
sulting EM algorithm was shown to be more scalable than
the standard nonlinear program. We also developed a multi-
agent RL approach that optimized agent policies represented
as neural networks using stochastic policy gradients. Our in-
ference and RL-based advances enabled us to solve large
synthetic problems and a realistic multiagent coverage prob-
lem for schedule coordination of agents in an MRT network
where other approaches failed to scale.
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