
Improved Results for
MINIMUM CONSTRAINT REMOVAL

Eduard Eiben
Algorithms and Complexity Group,

TU Wien, Vienna, Austria &
Dept. of Informatics, Univ. of Bergen, Norway

eduard.eiben@uib.no

Jonathan Gemmell, Iyad Kanj,
Andrew Youngdahl

School of Computing,
DePaul University, Chicago, USA,

{jgemmell,ikanj,ayoungda}@cdm.depaul.edu

Abstract

Given a set of obstacles and two designated points in the
plane, the MINIMUM CONSTRAINT REMOVAL problem asks
for a minimum number of obstacles that can be removed so
that a collision-free path exists between the two designated
points. It is a well-studied problem in both robotic motion
planning and wireless computing that has been shown to be
NP-hard in various settings.
In this work, we extend the study of MINIMUM CONSTRAINT
REMOVAL. We start by presenting refined NP-hardness re-
ductions for the two cases: (1) when all the obstacles are
axes-parallel rectangles, and (2) when all the obstacles are
line segments such that no three intersect at the same point.
These results improve on existing results in the literature. As
a byproduct of our NP-hardness reductions, we prove that,
unless the Exponential-Time Hypothesis (ETH) fails, MIN-
IMUM CONSTRAINT REMOVAL cannot be solved in subex-
ponential time 2o(n), where n is the number of obstacles in
the instance. This shows that significant improvement on the
brute-force 2O(n)-time algorithm is unlikely.
We then present a subexponential-time algorithm for in-
stances of MINIMUM CONSTRAINT REMOVAL in which the
number of obstacles that overlap at any point is constant; the
algorithm runs in time 2O(

√
N), where N is the number of the

vertices in the auxiliary graph associated with the instance of
the problem. We show that significant improvement on this
algorithm is unlikely by showing that, unless ETH fails, MIN-
IMUM CONSTRAINT REMOVAL with bounded overlap num-
ber cannot be solved in time 2o(

√
N). We describe several

exact algorithms and approximation algorithms that leverage
heuristics and discuss their performance in an extensive em-
pirical simulation.

Introduction
A fundamental problem in robot motion planning is to move
a robot from a starting position to a final position while
avoiding collision with a given set of obstacles. This prob-
lem is generally referred to as the piano-mover’s problem.
If a collision-free path does not exist, one naturally seeks a
path that collides with the minimum number of obstacles.
In this paper, we study a variant of the piano mover’s prob-
lem, referred to as the MINIMUM CONSTRAINT REMOVAL
problem, defined as follows:

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MINIMUM CONSTRAINT REMOVAL
Given: A set I of polygonal obstacles in the plane and two
designated points s and t.
Goal: Compute a subset of obstacles S ⊆ I of minimum
cardinality such that there is an obstacle-free path in the
plane between s and t w.r.t. the obstacles in I\ S.

In addition to its applications in robotics, the problem
has been studied extensively, motivated by applications in
wireless computing, under the name BARRIER COVER-
AGE or BARRIER RESILIENCE. In such applications, we
are given a field covered by sensors (assumed to be sim-
ple geometric shapes), and the goal is to compute a mini-
mum set of sensors that need to fail so that an entity can
move undetected between two given sites (Alt et al. 2011;
Tseng and Kirkpatrick 2012; Chan and Kirkpatrick 2014;
Kumar, Lai, and Arora 2005; Yang 2012).

The MINIMUM CONSTRAINT REMOVAL problem was
also formulated as a graph problem (Chan and Kirkpatrick
2014; Hauser 2014). For an instance I of the problem, the
auxiliary graph of I , GI , is defined as follows. Consider the
plane subdivision whose regions are determined by the in-
tersections of the obstacles in I . For each region, associate a
vertex in GI representing the set of obstacles intersecting at
that region if any, and an empty set otherwise; add an edge
between two vertices iff the corresponding regions share an
edge. See Figure 1. Clearly, GI is a plane graph since it is
the dual graph of a plane subdivision. The problem then re-
duces to computing a path in GI between the vertices corre-
sponding to s and t, such that the total number of obstacles
represented by the vertices on this path is minimum.

MINIMUM CONSTRAINT REMOVAL was studied by
many researchers in Wireless Computing, AI, and Com-
putational Geometry (Alt et al. 2011; Tseng and Kirk-
patrick 2012; Chan and Kirkpatrick 2014; Kumar, Lai,
and Arora 2005; Yang 2012; Erickson and LaValle 2013;
Hauser 2014). Alt et al. (Alt et al. 2011) showed that the
problem is NP-hard when the obstacles are line segments
such that no three intersect at the same point. Independently,
Yang (Yang 2012), in his Ph.D. dissertation, showed the NP-
hardness of the problem when the obstacles are line seg-
ments. This result was refined independently by Tseng and
Kirkpatrick (Tseng and Kirkpatrick 2012) who showed that
the problem is NP-hard even when the obstacles are line
segments of unit length. The more general graph problem

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6477

t

s

Figure 1: Illustration of the regions determined by a set of
obstacles (placed within a bounding box) and its auxiliary
graph, with a highlighted optimal path crossing one obstacle.

was considered by several researchers, including (Chan and
Kirkpatrick 2014; Hauser 2014), and it is well known to
be NP-hard (for instance, see (Hauser 2014) for a proof).
Hauser (Hauser 2014) implemented and tested several algo-
rithms for MINIMUM CONSTRAINT REMOVAL.

In this paper, we continue the study of the MINIMUM
CONSTRAINT REMOVAL problem. We first consider the
complexity of the problem, and show the following:

(1) MINIMUM CONSTRAINT REMOVAL is NP-hard even if
all the obstacles are axes-parallel rectangles.

(2) MINIMUM CONSTRAINT REMOVAL is NP-hard even if
all the obstacles are line segments such that no three in-
tersect at the same point.
The results in (1) and (2) refine and improve the earlier

work on the problem. More specifically, the result in (1)
answers an open question posed in (Erickson and LaValle
2013). Even though the result in (2) was obtained earlier by
Alt et al. (Alt et al. 2011), the NP-hardness reduction we use
to prove (2) is more refined than the reduction used in (Alt
et al. 2011). In particular, the reduction we use implies the
ETH results in (3) and (5) below, and those cannot follow
from the reduction in (Alt et al. 2011); this is because our
reduction results in a linear number of obstacles, as opposed
to the quadratic number of obstacles resulting from their re-
duction. As a byproduct of the reductions used to derive the
above NP-hardness results, we obtain the following:

(3) Unless the Exponential-Time Hypothesis (ETH) fails,
MINIMUM CONSTRAINT REMOVAL cannot be solved in
subexponential time 2o(n), where n is the number of ob-
stacles in the instance.
The result in (3) shows that significant improvement on

the 2O(n)-time brute-force algorithm is unlikely, as ETH is a
standard hypothesis for proving lower bounds (Aghighi et al.
2016; de Haan, Kanj, and Szeider 2015; Lokshtanov, Marx,
and Saurabh 2011), which states that the satisfiability of k-
CNF formulas (for k ≥ 3) is not solvable in subexponential-
time 2o(n), where n is the number of variables in the for-
mula.

We then design algorithms for the NP-hard restriction
of CONSTRAINT REMOVAL to instances in which no more
than a constant number b of obstacles overlap at the same
point, denoted b-OVERLAP MINIMUM CONSTRAINT RE-
MOVAL, for any integer-constant b ≥ 2. We show that:

(4) There is a subexponential-time algorithm for b-OVERLAP
MINIMUM CONSTRAINT REMOVAL that runs in time
2O(

√
N), where N is the number of the vertices in the aux-

iliary graph associated with the instance; and
(5) unless ETH fails, b-OVERLAP MINIMUM CONSTRAINT

REMOVAL cannot be solved in time 2o(
√
N).

The result in (4) gives a subexponential-time algo-
rithm for b-OVERLAP MINIMUM CONSTRAINT REMOVAL
w.r.t. the number of obstacles n, for instances in which the
number of regions N , equivalently vertices in GI , is o(n2).

Finally, we implement several exact and approximation
algorithms and provide extensive empirical simulation re-
sults to compare their performance for varying sizes of n.
Heuristics are proposed to improve performance.

Hardness Results

In this section, we consider the decision version of MINI-
MUM CONSTRAINT REMOVAL, denoted CONSTRAINT RE-
MOVAL, in which we are given a set I of obstacles, two
points s and t, and k ∈ N, and we need to decide if there is an
s-t path that intersects at most k obstacles in I . First, we start
by showing that CONSTRAINT REMOVAL remains NP-hard
even when the obstacles are axes-parallel rectangles; this an-
swers an open question in (Erickson and LaValle 2013). Sec-
ond, we show how our reduction can be modified to yield
a reduction in which the obstacles are line segments such
that no three of them intersect at the same point; this cor-
rects the claim in (Erickson and LaValle 2013) stating that
MINIMUM CONSTRAINT REMOVAL becomes trivial when
the obstacles intersect only pairwise. As we mentioned in
the previous section, the NP-hardness result for the line seg-
ments case was obtained earlier (Alt et al. 2011); however,
the NP-hardness reduction we use is more refined.

To obtain the hardness results, we reduce from an
NP-hard restriction of the MAXIMUM NEGATIVE 2-
SATISFIABILITY problem. An instance of MAXIMUM NEG-
ATIVE 2-SATISFIABILITY is given as a pair (F,m′), where
m′ ∈ N and F is a Boolean formula on n variables and m
clauses. The question is to decide whether F has a satisfying
assignment that satisfies at least m′ clauses. The NP-hard re-
striction of MAXIMUM NEGATIVE 2-SATISFIABILITY we
use, denoted R-MN2Sat, satisfies the following properties:
(1) Each clause in the formula F is either a unit clause con-
taining a positive literal {xi}, or a binary clause containing
two negative literals; (2) the unit clauses in F are precisely
the clauses {xi}, for each variable xi in F ; and (3) the num-
ber of both positive and negative occurrences of each vari-
able is at most 4. A consequence of (3) is that the number
of clauses m in F is at most n + 3n/2 ≤ 3n. It can be eas-
ily shown that R-MN2Sat is NP-hard via a straightforward
reduction from INDEPENDENT SET on graphs of maximum
degree at most 3. It is well known, and follows from (John-
son and Szegedy 1999), that unless ETH fails, INDEPEN-

6478

DENT SET on graphs of maximum degree at most 3 is not
solvable in time 2o(n), where n is the number of vertices in
the graph. It follows from the reduction from INDEPENDENT
SET to R-MN2Sat that, unless ETH fails, R-MN2SAT is not
solvable in time 2o(n). This result will be employed to derive
lower-bound results on the subexponential-time complexity
of MINIMUM CONSTRAINT REMOVAL. We start with this
simple observation:
Observation 1. Any truth assignment to an instance F of R-
MN2Sat that satisfies m′ clauses can be transformed into an
assignment that satisfies at least m′ clauses in F including
all binary clauses.

B1

B2

B3

B4

B′
4

B′
3

B′
2

B′
1

B

BB

C

s

t

Figure 2: Illustration for the proof of Theorem 2 for
F = x1 ∧x2 ∧x3 ∧x4 ∧ (x̄1 ∨ x̄4)∧ (x̄2 ∨ x̄3)∧ (x̄3 ∨ x̄1).

Axes-parallel Rectangles

Let RECTANGLE-CONSTRAINT REMOVAL be the restric-
tion of CONSTRAINT REMOVAL to instances in which each
obstacle is an axes-parallel rectangle.
Theorem 2. RECTANGLE-CONSTRAINT REMOVAL is NP-
hard.

Proof. We give a polynomial-time reduction from
R-MN2Sat to the decision version of RECTANGLE-
CONSTRAINT REMOVAL. We highlight the main differ-
ences between the current reduction and that in (Erickson
and LaValle 2013). See Figure 2 for illustration.

Let (F,m′) be an instance of R-MN2Sat, where F has n
variables x1, . . . , xn and m clauses C1, . . . , Cm. Let m1 =

n be the number of unit clauses in F , and m2 = m − n be
the number of remaining (binary) clauses. To construct the
instance (I, k) of RECTANGLE-CONSTRAINT REMOVAL,
as in (Erickson and LaValle 2013), we start by enforcing a
schema that any valid path must be confined within. We first
outline a rectilinear region R, whose boundary is shown in
black in Figure 2. This region consists of an open rectangu-
lar region containing the starting point s (green); a rectilin-
ear corridor C that runs vertically and then makes three left
turns; a set of rectangular-like “boxes” intersecting C in their
middle, each enclosing a black rectangle; and an open rect-
angular region containing the destination point t (burgundy).

For each variable xi, we associate two boxes, Bi and B′
i,

of the same shape and size, laid out horizontally and sym-
metrically on opposite ends of the vertical part of corridor C
(before C turns). We call the Bi’s and B′

i’s variable-boxes.
The Bi’s appear on the top and run in decreasing horizontal
dimension, and the B′

i’s appear on the bottom and run in in-
creasing horizontal dimension. The order in which the Bi’s
appear is the opposite order of the B′

i’s. Each Bi (resp. B′
i)

contains a black rectangle inside, subdividing it into an up-
per and a lower part, and creating a left passage and a right
passage from its upper to its lower part. For each binary
clause Cj , we associate a box BCj

that we call a clause-
box; the clause-boxes are placed towards the end of C, just
before the destination point t, and are laid out vertically.

To place the obstacles of I in R, we start by fixing two
integer-constants: c1 > 4 and c2 > c1 · n+3m. To simplify
the presentation of the proof, we will assign (in the proof)
integer weights to certain obstacles to indicate an overlay-
ing of the weight-many distinct identical-shape obstacles.
Intuitively, the obstacles will be placed so that the portion
of the path traversing the variable-boxes corresponds to an
assignment of the variables in F , where traversing the left
(resp. right) side of box Bi corresponds to assigning xi to
TRUE (resp. FALSE); the other portion of the path, traversing
the clause-boxes, can be done in such a way that if a lit-
eral has been assigned TRUE by the first portion of the path,
the clauses containing the literal can be traversed at no ad-
ditional cost. To confine the path to the interior of region R,
we form the boundary of R by placing axes-parallel rectan-
gular obstacles (shown in the same black color as the bound-
ary), each of weight c2, along this boundary so that they only
(pairwise) overlap (in small squares) to form the corners of
R; this ensures that the cost of crossing the boundary of
R exceeds the required budget k, which will be specified
shortly. Similarly, each black rectangle outlined inside a box
in R, whose role is to block the direct passage of a path from
one box to the next without setting the truth assignment of
the variable associated with the first box, is formed using an
axes-parallel rectangular obstacle of weight c2; this way, the
desired path cannot intersect any of these internal rectangles.
We refer to the obstacles of weight c2 as heavy obstacles.

For each binary clause Cj in F , we arbitrarily order the
two (negative) literals in Cj as first and second. For each
literal xi and clause Cj such that xi is the first (resp. sec-
ond) literal in Cj , we create an axes-parallel rectangular ob-
stacle of weight 1 (orange) that intersects the right side of
box Bi (resp. B′

i) including the internal rectangle, without

6479

intersecting any other variable-boxes, and intersects the top
(resp. bottom) of the clause-box corresponding to Cj (in-
cluding the internal rectangle) without intersecting any other
clause-boxes (see Figure 2). These obstacles ensure that a
path that sets a literal xi to TRUE can traverse Cj at no addi-
tional cost. For each positive clause {xi}, we place an axes-
parallel rectangular obstacle of weight 1 (yellow) in the right
side of Bi so that any path setting xi to false intersects this
obstacle. We call all these (orange plus yellow) obstacles in-
cidency obstacles.

For each variable xi, we add two axes-parallel rectangu-
lar obstacles (purple), each of weight c1. The first obstacle
intersects the left sides of Bi and B′

i without intersecting
any other variable-boxes, and the second intersects the right
sides of these boxes; these obstacles, referred to as consis-
tency obstacles, are used to ensure that we do not set both a
variable and its negation to TRUE.

Finally, for each xi, let pi be the number of occurrences of
xi in F ; we place pi many weight-1 axes-parallel rectangu-
lar obstacles (blue), referred to as balancing obstacles, in the
left side of Bi. Let k = c1 ·n+2m2+m1− (m′−m2), and
note that k < c2. This completes the construction of the in-
stance (I, k) of RECTANGLE-CONSTRAINT REMOVAL. We
claim that (F,m′) is a yes-instance iff (I, k) is. We first draw
the following observations. (1) By the choice of c2, any path
that intersects at most k obstacles cannot intersect a heavy
obstacle, and hence, must stay within R. (2) Any path cor-
responding to a consistent assignment intersects exactly n
consistency obstacles.

Suppose that F has a truth assignment τ that satisfies at
least m′ clauses. By Observation 1, we can assume that τ
satisfies the m2 binary clauses in F and at least m′−m2 unit
clauses. Consider the s-t path P in R that travels through the
right side of boxes Bi and B′

i, for each variable xi assigned
FALSE by τ , and through the left side of these boxes other-
wise; and for each satisfied binary clause, P travels through
the part of the clause-box intersecting the incidency obsta-
cle corresponding to a satisfied literal in the clause. We claim
that P intersects at most k obstacles. To see this, note that
by observation (2), this path intersects exactly n consistency
obstacles, for a total cost of c1 · n. Second, for each Bi, re-
gardless of whether P traverses the left or right passage in
Bi, P crosses the number of occurrences of xi many balanc-
ing obstacles, plus one incidency obstacle if P traverses the
right side of Bi, and hence τ does not satisfy the unit clause
{xi}. It follows that the total number of obstacles that P
intersects in its variable truth-setting portion is equal to the
total number of occurrences of negative literals in F , which
is 2m2, plus the total number of unit clauses that are dis-
satisfied by τ , which is at most m1 − (m′ − m2). Since τ
satisfies all binary clauses, no additional cost is incurred in
the remaining portion of P . It follows that P intersects a to-
tal of at most c1 ·n+2m2+m1− (m′−m2) = k obstacles.

Conversely, let P be an s-t path that intersects at most k
obstacles. By observation (1), P lies inside R. Since P has
to go through each of the n variable-boxes, for each i ∈ [n],
if P traverses the left (resp. right) side of Bi, then we can
assume, without loss of generality, that P traverses the left
(resp. right) side of B′

i. This assumption can be justified as

follows. If P traverses the left side (resp. right side) of Bi

but then traverses the right side (resp. left side) of B′
i, then it

would incur an additional cost of c1 > 4. Since the ultimate
gain/saving from such a switch is the number of occurrences
of xi in F , which is at most 4 < c1, rerouting P so that it
traverses the same side of B′

i as Bi decreases the cost, and
results in an alternative path that is cheaper than P . We can
also assume that P incurs no additional cost in its second
portion that traverses the clause-boxes. This assumption can
be justified as follows. Suppose that P intersects a new ob-
stacle while traversing the clause-box of a clause Cj . Pick a
literal xi ∈ Cj . Then P must have traversed the left passage
of Bi. If we reroute P so that it traverses the right passages
of Bi and B′

i instead, then it is easy to see that the cost of the
truth-setting portion of P due to this rerouting can increase
by at most 1 due to the incidency obstacle corresponding to
{xi} in the right part of Bi that the path has now to intersect.
However, this additional cost is annulled since the new path
now traverses Cj at no cost.

With the above assumptions in mind, consider now the
truth assignment τ that assigns xi to TRUE iff P traverses
the left side of Bi. Then τ is consistent. The path P inter-
sects: c1 ·n many consistency obstacles, a total of 2m2 many
balancing obstacles, an incidency obstacle for each box Bi

that P traverses its right side, and intersects no new obsta-
cles in its portion that traverses the clause-boxes. Since P
intersects at most k obstacles, it follows that the number
of variable-boxes that P traverses their right side is at most
k−c1 ·n−2m2 = m1−(m′−m2). Therefore, τ dissatisfies
at most m1 − (m′ −m2) unit clauses, and hence satisfies at
least m′ − m2 unit clauses. Since τ satisfies all m2 binary
clauses, τ satisfies a total of at least m′ clauses.

Figure 3: Illustration for the proof of Theorem 3 for
F = x1 ∧x2 ∧x3 ∧x4 ∧ (x̄1 ∨ x̄4)∧ (x̄2 ∨ x̄3)∧ (x̄3 ∨ x̄1).

6480

Straight-line Segments

For an instance I of CONSTRAINT REMOVAL, define the
overlap number of I to be the maximum number of obstacles
whose intersection is nonempty. Let LINE-CONSTRAINT
REMOVAL be the restriction of CONSTRAINT REMOVAL to
instances in which each obstacle is a line segment.
Theorem 3. LINE-CONSTRAINT REMOVAL, restricted to
instances whose overlap number is at most 2, is NP-hard.

Proof. As in the proof of Theorem 2, we reduce from R-
MN2Sat. The reduction is very similar to that in Theorem 2,
except for the shapes and layout of the obstacles, as we no
longer can overlay obstacles since we need to keep the over-
lap number at most 2.

Let (F,m′) be an instance of R-MN2Sat, where F has n
variables x1, . . . , xn and m clauses C1, . . . , Cm. We refer to
Figure 3 for illustration. We create the same region R as in
the proof of Theorem 2, whose boundary is outlined in black
in Figure 3. We use line-segments to mimic the rectangles
used in the proof of Theorem 2. We describe how this is
done for each obstacle-type used in that proof.

Let c1, c2 be the constants defined in the proof of The-
orem 2. To form the boundary of R in the instance I of
LINE-CONSTRAINT REMOVAL, we mimic the heavy obsta-
cles forming the boundary of R with c2 many nested bound-
aries, each formed using a sequence of distinct line-segment
obstacles. We start by overlaying a distinct line-segment ob-
stacle along each edge of the boundary of R. We then create
c2-many nested copies of R, each using a distinct set of ob-
stacles, so that the path remains confined within the inner-
most copy of R, as going out of the nested regions would
incur a cost of c2. See Figure 4 for illustration of the nesting
around a box Bi. The inner rectangle subdividing a box Bi

is created by nesting c1 + 5 many rectangles, each created
using 4 distinct line segments forming its sides; any path go-
ing directly through this rectangle and avoiding both the left
and right passages of Bi, would incur a cost higher than go-
ing through either of the two passages, and hence, could be
replaced by a path that sets a truth value for xi.

To mimic the consistency obstacles, we replace each of
the c1 overlayed rectangles used in the formation of the con-
sistency obstacle for xi, with a bundle of c1-many distinct
vertical-segment obstacles (of the same length) intersecting
only boxes Bi and B′

i (see Figures 3 and 4).
Note that some points in R are the intersection points of

an obstacle forming the (nested) boundary of R with an ob-
stacle that is part of a consistency obstacle. Such points have
overlap number 2, but no point in R has overlap number
larger than 2. We refer to any point in R that has overlap
number 2 as an intersection point of R.

To mimic the rectangular balancing obstacles in Bi, each
balancing obstacle is replaced with a vertical line-segment
obstacle, located on the same side of Bi, and blocking the
passage of any path going through that side. To ensure that
the overlapping number stays at most two, we place each of
the balancing line-segment obstacles in such a way that none
of its endpoints is an intersection point in R. It is easy to see
that this can always be done with the proper placement of
these line-segment obstacles.

Finally, to place the incidency obstacles, for each literal xi

and clause Cj such that xi is the first (resp. second) literal in
clause Cj , we create a line-segment obstacle that intersects
the right part of box Bi (resp. B′

i) at non-intersection points
in R, and the top (resp. bottom) part of the clause-box cor-
responding to Cj at non-intersection points in R. For each
positive clause {xi}, we place a vertical line-segment obsta-
cle that blocks the right side of Bi such that its endpoints are
non-intersection points in R. All these obstacles are placed
in such a way that no three line-segment obstacles intersect
at the same point. Again, it is not difficult to see that this can
be done with a proper layout of the boundary or R, and the
placement of these obstacles.

The constructed instance I has an overlap number at most
2. We define k = c1 · n+ 2m2 +m1 − (m′ −m2). Similar
arguments to the ones made in the proof of Theorem 2 show
that (F,m′) is a yes-instance of R-MN2Sat iff (I, k) is a
yes-instance of LINE-CONSTRAINT REMOVAL.

Bi

Figure 4: Illustration of the nesting used to confine the path.

Corollary 4. Unless ETH fails, LINE-CONSTRAINT RE-
MOVAL restricted to instances whose overlap number is at
most 2 cannot be solved in time 2o(

√
N), where N is the num-

ber of regions in the input instance.

Proof. Consider the NP-hardness reduction in the proof of
Theorem 3. This reduction maps an instance of R-MN2SAT
to an instance of LINE-CONSTRAINT REMOVAL of over-
lap number at most 2. It is not difficult to verify that the
number of regions in the instance I of LINE-CONSTRAINT
REMOVAL produced is quadratic in the number of variables
n of the R-MN2Sat formula. It follows that an algorithm
for LINE-CONSTRAINT REMOVAL that runs in time 2o(

√
N)

would give an algorithm for R-MN2Sat that runs in time
2o(n), and this would imply that ETH fails.

Corollary 5. Unless ETH fails, CONSTRAINT REMOVAL
restricted to instances whose overlap number is at most 2
cannot be solved in time 2o(n), where n is the number of
obstacles in the input instance.

Proof. Consider the NP-hardness reduction in the proof of
Theorem 3, but instead of using a linear number of line-
segment obstacles to form each layer of the boundary of R,
form the layer using a single rectilinear obstacle that is the
union of all these segments. It is easy to verify that the modi-
fied reduction results in O(n) obstacles, where n is the num-
ber of variables in the instance of R-MN2SAT. It follows that

6481

an algorithm for CONSTRAINT REMOVAL restricted to in-
stances whose overlap number is at most 2 that runs in time
2o(n) would give an algorithm for R-MN2Sat that runs in
time 2o(n), and this would imply that ETH fails.

Subexponential-time Algorithm

For an integer b ≥ 2, define b-OVERLAP MINIMUM CON-
STRAINT REMOVAL to be the restriction of MINIMUM
CONSTRAINT REMOVAL to instances whose overlap num-
ber is at most b. (For b ≥ 2, b-OVERLAP MINIMUM CON-
STRAINT REMOVAL is NP-hard by Theorem 3.) In this sec-
tion, we present an algorithm that solves an instance I of
b-OVERLAP MINIMUM CONSTRAINT REMOVAL in time
2O(

√
N), where N is the number of vertices in the auxil-

iary graph GI . Recall that the number of vertices N in GI

is the number of regions determined by the intersections of
the n obstacles in I , and hence N = O(n2). Whereas this al-
gorithm does not improve on the brute-force algorithm when
the number of regions N is quadratic in the number of obsta-
cles n, it does give a subexponential-time algorithm in terms
of n when the number of regions is o(n2), which improves
on the brute-force 2O(n)-time algorithm for the problem. By
Corollary 4, it is unlikely that b-OVERLAP MINIMUM CON-
STRAINT REMOVAL can be solved in time 2o(

√
N).

The algorithm we present is a divide-and-conquer algo-
rithm, based on a variant of the well-known balanced sep-
arator theorem for planar graphs (Lipton and Tarjan 1979).
This variant theorem (Miller 1986) states that the vertex-set
of a triangulated plane graph on N vertices can be parti-
tioned into three parts A,B, S such that: (1) S is a cycle
separating A from B and |S| ≤ √

8N ; (2) |A| ≤ 2N/3 and
|B| ≤ 2N/3; and (3) A is interior to S and B is exterior to
S (w.r.t. the plane embedding). The reason why we use this
variant theorem, as opposed to the celebrated planar separa-
tor theorem (Lipton and Tarjan 1979), is that for the problem
under consideration, this variant theorem allows for a more
efficient enumeration of the separator, as will be discussed
later. Our algorithm follows the approach in Woeginger et
al. (Deineko, Klinz, and Woeginger 2006), for computing a
Hamiltonian path in a planar graph on N vertices in time
2O(

√
N). There are complications, however, that are particu-

lar to b-OVERLAP MINIMUM CONSTRAINT REMOVAL. We
describe below how to deal with these complications.

Consider an instance I of b-OVERLAP MINIMUM CON-
STRAINT REMOVAL on n obstacles, and let GI be its auxil-
iary graph. We assign each obstacle in I a distinct represen-
tative color and assume that each vertex v in GI is colored
by the color-set representing the obstacles forming the re-
gion of v. As in (Deineko, Klinz, and Woeginger 2006), we
add edges to GI so that the resulting graph is a triangulation,
and then apply the cycle separator theorem (Miller 1986) to
partition the vertex-set of the resulting graph into A,B, S;
the added edges are removed afterwards, and play no role
other than determining A,B, S.

As in (Deineko, Klinz, and Woeginger 2006), the algo-
rithm maintains a configuration, which is a tuple, and an
auxiliary graph stipulating a partial ordering that the current
enumeration dictates on the path vertices. We skip these de-

tails since they are very similar to those in (Deineko, Klinz,
and Woeginger 2006), and highlight those that are particular
to b-OVERLAP MINIMUM CONSTRAINT REMOVAL. After
computing A,B, S, we enumerate every subset of S, as the
subset of vertices that are contained in the path, P , we seek.
For each enumerated subset F , we enumerate every subset
of colors C that appear both on vertices in S \ F and on
P . We then remove all colors in S from GI , and mark ev-
ery vertex containing a color that is in S \ F but not in C
as “forbidden”. Afterwards, the color-set appearing on ver-
tices in A is disjoint from that appearing on vertices in B,
because the colors that appear in both A and B must ap-
pear in S (the vertices on which the same color appears in-
duce a connected subgraph of GI), and those colors have
been removed. The number of enumerations so far is at most
2O(

√
8N) · 2O(b·√8N) = 2O(

√
N).

Fix such an enumeration. Next, we need to enumerate
the order in which P traverses the vertices in F . Enumer-
ating all permutations of the vertices in F will not result in a
2O(

√
N)-time algorithm. Instead, we adopt a similar enumer-

ation method to the one in Woeginger et al. (Deineko, Klinz,
and Woeginger 2006), which is based on the following ob-
servation. Suppose for now that the order in which P visits
the vertices in F has been revealed. For any two nonadjacent
vertices u, v in F∩V (P), say that u and v are A-consecutive
(resp. B-consecutive) on P if the subpath of P between u
and v, excluding u and v, is contained in A (resp. in B). Let
EA ⊆ F × F (resp. EB ⊆ F × F) be the set of edges be-
tween A-consecutive (resp. B-consecutive) vertices (these
edges are not in GI). The algorithm makes two recursive
calls, one on GI [A ∪ S] +EB after modifying the auxiliary
structure so that to enforce the order imposed by EA and
EB , and the other on GI [B ∪ S] + EA after modifying the
auxiliary structure so that to enforce the order imposed by
EA and EB . The algorithm returns an s-t path that is the
concatenation of a path having the minimum number of col-
ors resulting from the recursive call on GI [A∪S]+EB , with
a path having the minimum number of colors resulting from
the recursive call on GI [B ∪ S] + EA. The recursion stops
when the instance size reaches a suitable small number.

Now, to enumerate EA and EB efficiently without enu-
merating all permutations of F , we observe the following.
Since each edge in EA corresponds to a path in A interior to
the cycle S, the edges in EA are embeddable inside S, and
hence EA is a subset of edges of the edge-set of a triangula-
tion of S. It is well known that the number of triangulations
of S is 2O(|S|) = 2O(

√
N) (e.g., see (Michaels and Rosen

2007)[Theorem 6, Chapter 7]), and these triangulations can
be easily enumerated in time 2O(

√
N). Since each triangula-

tion contains O(|S|) many edges, the number of subsets of
edges in any triangulations is also 2O(

√
N). Therefore, the

total number of subsets of edges of triangulations of S is
2O(|S|) · 2O(

√
N) = 2O(

√
N). It follows that the number of

subsets EA that need to be enumerated is 2O(
√
N), and they

can be enumerated in time 2O(
√
N). Similarly, the number

of subsets EB that need to be enumerated is 2O(
√
N), and

they can be enumerated in time 2O(
√
N). After enumerating

6482

EA and EB , we can enumerate the first and last vertices in
F that P visits. Knowing these vertices and EA and EB is
sufficient to know the order in which P traverses F . Clearly,
the number of enumerations is still 2O(

√
N).

In conclusion, the number of enumerations needed to di-
vide the instance of size N into two, each of size at most
2N/3 + O(

√
N), is 2O(

√
N). This gives a recurrence rela-

tion T (N) = 2O(
√
N)T (2N/3), where T (N) is the running

time of the algorithm (plus an additive polynomial term),
whose solution is T (N) = 2O(

√
N).

Theorem 6. b-OVERLAP MINIMUM CONSTRAINT RE-
MOVAL can be solved in time 2O(

√
N), and unless ETH fails,

it cannot be solved in time 2o(
√
N), even when the obstacles

are line segments.

Proof. The upper bound follows from the algorithm above.
The lower bound follows from Corollary 4.

Experimental Evaluation

In this section, we experimentally evaluate the performance
of Hauser’s algorithm (Hauser 2014), several exponential
time algorithms and greedy approaches.

Implementations

Hauser. Hauser’s algorithm explores a state space in which
each state is represented as a vertex, v, and the cover of some
path P leading from the start, s, to v; the cover is defined
as the set of obstacles on P , which if removed, yield an
obstacle-free path from s to v. A state corresponding to a
vertex v is pruned if its cover is a super-set of the cover of
another state corresponding to v. The search ends when no
new state can be created. This search is guaranteed to be op-
timal and Hauser argued that the pruning step eliminates a
large number of states making the algorithm more practical.
Divide-and-Conquer Algorithm. We implemented the
divide-and-conquer algorithm discussed in the previous sec-
tion combined with some heuristics to speed-up the search.
Although the separators we computed were small and near-
balanced, the algorithm itself was computationally infeasi-
ble, even for instances with 20 obstacles. Therefore, at this
point, this algorithm remains mainly of theoretical interest,
and further research on using heuristics to optimize its run-
ning time is recommended.
Iterative Deepening Search. Iterative deepening search
(IDS) is a classic search strategy. In the context of the MIN-
IMUM CONSTRAINT REMOVAL problem, depth-first search
is performed on the auxiliary graph associated with the input
instance, with a limit to how many obstacles are removed.
We start this limit at 0, and increase it until a solution is
found. IDS is guaranteed to discover an optimal solution,
but may be impractical. Selecting which obstacles to remove
based on some heuristic is likely to improve the time. In ad-
dition to implementing the naive IDS, we implemented two
variations of IDS with heuristics:
• IDS with Minimum Cover Heuristic. At a state in the

search corresponding to a vertex v in GI , the search pro-
ceeds to the neighbor of v whose cover has minimum car-

dinality until it reaches its limit and then backtracks. The
search remains optimal, but in practice is quicker.

• IDS with Euclidean Distance Heuristic. In this search,
the vertices nearest to t are given priority: At a state in
the search corresponding to a vertex v in GI , the search
proceeds to the neighbor of v whose Euclidean distance to
t is minimum until it reaches its limit and then backtracks.

Greedy Search. Greedy, or best-first, search makes a lo-
cally optimal choice as it navigates through the auxiliary
graph. Unlike IDS, greedy search explores a single path and
does not guarantee an optimal solution. We rely on the same
heuristics as in the IDS implementations:
• Greedy Search with Minimum Cover Heuristic. At a

state in the search corresponding to a vertex v in GI , the
search proceeds to the neighbor of v whose cover has min-
imum cardinality.

• Greedy Search with Euclidean Distance Heuristic. At
a state in the search corresponding to a vertex v in GI ,
the search proceeds to the neighbor of v whose Euclidean
distance to t is minimum.

Empirical Results

The above algorithms were evaluated on three types of input
instances: (1) instances in which the obstacles are polygons;
(2) instances in which the obstacles are axes-parallel rectan-
gles; and (3) instances in which the obstacles are line seg-
ments. Shapes were generated by selecting random points
from a uniform distribution. The results for polygons and
rectangles are presented in Figure 5; the results for line seg-
ments are similar and omitted for lack of space.

For all simulations where n is greater than 50, Hauser’s al-
gorithm and IDS quickly become infeasible, requiring sev-
eral hours to produce a solution. Heuristic-informed IDS,
however, remain practical. For instances constructed with
100 random polygons, IDS with the Euclidean distance
heuristic (IDS-E) takes on average 31.4 seconds to discover
a solution. IDS with the minimum cover heuristic (IDS-MC)
requires 28.5 seconds. The greedy algorithms (Greedy-E and
Greedy-MC) are much faster (4.4 and 3.2 seconds respec-
tively). The same pattern is observed in simulations with
segments and rectangles: Greedy approaches are much more
efficient than optimal algorithms with heuristics, which, in
turn, are more efficient than naive implementations.

To test the limitations of the algorithms, simulations with
up to 1000 rectangles were evaluated. The results indicate
that simple heuristics can greatly increase the size of in-
stances that optimal and greedy algorithms can tackle. For
instance, IDS-E was able to find a solution in 684 seconds,
while Greedy-E discovered a solution in 277 seconds.

While the greedy algorithms with heuristics ran faster
than the iterative deepening searches, their solutions are not
guaranteed to be optimal. To evaluate the quality of their so-
lutions, we computed the approximation ratio—the ratio be-
tween the discovered solution and an optimal solution. In all
simulations of different shapes and sizes, the approximation
ratio was 1 or close to it. This finding suggests that the so-
lution space for random imputations of the problem is dense
and easily navigated by simple heuristics. However, one can
construct examples that confound these greedy algorithms,

6483

Figure 5: Average time for the six algorithms on 20 simula-
tions of n random polygons and rectangles.

and from a theoretical perspective, it can be shown that their
ratios approach the total number of obstacles.

Conclusions

Our study shows that, from the theoretical perspective, MIN-
IMUM CONSTRAINT REMOVAL is a very intractable prob-
lem, as it remains computationally hard even when the ob-
stacles have very simple geometric shapes. However, from a
practical perspective, the problem seems to be amenable to
standard heuristics, and can be solved efficiently and accu-
rately for large instances.

The major theoretical question left open, and posed in (Er-
ickson and LaValle 2013), is whether MINIMUM CON-
STRAINT REMOVAL becomes polynomial-time solvable if
we restrict it to instances in which no obstacle intersects
more than a constant number of other obstacles. Certainly,
this is a natural restriction on the problem that seems to
be challenging, and deserves further investigation. From the
practical side, it would be interesting to see implementations
of the divide-and-conquer algorithm, that lead to an exact al-
gorithm for the problem with a better performance than the
exact algorithms implemented in the current work.

Acknowledgments The authors are thankful to the re-
viewers. Eiben was supported by Pareto-Optimal Parame-
terized Algorithms (ERC Starting Grant 715744) and by the
Austrian Science Fund (FWF, projects P26696 and W1255-
N23). Gemmell, Kanj, and Yougdahl were supported by De-
Paul University Academic Initiatives Pool grant #601347.

References

Aghighi, M.; Bäckström, C.; Jonsson, P.; and Ståhlberg, S.
2016. Refining complexity analyses in planning by exploit-
ing the Exponential Time Hypothesis. Annals of Mathemat-
ics and Artificial Intelligence 78(2):157–175.
Alt, H.; Cabello, S.; Giannopoulos, P.; and Knauer, C. 2011.
On some connection problems in straight-line segment ar-
rangements. In Proceedings of EuroCG, 27–30.
Chan, D., and Kirkpatrick, D. 2014. Multi-path algorithms
for minimum-colour path problems with applications to ap-
proximating barrier resilience. Theoretical Computer Sci-
ence 553:74–90.
de Haan, R.; Kanj, I.; and Szeider, S. 2015. On the
subexponential-time complexity of CSP. Journal of Arti-
ficial Intelligence Research 52:203–234.
Deineko, V.; Klinz, B.; and Woeginger, G. 2006. Exact algo-
rithms for the Hamiltonian cycle problem in planar graphs.
Operations Research Letters 34(3):269–274.
Erickson, L., and LaValle, S. 2013. A simple, but NP-hard,
motion planning problem. In Proceedings of AAAI. AAAI
Press.
Hauser, K. 2014. The minimum constraint removal problem
with three robotics applications. International Journal of
Robotics Research 33(1):5–17.
Johnson, D., and Szegedy, M. 1999. What are the least
tractable instances of Max independent set? In Proceedings
of SODA, 927–928. ACM/SIAM.
Kumar, S.; Lai, T.; and Arora, A. 2005. Barrier coverage
with wireless sensors. In Proceedings of MOBICOM, 284–
298. ACM.
Lipton, R., and Tarjan, R. 1979. A separator theorem
for planar graphs. SIAM Journal on Applied Mathematics
36(2):177–189.
Lokshtanov, D.; Marx, D.; and Saurabh, S. 2011. Lower
bounds based on the exponential time hypothesis. Bulletin
of the EATCS 105:41–72.
Michaels, J., and Rosen, K. 2007. Applications of Discrete
Mathematics. New York: McGraw Hill.
Miller, G. 1986. Finding small simple cycle separators for
2-connected planar graphs. Journal of Computer and System
Sciences 32(3):265–279.
Tseng, K., and Kirkpatrick, D. 2012. On barrier resilience of
sensor networks. In Proceedings of ALGOSENSORS, 130–
144.
Yang, S. 2012. Some Path Planning Algorithms in Com-
putational Geometry and Air Traffic Management. Ph.D.
Dissertation, University of New York at Stony Brook.

6484

