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Abstract

We present a reinforcement learning approach to explore
and optimize a safety-constrained Markov Decision Process
(MDP). In this setting, the agent must maximize discounted
cumulative reward while constraining the probability of en-
tering unsafe states, defined using a safety function being
within some tolerance. The safety values of all states are not
known a priori, and we probabilistically model them via a
Gaussian Process (GP) prior. As such, properly behaving in
such an environment requires balancing a three-way trade-off
of exploring the safety function, exploring the reward func-
tion, and exploiting acquired knowledge to maximize reward.
We propose a novel approach to balance this trade-off. Specif-
ically, our approach explores unvisited states selectively; that
is, it prioritizes the exploration of a state if visiting that state
significantly improves the knowledge on the achievable cu-
mulative reward. Our approach relies on a novel information
gain criterion based on Gaussian Process representations of
the reward and safety functions. We demonstrate the effec-
tiveness of our approach on a range of experiments, including
a simulation using the real Martian terrain data.

Introduction

In many environments, an autonomous agent must discover
both potential hazards as well as rewards on-the-fly. For
example, in case of NASA’s rovers exploring the surface
of Mars, the driving safety and scientific gain of unvisited
places cannot be perfectly known a priori. Hence, at the end
of each Martian day, called Sol (approximately 24 hours and
40 minutes), the rover takes a set of panorama images and
send it to the Earth. The ground operators identify science
targets as well as hazards in the images, and plan a path for
the next Sol, which is typically less than 100 meters. This
process is exploratory by nature; the rover needs to explore
unvisited regions in order to make discoveries, but in a way
to assure safety. However, the agent is not fully autonomous
in this case because there does not exist a good algorithm to
fully drive the decision-making process in situ.

Traditional exploration approaches in reinforcement
learning (Sutton and Barto 1998; Bertsekas and Tsitsiklis
1995) are agnostic to safety, and instead focus on efficient
exploration under the assumption of ergodicity of the state
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transitions, i.e., that all states are assumed to be reachable.
In practical applications, an agent is not necessarily able
to reach all (safe) states because of (blocking) hazardous
states. On the other hand, especially in the field of robotics,
there is a significant body of work on safety-constrained
decision-making (Fleming and McEneaney 1995; Schwarm
and Nikolaou 1999; Blackmore et al. 2010; Ono et al. 2015).
While these methods consider uncertainty what state one
is in, they assume that unsafe states are known a priori.
Removing this assumption requires exploration of safety,
which is a central focus of our work.

To develop a tractable approach for exploring the safe
region, we make regularity assumptions that similar states
have similar safety levels. In particular, we model the safety
function as a Gaussian process (GP) (Rasmussen 2006), with
an appropriate kernel to capture similarity between states.
Previous work on safe optimization using GP have largely
focused on the state-less setting, such as in Bayesian opti-
mization (Mockus 2012). Another typical limitation is when
the reward function and the safety function are identical (Sui
et al. 2015), e.g., an unsafe state is one where the reward
function is too low.

In stateful settings, such as Markov Decision Processes
(MDPs), previous work on safe optimization either ig-
nore additional structure (Moldovan and Abbeel 2012), or
can only exploit structure for exploring the safe region
(Turchetta, Berkenkamp, and Krause 2016) (i.e., pure explo-
ration). The former suffers from longer convergence times
since it cannot exploit the GP structure, and the latter suffers
from not actually optimizing the reward function.

Our Contributions. In this paper, we propose a novel
safe-constrained exploration and optimization approach that
maximizes discounted cumulative reward while guarantee-
ing safety. As demonstrated in Figure 1, we optimize over
constrained MDPs with a priori unknown two functions, one
for reward and the other for safety. A state is considered safe
if the safety function value is above a threshold.

As alluded to above, compared to previous work on
jointly exploring and optimizing safety-constrained MDPs
(Moldovan and Abbeel 2012), our approach is unique in two
aspects. First, (Moldovan and Abbeel 2012) puts no assump-
tion on the structure of reward and safety functions. While
that approach is more general, in practice, nearby states of-
ten have the similar levels of safety. For example, if a Mars
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Figure 1: Conceptual images of the planning problem under uncertainty on reward and safety.

rover experiences high slippage at a certain location, it is
likely to experience similar slip one meter away. Properly
modeling this dependency can significantly reduce the cost
of exploration. Second, our approach is able to estimate the
long-term value of exploring new safe regions. In contrast,
the approach by (Moldovan and Abbeel 2012) assigns uni-
form additional reward for visiting unvisited states, which
can be substantially less efficient.

At a high level, our approach employs two MDPs, which
we call Optimistic and Pessimistic MDPs, and uses the dif-
ference in the value functions as the information gain crite-
rion. Our GP safety function yields three classes of states:
safe, unsafe, and uncertain. The only difference between the
Optimistic and Pessimistic MDPs is that uncertain states are
considered safe former and unsafe in the latter. Using this
criterion, the agent is motivated to explore uncertain states
that could result in high cumulative reward if they are deter-
mined safe.

We demonstrate empirically that our approach yields
more efficient safe exploration and optimization com-
pared to (Moldovan and Abbeel 2012) and (Turchetta,
Berkenkamp, and Krause 2016). The simulations are per-
formed on both synthetic environments, as well as real envi-
ronments of two locations on Mars.

Problem Statement
We formulate a constrained MDP, defined as a tuple 〈S , A,
f(s, a), r(s, a), g(s), γ〉. S is a set of states {s}, A is a set
of actions {a}, f : S × A → S is a deterministic transition
model, r : S × A → R is a (bounded) reward function, g :
S → R is a safety function, and γ ∈ R is a discount factor.
We assume that reward and safety functions are not known a
priori. Hence, an agent must explore the state space to learn
these functions. At every discrete time step t, the agent is
required to be in a safe state, that is, the safety function value
g(st) of state st must be above some threshold h ∈ R. A
policy π : S → A maps a state to actions. The value of a
policy is defined as the discounted cumulative reward over
the next N steps while guaranteeing the satisfaction of the
safety constraint. The optimal planning problem in this MDP
is represented as follows:

maximize : V π
N (s) = E

[
N∑
t=1

γt−1r(st, at)

]

subject to : g(st) ≥ h, ∀t = [1, N ].

In conventional reinforcement learning, the explo-
ration/exploitation trade-off is a central issue. Compared to
the conventional setting, the key difference of our setting is
the need to also explore the safety function g. In the rest of
the paper, we first describe how we use Gaussian processes
to model the safety function and classify the states as safe,
unsafe, or uncertain. Then, we describe our algorithm for
leveraging this information to efficiently explore the safe
region to the extent necessary for optimizing the reward
function.

Characterization of Safety

We employ Gaussian processes (GPs) to represent and es-
timate the safety and reward functions, g and r. For clarity
of exposition, we focus our description of GPs with respect
to modeling g.1 In many practical applications, safety ex-
hibits regularity; that is, similar states possess the similar
level of safety.2 Such regularities can be naturally modeled
using GPs.

Using the GP model, the value of g at unvisited states
are predicted based on the observations at visited states. The
GP-based predictions have uncertainty, which is represented
by Gaussian distributions. As a result, unvisited states are
naturally categorized into three classes: safe, unsafe, and un-
certain. Roughly speaking, an unvisited state is considered
safe if the safety function value is above the threshold almost
certainly (i.e., with a greater probability than a pre-defined
confidence level), is considered unsafe if the safety function
value is below a threshold almost certainly, and is considered
uncertain otherwise. These concepts are shown in Figure 2.

We assume that state space S is endowed with a positive
semidefinite kernel function k(·, ·), and that the safety func-
tion g(s) has bounded norm in the associated Reproducing
Kernel Hilbert Space (RKHS). The kernel function k is used
to capture similarity between states, and formalizes the as-
sumption that similar states have similar levels of safety. The
safety function can thus be modeled as:

g(s) = GP(μg(s), kg(s, s′)).

A GP is fully specified by its mean, μg(s), and covari-
ance, kg(s, s′). Without loss of generality, let μg(s) = 0

1Our approach does not prohibit other regression methods from
being used for the reward function.

2We do not focus on the situations where environmental hazards
are expressed as binary function (e.g., rocks and cliffs).
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(a) t = 1 (b) t = 2 (c) t = 8

Figure 2: Conceptual image of the characterization of safety. Green curve and blue band represent mean and confidence interval,
respectively. The magenta line means the safety threshold, h. Blue, yellow, and red bars represent the safe region, uncertain
region, and unsafe region, respectively.

for all s ∈ S . We model observation noise as yg =
g(s) + ng , where ng ∼ N (0, ω2). The posterior over g(s)
is computed analytically, based on t measurements at states
At = {s1, · · · , st} with measurements, yg

t = [g(s1) +
ng
1, · · · , g(st)+ng

t ]
�. The posterior mean, variance, and co-

variance are given as:

μg
t (s) = kg

t (s)
�(Kg

t + ω2I)−1yg
t

σg
t (s) = kgt (s, s) (1)

kgt (s, s
′) = kg(s, s′)− kg

t (s)
�(Kg

t + ω2I)−1kg
t (s

′),

where kg
t (s) = [kg(s1, s) · · · , kg(st, s)]� and Kg

t is the
positive semidefinite kernel matrix, [kg(s, s′)]s,s′∈At . We
further assume that the safety function g is Lipschitz contin-
uous, with Lipschitz constant L, with respect to some met-
ric d(·, ·) on S . This assumption is naturally satisfied using
common kernel functions (Ghosal and Roy 2006).

Safe space We employ the same definition of safe space as
(Turchetta, Berkenkamp, and Krause 2016). First, let S̃safe

t
be the set of states that satisfy the safety constraint. The safe
space is a subset of S̃safe

t that is reachable and returnable.
Intuitively, a state is reachable if it can be reached from a
visited safe state. For example, an “island” of unvisited safe
states that is isolated by unsafe states is not reachable. A
state is returnable if the agent can return to a visited safe
state from the state. For example, on a directed graph, a basin
of unvisited safe states that “trap” the agent because there are
no outgoing edges is not returnable.

First, we formally define S̃safe
t , the set of states that satisfy

the safety constraint. A GP model enables an agent to judge
safety by providing it the confidence interval that has a form
Qt(s) = [μt−1(s) ±

√
βtσt−1(s)], where βt is a positive

scalar specifying the required level of safety. In other words,
β inherently specifies the probability of violating the safety
constraint. Following (Srinivas et al. 2010) and (Sui et al.
2015), for our experiments we use βt = 2, ∀t ≥ 0, and
refer to the previous work for a more detailed discussion. We
then consider the intersection of Qt up to iteration t, which
is recursively defined as Ct(s) = Qt(s)∩Ct−1(s), C0(s) =

[h,∞], ∀s ∈ S̃safe
0 . We denote the lower and upper bounds

on Ct(s) by lt(s) := minCt(s) and ut(s) := maxCt(s),

respectively. With the Lipschitz constant L, S̃safe
t is defined

as follows:

S̃safe
t = {s ∈ S | ∃s′ ∈ Ssafe

t−1 : lt(s
′)− Ld(s, s′) ≥ h}.

Since the prediction by the GP is probabilistic, being in S̃safe
t

means the safety constraint is satisfied with high probability.
The probability of entering the safe states is guaranteed to be

Pr[g(s) > h | l(s′)− Ld(s, s′) > h]

≥ Pr[g(s) > h | l(s) > h]

≥ Pr[g(s) > l(s) | l(s) > h]

= Pr[g(s) > l(s)]

The last equality exploits the conditional independence.
Note that this probability can be tuned by β.

Next, we formally define the reachable and returnable
sets. Given S , the set that is reachable from S in one step is
Rreach(S) = S ∪ {s ∈ S | ∃s′ ∈ S, a ∈ A : s = f(s′, a)}.
Given sets S and S̄ , the set that is returnable to S̄ with
one step is given as Rret(S, S̄) = S̄ ∪ {s ∈ S | ∃a ∈
A : f(s, a) ∈ S̄}. The n-step returnability operator can
be represented as Rret

n (S, S̄) = Rret(S, Rret(S, · · · )). Us-
ing this operator, the returnable set is given by R̄ret(S, S̄) =
limn→∞Rret

n (S, S̄). Finally, the set of safe states that fulfill
reachability and returnability, Ssafe

t , is defined as:

Ssafe
t = {s ∈ S̃safe

t | s ∈ Rreach(Ssafe
t−1) ∩ R̄ret(S̃safe

t , Ssafe
t−1)}.

Unsafe space We extend the setting of (Turchetta,
Berkenkamp, and Krause 2016) to also define the unsafe
space, Sunsafe

t . As in the safe set, we first define the set of
states that violate the safety constraint with a high confi-
dence as:

S̃unsafe
t = {s ∈ S | ∃s′ ∈ S : ut(s

′) + Ld(s, s′) ≤ h}.
Using the returnable set defined above, the unsafe space, de-
noted by Sunsafe

t , is defined as:

Sunsafe
t = {s ∈ S | s ∈ S̃unsafe

t ∪ (S̃safe
t ∩ R̄ret

c (S̃safe
t , Ssafe

t−1)},
where Xc represents the complementary set of a set X . Note
that we do not take into account reachability. In other words,
an “island” of unvisited states should be regarded as unsafe.
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Uncertain Space Finally, the uncertain space is simply the
set of remaining states that belong to neither the safe nor
unsafe spaces:

Suncertain
t = S \ (Ssafe

t ∪ Sunsafe
t

)
.

Intuitively, uncertain states can be either safe or unsafe, and
an agent must explore the uncertain space to find new safe
states with high reward. However, uncertain states cannot be
guaranteed to be safe, so the agent must leverage the struc-
ture of the safety function (i.e., the similarity kernel) and
explore the boundary of the safe space to collect measure-
ments that are informative of uncertain states.

Method

Our proposed algorithm is named SAFEEXPOPT-MDP ,
which is summarized in Algorithm 1. At each iteration, the
agent observes the reward and safety function values of the
current state, and update the GP models. Using the updated
GPs, the agent then updates the safe, unsafe, and uncertain
sets (Line 3). Given these sets, the agent solves Optimistic
and Pessimistic MDPs (explained in the following subsec-
tions) using a PAC-MDP or Near-Bayesian Optimal algo-
rithm, and obtain their value functions (Line 4). Then, the
agent chooses the next action such that the linear combina-
tion of the two value functions is maximized (Line 5). Note
that the linearly combined value functions in Line 5 can also
be represented as J̄N + η(ĴN − J̄N ).

Therefore, the resulting policy favors an action to visit
states that have a large difference in value between the Op-
timistic and Pessimistic MDPs. We interpret this difference
corresponds to an information gain criterion, because it be-
comes zero when the level of uncertainty on safety is simi-
lar along with the paths obtained in two MDPs. Hence, this
mechanism motivates the agent to selectively explore the
states which could result in significant increase in the cu-
mulative reward.

Value of Exploration of Safety

Ultimately, the agent’s objective is to maximize the amount
of reward collected. Thus, the value of exploration should be
directly tied to the potential reward that could be collected.
Then, how should we evaluate the value of exploration of a
given unvisited state? As alluded to above, we quantify the
value of exploration as the difference between the optimistic
case (where uncertain states are all safe) and the pessimistic
case (where uncertain states are all unsafe), as described in
Line 5 of Algorithm 1. The Bayes-optimal, optimistic, and
pessimistic value functions are obtained by solving the fol-
lowing Bellman equation:

V ∗N (s, br, bg) = max
a

[∑
s′

I(s′ | s, a, bg) · Ps,a,s′ ·

{E[r(s′)] + γV ∗N−1(s
′, brs,a,s′ , b

g)}
]
,

where I is a safety indicator function (explained shortly), P
is the deterministic transition probability, br and bg are the
belief of reward and safety functions, respectively, at time

Algorithm 1 SAFEEXPOPT-MDP
1: loop
2: Observe reward and safety values of the current state, and

update GP models
3: Update Ssafe

t , Suncertain
t , and Sunsafe

t

4: Compute ĴN for Optimistic MDP and J̄N for Pessimistic
MDP by Eq. (5) and Eq. (6)

5: Derive the optimal policy to maximize ηĴN + (1 − η)J̄N

by Eq. (8)
6: Execute the next optimal action
7: end loop

step N , and brs,a,s′ is the posterior belief of reward after tak-
ing the action a and moving to s′.

Optimistic MDP assumes that all the uncertain states
are safe. Hence, the safety indicator function for Optimistic
MDP is defined as:

Î(s′ | s, a, bg) :=
{

1 if s′ ∈ Ssafe ∪ Suncertain

0 otherwise (2)

We denote the value function of the Optimistic MDP by V̂N .
Pessimistic MDP assumes that all the uncertain state are

unsafe. Hence, the safety indicator function for Pessimistic
MDP is defined as:

Ī(s′ | s, a, bg) :=
{

1 if s′ ∈ Ssafe

0 otherwise (3)

We denote the value function of the Pessimistic MDP by V̄N .
The two value functions always satisfy the relationship,

V̄ ∗N ≤ V ∗N ≤ V̂ ∗N ,where V ∗N is the value function of the
Bayes optimal policy for the original problem. Figure 3
shows an example of the classification of the state space,
and Table 1 concludes the definition of value functions.

Incentivizing Exploration of Reward Function

Practically, the above Bellman equations for the Optimistic
and Pessimistic MDPs are very difficult to solve. Instead,
we solve them approximately. Previous work proposed al-
gorithms that have a property called Probably Approximate
Correct in Markov Decision Process (PAC-MDP) (Kearns
and Singh 2002; Brafman and Tennenholtz 2002; Kakade
and others 2003; Strehl et al. 2006) or Near-Bayes Opti-
mal (Strens 2000; Kolter and Ng 2009; Araya, Buffet, and
Thomas 2012). The general idea of PAC-MDP and Near-
Bayesian Optimal is that, with probability of 1− δ, an agent
following the policy π can obtain the reward such that

V π > V ∗ − ε

for all but m time steps. For example, the Bayesian Explo-
ration Bonus (BEB) algorithm (Kolter and Ng 2009) gives m
that is O( |S||A|N

6

ε2 log |S||A|δ ). In PAC-MDP and Near-Bayes
Optimal approaches, the approximately optimal policy π is
obtained by Delayed Q-learning or the exploration bonus al-
gorithm, which adds “bonus” to the original reward function
for exploring unexplored states. As a result, the value func-
tion including the bonus, denoted by Jπ , is always greater
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(a) True classification

(b) Optimistic: 10% (c) Optimistic: 30% (d) Optimistic: 60%

(e) Pessimistic: 10% (f) Pessimistic: 30% (g) Pessimistic: 60%

Figure 3: An example of the classification of state space. Blue region represents Ssafe ∪ Suncertain for optimistic case and Ssafe

for pessimistic. The percentage for each figure means the time course against the time step large enough to explore S .

Table 1: Definition of value (objective) functions. As for reward, we can consider three cases: actually obtainable, Bayes
optimal, and value by algorithm. In the case of safety, we consider pessimistic, Bayes optimal, and optimistic cases.

V̄ π
N V̄ ∗N J̄π

N V ∗N V̂ π
N V̂ ∗N Ĵπ

N

Reward Actually Bayes Value by Bayes actually Bayes Value by
obtainable optimal algorithm optimal obtainable optimal algorithm

Safety Pessimistic Pessimistic Pessimistic Bayes Optimistic Optimistic Optimisticoptimal

than the actual value function and satisfies the following
with the probability of 1− δ:

V π ≤ V ∗ ≤ Jπ and V π ≥ Jπ − ε ≥ V ∗ − ε, (4)
for all but m time steps. With an exploration bonus algo-
rithm, such as BEB, the value functions with bonus for the
Optimistic and Pessimistic MDPs, Ĵπ and J̄π , are given as
follows:

Ĵπ(s, br, bg) = max
a

[∑
s′

Î · Ps,a,s′ ·

{E[r] + R̃+ γĴπ(s, br, bg)}
]
,

(5)

J̄π(s, br, bg) = max
a

[∑
s′

Ī · Ps,a,s′ ·

{E[r] + R̃+ γJ̄π(s, br, bg)}
]
,

(6)

where R̃ is the term for the exploration bonus. Note that the
belief of reward br and safety bg are not updated in these
equations, which means that we can solve the equation us-
ing the standard value iteration or policy iteration algorithm.
Our proposed method optimizes two MDPs, so has a similar
tractability compared with conventional MDP algorithms.

Overall Policy

As mentioned above, our algorithm evaluates the value of
exploration by the difference of the approximate value func-

tions of the Optimistic and Pessimistic MDPs. Let ΔJ be
the difference, and define

ΔJN := ĴN − J̄N .

Intuitively, the agent obtains a high information gain on
safety when visiting a state with a large ΔJ . After comput-
ing ĴN and J̄N , the agent chooses the next action by follow-
ing the policy given as:

πN =argmax
s′∈Ssafe

{J̄N + ηΔJN} (7)

=argmax
s′∈Ssafe

{ηĴN + (1− η)J̄N}, (8)

where η ∈ [0, 1] is a weight coefficient. Note that our ap-
proach optimizes the interpolating point between the opti-
mistic and pessimistic policies. One can view η as control-
ling for the degree of optimism versus pessimism.3 Also,
note that the next state is chosen from Ssafe in Equation (8).

Proof of Consistency

We prove a consistency result that the objective function
in our approach converges as time horizon goes to infinity.
More specifically, the following theorem holds:

3η often has intuitive, physical meaning, which helps in tuning.
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Table 2: Simulation result for a simple grid world (100 times Monte-Carlo simulation). Our approach achieves higher expected
reward with less exploration, which suggests that our approach is able to better trade off between exploration and exploitation
and avoid unnecessary exploration.

Normalized cumulative reward Percentage explored
SAFEEXPOPT-MDP 0.774 ± 0.183 7.4 ± 2.9

Moldovan & Abbeel (2012) 0.740 ± 0.213 8.6 ± 3.1
Turchetta et al. (2016) 0.701 ± 0.248 10.6 ± 2.1

Safe known 0.841 ± 0.089 -
Safe/reward known 1.00 ± 0.000 -

Theorem 1. For given δ, there exists the upper bound of
error, ε = ηε̂ + (1 − η)ε̄ for the value function (8) with a
probability of 1 − δ for all but the first m time steps such
that:

0 ≤ (ηĴN + (1− η)J̄N )− (ηV̂ ∗N + (1− η)V̄ ∗N ) ≤ ε.

Proof. After the sufficiently large number of time steps, (4)
holds with high probability for both the optimistic and pes-
simistic policies, and the following inequalities are satisfied:

ηV̂ ∗N + (1− η)V̄ ∗N ≤ ηĴN + (1− η)J̄N

≤ η(V̂ π
N + ε̂) + (1− η)(V̄ π

N + ε̄)

≤ η(V̂ ∗N + ε̂) + (1− η)(V̄ ∗N + ε̄),

where ε̂ and ε̄ are confidence intervals in the optimistic and
pessimistic policies, respectively. The inequalities are satis-
fied with the high probability of 1 − δ = (1 − δ̂)(1 − δ̄),
where δ̂ and δ̄ are the probability that Equation (4) does not
hold against each policy. Hence, a novel value function in
our paper approaches to ηV̂ ∗N + (1 − η)V̄ ∗N as closely as
ε = ηε̂+ (1− η)ε̄ with high probability of 1− δ for all but
a certain time steps.

Experiments

We evaluate our approach on two problem settings. One is
with randomly generated environments on which we per-
form Monte-Carlo simulations, and the other is with envi-
ronments created from real Martian terrain data. For each
simulation, GP hyper-parameters are obtained through trial
and error. As for the two Mars simulations, we refer to
the previous work by (Turchetta, Berkenkamp, and Krause
2016) and use similar parameters.

Monte-Carlo Simulations with Randomly
Generated Problems

We consider a 30 × 30 rectangular grid, where reward and
safety values are randomly generated and assigned to states.
At every state (except for the boundary), the agent can take
one of five actions: stay, up, down, left, and right.

The exploring agent predicts the safety function g via GP
with a Radial Basis Function (RBF) kernel with the length-
scales being 2.0 and the prior variance of safety being 1.5.
The agent also models the reward function r as a GP with

RBF kernel with the lengthscales of 2.0 and prior variance
of 1.0. Throughout the simulation, the discount rate is set to
0.90 and beta is set as βt = 2, ∀t ≥ 0.

The Optimistic and Pessimistic MDPs are solved by the
BEB algorithm with the weight coefficient of 2.5 for the
exploration bonus. In the MDPs, the estimated mean of re-
ward function is used. The safety constraint is imposed by
removing the unsafe states from S in the Optimistic MDP,
and by removing unsafe and uncertain states from S in the
Pessimistic MDP. The weight coefficient between optimistic
and pessimistic policies is set to η = 0.50.

Our approach is compared with the ones by (Moldovan
and Abbeel 2012) and (Turchetta, Berkenkamp, and Krause
2016), as well as with two non-exploratory cases where 1)
safety function is known and 2) safety and reward functions
are known a priori. In order to make a fair comparison, the
MDPs are solved by the BEB algorithm in all the targets of
comparison ((Moldovan and Abbeel 2012) used R-MAX in
their paper). We performed a Monte-Carlo simulation with
100 samples of randomly generated reward and safety. The
number of iteration is fixed and defined as 100.

Table 2 shows the simulation results. We see that our ap-
proach outperforms the competing baselines, although there
is a sizable gap compared to more omniscient agents. Note
also that our approach explored the fewest uncertain states
compared to the baselines, and instead spent more effort
finding a good reward function within a high quality safe re-
gion. These results show that our approach is able to better
balance the three-way trade-off between exploring the safe
region, exploring the reward function, and exploiting known
rewards.

Simulated Mars Surface Exploration

We next demonstrate SAFEEXPOPT-MDP algorithm
in simulated Mars surface exploration scenarios, as in
(Moldovan and Abbeel 2012) and (Turchetta, Berkenkamp,
and Krause 2016). Two scenarios are simulated. The first
scenario uses the similar environment as in (Turchetta,
Berkenkamp, and Krause 2016), where the elevation map of
Mars over a 40 by 30 meters area at latitude 30◦6’ South
and longitude 202◦2’ East is used. The elevation map is
derived from the digital terrain models (DEMs), created
from HiRISE camera on the Mars Reconnaissance Orbiter
(McEwen et al. 2007). Figure 4 shows the elevation map
whose step size is 1 meter.
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Table 3: Simulation result for Martian terrain. As with Table 2, our approach achieves higher reward with less exploration.
First Mars exploration scenario Second Mars exploration scenario

Cumulative reward Percentage explored Cumulative reward Percentage explored
SAFEEXPOPT-MDP 36 5.3 % 67 11.8 %

Moldovan & Abbeel (2012) 29 5.8 % 45 12.9 %
Turchetta et al. (2016) 5 6.7 % 0 15.3 %

Safe known 48 - 78 -
Safe/reward known 63 - 458 -

Figure 4: Mars digital elevation model by HiRISE data [m].

The reward function is binary: one if a state is within a
scientific region of interest (ROI), and zero otherwise. We
assume a hypothetical rectangular ROI at 16 ≤ x ≤ 24 and
21 ≤ y ≤ 30. The rover (i.e., the agent) starts from (0, 0),
and at each time step it takes one of five actions: stay, up,
down, left, and right. We also assume that any states where
the slope is greater than 25 degrees are unsafe. Hence, the
safety function g is defined as g(s, a) = H(s) − H(s′),
where H is the elevation of a given state. The safety thresh-
old is h = − tan(25◦).

The rover predicts the elevation using a GP with a Matern
kernel with ν = 5/2. The lengthscales are 15.0 m and the
prior variance over elevation is 100 m2. We assume a noise
standard deviation of 0.075 m. To predict the reward func-
tion, it uses a GP with Radial Basis Function (RBF) kernel.
The lengthscales are 10.0 m and the prior variance over re-
ward is 50. We set the level of confidence as βt = 2, ∀t ≥ 0.
Optimistic/Pessimistic MDPs are solved by BEB algorithm
with the weight coefficient for exploration bonus at 2.5. The
discount factor is set to 0.90, and the weight coefficient be-
tween optimistic and pessimistic policies is η = 0.50.

Our algorithm is compared against the same algorithms
as in the previous simulation. The simulation result is sum-
marized in the left half of Table 3. The result shows that
our algorithm outperforms existing algorithms in terms of
the cumulative reward even for the binary reward function.
We observe a 24% relative improvement in reward com-
pared to the next best baseline. Note that since the reward
function is more peaked, the pure exploration approach by
(Turchetta, Berkenkamp, and Krause 2016) performs sub-
stantially worse. We again observe that our approach con-

Figure 5: Data on the slope angle [deg] and ROI employed
for the landing site selection of Mars 2020 rover.

ducts the least amount of exploration of the safety region,
which indicates it is better able to balance the trade-off be-
tween exploring the safety region and the reward function.

The second scenario is based on the potential exploration
scenario of Mars 2020 rover. We employ the real data of a
region over 1.75 by 1.75 kilometers around Holden Crater,
one of the previous candidates of the landing site of Mars
2020 rover. The safety function g is the slope angle, and we
assume that every state where the slope is greater that 25
degrees is unsafe.

The reward function r is defined as a binary function
meaning scientific gain: one if a state is within a ROI, and
zero otherwise. The rover predicts the elevation using a GP
with a Matern kernel with ν = 5/2. The lengthscales are
50.0 m and the prior variance over elevation is 100 deg2. We
assume a noise standard deviation of 0.075 deg. To predict
the reward function, the agent (rover) uses a GP with RBF
kernel. The lengthscales are 50.0 m and the prior variance
over reward is 50. Other simulation settings are equivalent
with previous Mars simulation in this paper.

Figure 5 represents simulation environment in which the
color map behind is the slope angle [deg] and the region sur-
rounded by the black close curve represents ROI. The step
size is 25 meters, and we consider 70× 70 rectangular grid.
The rover starts from (0, 0), and takes a route represented by
red circles. At the initial phase before arriving at the ROI,
all the area around an agent is safe and reward-poor, so an
agent considers that all the environment has similar charac-
teristics. Hence an agent explores the state space all evenly
by randomly choosing the next action. When the value func-
tions are exactly equal between more than one state, an agent
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randomly chooses the next state and action pair. However,
once the agent discovers the ROI, it is likely to prefer to stay
within the ROI. In addition, observe that the rover does not
run through the states in which the slope angle is greater
than 25 degrees, which shows that the rover succeeded in
safely arriving at ROI. The simulation result is summarized
in the right half of Table 3. There is a large gap between
not knowing the safety/reward functions and knowing them
(i.e., unrealistic case), which suggests there is still room for
improving the algorithm.

Conclusion

We presented a novel approach for exploring and optimizing
safety constrained MDPs. By modeling a priori unknown re-
ward and safety via GPs, an agent can classify state space
into safe, uncertain, and unsafe regions. The agent then op-
timizes the linear combination of optimistic policy and pes-
simistic policy. This algorithm automatically encourages ex-
ploration of safety while balancing exploration/exploitation
of reward. In addition, the agent can guarantee safety with
high probability by exploiting GP structure of the safety
function. Finally, we demonstrated the effectiveness of our
proposed method by theoretical analysis and numerical sim-
ulation. Moving forward, it would be interesting to develop
rigorous finite-time rates of convergence (rather than just an
asymptotic consistency result), as well as extend to multiple
heterogeneous safety and reward functions.
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