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Abstract
In many reinforcement learning problems, parameters of the
model may vary with its phase while the agent attempts to
learn through its interaction with the environment. For exam-
ple, an autonomous car’s reward on selecting a path may de-
pend on traffic conditions at the time of the day or the transi-
tion dynamics of a drone may depend on the current wind di-
rection. Many such processes exhibit a cyclic phase-structure
and could be represented with a control policy parameterized
over a circular or cyclic phase space. Attempting to model
such phase variations with a standard data-driven approach
(e.g. deep networks) without explicitly modeling the phase
of the model can be challenging. Ambiguities may arise as
the optimal action for a given state can vary depending on
the phase. To better model cyclic environments, we propose
phase-parameterized policies and value function approxima-
tors that explicitly enforce a cyclic structure to the policy
or value space. We apply our phase-parameterized reinforce-
ment learning approach to both feed-forward and recurrent
deep networks in the context of trajectory optimization and
locomotion problems. Our experiments show that our pro-
posed approach has superior modeling performance than tra-
ditional function approximators in cyclic environments.

Introduction
In reinforcement learning, an agent learns by interacting
with the environment. The agent takes an action and re-
ceives a reward from the environment which transitions to
a new state. In many real world problems, model parameters
such as reward and transition dynamics may vary while the
agent is still learning through its interactions. For example,
a drone may experience winds from different directions as
it learns to navigate, requiring different strategies to coun-
teract movement caused by the wind. An autonomous car
may receive a high reward on choosing a particular path to
its destination at one time of the day but low reward dur-
ing another as traffic conditions vary. Such variations make
learning with standard data-driven approaches challenging
as these methods must learn to model such variations in
feedback without explicitly modeling the phase structure of
the model (e.g., wind direction, traffic conditions).

While deep learning based methods have been success-
fully applied to various reinforcement learning problems
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Figure 1: Many processes such as monoped (top) and biped
(bottom) motion exhibit a cyclic nature. Plots in the figure
depict the motion of the centre of mass of the body.

(Mnih et al. 2015; Schulman et al. 2015a; Mnih et al. 2016;
Levine et al. 2016; Schulman et al. 2015b), most current
techniques do not explicitly account for phase changes that
may occur in the environment. When information regarding
the phase of the environment is available (e.g., a wind sensor,
clock, pedometer), a simple strategy may be to append that
phase information to the state representation when learning
the policy or value function. However, for high-dimensional
state spaces, which are common in many real-world prob-
lems, it may be difficult for the underlying estimator (e.g.,
a deep neural network) to vary its policy drastically based
on a single phase input variable. Another strategy may be
to learn a set of independent estimators for different phases
or modes of the environment. However, this approach does
not scale as the number of phases increases and would also
be highly sample inefficient as experience gained to learn a
policy in one phase would not be used to learn the policy for
another.

In this work, we look at the class of problems where the
phase-structure is cyclic. Phase cycles need not follow a pe-
riodic pattern and their evolution may even be stochastic.
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To solve such problems, we propose to explicitly parame-
terize the weights of a deep neural network conditioned on
the phase and constrain the weights to lie on a cyclic man-
ifold. Inspired by recent progress in computer graphics for
generating smooth and natural human motion sequence us-
ing phase-functioned dynamics models (Holden, Komura,
and Saito 2017), we develop a novel phase-parametric
action-value function (e.g., Q-function or critic) and phase-
parametric policy function (e.g. actor) generated from a
cyclic low dimensional phase space. We show how our pro-
posed phase dependent Q-function and policy representa-
tion can be used as function approximators in reinforcement
learning algorithms. We call these specific instantiations as
Phase Deep Q-Networks (Phase-DQN), Phase Deep Recur-
rent Q-Networks (Phase-DRQN) and Phase Deep Determin-
istic Policy Gradient (Phase-DDPG).

We address reinforcement learning problems where the
reward function and transition dynamics change during
learning in cyclic patterns. We also consider the problem
of simulating monoped and biped locomotion where mo-
tion of the agent generates an approximately cyclic pattern
in the observed states as shown in Figure 1. We introduce
a novel phase-functioned recurrent neural network architec-
ture for problems with varying model parameters which re-
quire memory. Experiments on both discrete and continuous
state-action spaces show that the proposed Phase-Parametric
Networks outperform traditional networks with phase as
additional input for reinforcement learning problems with
cyclic environments.

Related Work
Phase Neural Networks Holden, Komura, and Saito (2017)
recently introduced Phase-functioned neural networks for
interactive character motion generation. A Phase-functioned
neural network is a multi-layer perceptron, the weights of
which are smoothly varied as a function of phase. While
Holden, Komura, and Saito (2017) use this architecture in
a supervised learning setting for smooth motion generation,
we use this architecture to overcome ambiguities which arise
in reinforcement learning problems when different actions
are optimal in the same environment state due to a change in
reward function or transition dynamics as the environment
evolves. We also extend the concept to recurrent architec-
tures.

Deep Q-Networks Deep Q-Networks (DQN) have been
used most notably for playing video games. Mnih et al.
(2015) first used DQNs on the Atari 2600 testbed to show
that DQNs stabilized with tricks such as using experience
replay and target networks can outperform human players
on a variety of games. Van Hasselt, Guez, and Silver (2016)
further improved results on this testbed by using Double Q-
learning to train deep networks to address the issue of over-
estimation of action-values. Wang et al. (2016) introduced
a network with two separate streams to compute the state-
values and advantages. While we use the methodology of
Mnih et al. (2015), our phase-parameterized architectures
can be trained with any of the more recent algorithms.

Deterministic Policy Gradient Policy gradient algo-
rithms are commonly used for solving reinforcement learn-

ing problems with continuous action spaces. Determinis-
tic policy gradients (Silver et al. 2014) is an actor-critic
method which maintains parameterized actor and critic func-
tions which correspond to the policy and Q-function. In
this work, we use the Deep Deterministic Policy Gradient
(DDPG) algorithm of Lillicrap et al. (2015) but use our
phase-parameterized networks as the function approxima-
tors.

Deep Recurrent Q-Networks Hausknecht and Stone
(2015) introduced Deep Recurrent Q-Networks (DRQN)
which add a recurrent layer after a convolutional neural
network to deal with the problem of partial observability
of states. A recurrent layer provides the Q-network with a
long term memory to remember events more distant than the
number of screens given as input. Other works have used
DRQNs to learn multi-agent communication strategies (Fo-
erster et al. 2016) and to play first-person video games (Lam-
ple and Chaplot 2017).

Cyclic Environments Shibuya and Yasunobu (2014)
train agents for environments with cyclic time dependent
rewards by using sinusoidal action-value functions in pha-
sor representation. Benbrahim and Franklin (1997) propose
a self scaling reinforcement learning algorithm to deal with
continuous actions for biped walking. Ogino et al. (2004)
use a neural oscillator to generate rhythmic biped motion.
Peng et al. (2017) add a phase variable to their state repre-
sentation to learn biped locomotion using hierarchical rein-
forcement learning. Koppejan and Whiteson (2011) propose
a neuro-evolutionary method based approach for the gen-
eralized helicopter hovering problem. In contrast, we learn
phase-parameterized networks which can also be used for
other problems which exhibit phase-structure and can also
deal with varying transition functions. To the best of our
knowledge, previous methods do not explicitly consider the
problem of change in model during training.

Preliminaries
Phase-Functioned Multi-Layer Perceptron (PF-MLP).
As described in Holden, Komura, and Saito (2017), the
weights of the network are parameterized by the phase and
control weights. The phase represents the current state of the
model. For example, it can refer to the current direction of
the wind or the level of traffic on a scale of 1 to 10. The con-
trol weights are the weights to be used by the network at a
small number of representative phases. One can interpret the
control weights as the basis vectors that span the parameter
space. The weights of the network at any other phase are
then computed on the basis of these control weights. For ex-
ample, given weights for North and West wind directions as
control weights, the weights of the network for North-West
direction of wind may be computed using combination of
these control weights.

Consider x ∈ R
di to be the input to the neural network

and y ∈ R
do to be the corresponding target output. Let the

phase be denoted by p and the set of k control weights of
layer j be denoted by βj = {βj,0, . . . , βj,k−1}. The weights
in layer j are denoted by W j

p = θ(p;βj). For a PF-MLP
with two hidden layers h0 and h1, and an output layer o, the
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entire network can be written as:

o = φo(W
o
pφh1

(Wh1
p φh0

(Wh0
p x+ b0) + b1) + b), (1)

where φi is a non-linear function (e.g., ReLU, Sigmoid).
By parameterizing the weights on the phase, PF-MLP has

the ability to learn a different set of weights for each phase.
The smooth variation of weights with change in phase is en-
forced by θ. In (Holden, Komura, and Saito 2017), Catmull-
Rom spline function is used as the θ function and thus varies
smoothly with the phase parameter p. In particular, using
four control points yields:

θ(p;βj) = βj,k1 + wp(
1

2
βj,k2 − 1

2
βj,k0)

+ w2
p(β

j,k0 − 5

2
βj,k1 + 2βj,k2 − 1

2
βj,k3)

+ w3
p(
3

2
βj,k1 − 3

2
βj,k2 +

1

2
βj,k3 − 1

2
βj,k0),

(2)

where wp = w(p) = 4p
2π mod 1 and kn = � 4p

2π � + n − 1
mod 4. Notice here that the modulo function is what makes
the spline function cyclic.

The control weights can be learned through a supervised
process by backpropagating an appropriate loss function.

Let L denote the loss function to be optimized and let
∂L/∂W j

p denote the gradient of the loss L with respect to
the weight W j

p . Then, gradients for the control weights can
be computed using the chain rule as the partial derivative of
the loss with respect to the weights at phase p and the partial
derivative of those weights with respect to the basis weights:

∂L

∂βj,i
=

∂L

∂W j
p

∂W j
p

∂βj,i
. (3)

The second term in the chain rule expansion above can be
computed analytically from equation 2, to yield the follow-
ing:

∂W j
p

∂βj,k0
= −1

2
wp + w2

p −
1

2
w3

p,

∂W j
p

∂βj,k1
= 1− 5

2
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p +
3

2
w3

p,

∂W j
p

∂βj,k2
=

1

2
wp + 2w2

p −
3

2
w3

p,

∂W j
p

∂βj,k3
=

1

2
w2

p +
1

2
w3

p.

Phase-Parameteric Functions
For problems with cyclically evolving environments, we
propose to explicitly enforce a phase structure to the value
space and policy space. We focus on the use of neural net-
works as function approximators for the value function and
policy and describe how phase information can be embed-
ded into the parameter space. In particular, we look at how
our phase-parameterized networks can be used as function
approximators in Q-Learning for discrete action spaces and
as actor-critic networks for continuous actions.

Phase Deep Q-Network
In order to learn the weights of a Q-function approxima-
tor in an reinforcement learning setting, we use Q-learning
(Watkins and Dayan 1992). We use the PF-MLP as a phase
parameterized action-value function and denote it as the
Phase Deep Q-Network (Phase-DQN). A Phase-DQN takes
state s and phase p as input and outputs a vector of action
values Q(s, ·; p,β) where β is the set of control weights.

When using (deep) neural networks as function approxi-
mators, a ‘target’ network is often used to stabilize learning
and create targets for learning (Mnih et al. 2015). The con-
trol weights of the target network β̂ are copied every τ steps
from the online network and kept fixed in between these up-
dates. The target for learning can then be written as:

yas = ras,s′ + γmax
a′

Q(s′, a′; p′, β̂),

where s′ and p′ are the next state and phase respectively
and ras,s′ is the reward received by the agent on taking ac-
tion a in state s and reaching s′. A mean squared error loss
can then be used to create the loss function for learning as
L = 1

2 (Q(s, a; p,β)−yas )
2. Figure 2 (left) shows a pictorial

representation of the proposed Phase-DQN.

Phase Deep Recurrent Q-Network
Recurrent Neural Networks (RNNs) have the ability to retain
information about previously seen inputs. Hausknecht and
Stone (2015) showed how recurrent Q-networks can outper-
form their feed-forward counterparts in games where mem-
ory beyond a few frames of the game is required. We de-
scribe how weights of a Q-network with recurrent connec-
tions can also be parameterized by phase. In particular, we
use RNNs with Gated Recurrent Units (GRU) (Cho et al.
2014) as our running example but a similar explanation fol-
lows for any other popular architecture.

In a Phase-functioned GRU (PF-GRU), weights of the
GRU unit and output layer at every time step t may be differ-
ent and are parameterized by the phase and control weights.
In constrast, a typical GRU model uses same weights at all
time steps. Consider an input sequence X = {x0, · · · , xT }
with corresponding targets Y = {y0, · · · , yT } with xt ∈
R

di denoting the input and yt ∈ R
do denoting the target

output at time t. We denote phase at time t by pt and the
set of k control weights of type j ∈ {z, r, h̃, o} by βj =
{βj,0, . . . , βj,k−1}. Using the notation W j

pt
= θ(pt;β

j) for
the weight of type j at time step t, the equations for the for-
ward pass of a Phase-functioned GRU are given by:

zt = σ(W z
pt

· [ht−1, xt]),

rt = σ(W r
pt

· [ht−1, xt]),

h̃t = tanh(W h̃
pt

· [rt ∗ ht−1, xt]),

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t,

ot = g(W o
pt

· ht).

(4)

The function θ, which maps the phase to network weights,
is the Catmull-Rom spline function with four control points
(equation 2). During the backward pass, let ∂L/∂W j

pt
de-

note the gradient of the loss L with respect to weight W j
pt
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Figure 2: Phase Deep Q-Network (left) and Phase Deep Recurrent Q-Network (right). The four colored circles denote control
points and their color represents the phase associated with those control points. The ring on which these circles lie represent the
weight manifold. Color of the rings denote the current phase, marked by a black line on the ring. Cuboids denoting the layers
are colored by the color of the ring, representing that weights are a function of phase at each time.

used at time t. Then, gradients for control weights can be
computed by using the chain rule and aggregating the gradi-
ent across all time steps as:

∂L

∂βj,i
=

∑

t

∂L

∂W j
pt

∂W j
pt

∂βj,i
.

The second partial derivative term inside the sum can
again be computed from equation 2 as before.

Again, Q-learning can be used to train a PF-GRU for
reinforcement learning tasks. Such a Phase Deep Recur-
rent Q-Network (Phase-DRQN) takes state sequence s =
{s1, . . . , sT } and phase sequence p = {p1, . . . , pT } as in-
put and outputs a vector of action values Q(st, ht, ·; pt,β)
at each time step where β is the set of control weights of the
network. For example, β = {βz,βr,βh̃,βo} in case of a
network with one layer of GRUs and an output layer. Denot-
ing control weights of the target network by β̂, the targets at
every time step for learning can be written as:

yat
st = rat

st,st+1
+ γmax

a′
Q(st+1, a

′; pt+1, β̂).

By adding the mean squared error at every time step to
create the loss, we get L = 1

2

∑
t(Q(st, at; pt,β) − yat

st )
2.

Figure 2 (right) illustrates the proposed Phase-DRQN.

Phase Deep Deterministic Policy Gradient
Policy gradient algorithms are an important class of algo-
rithms for solving reinforcement learning problems with
continuous actions. The Deterministic Policy Gradient al-
gorithm maintains a parameterized policy function μ, called
the actor and a parameterized Q-function called the critic.

We use PF-MLPs for the actor and critic networks and de-
note the resulting algorithm as Phase-DDPG. The actor in
Phase-DDPG takes the state s as input and outputs an action
a = μ(s; p,βa) where p and βa denote the control weights
of the actor and the phase. This action is then evaluated by
the critic, which returns the Q-value of this state-action pair
Q(s, a; p,βc) where βc are the critic control weights. The
critic is trained by minimizing the mean squared error loss
with the corresponding target given by:

yas = ras,s′ + γQ(s′, μ(s′; p′, β̂a); p
′, β̂c).

The actor maximizes the expected return by taking a step
in the direction of the sample gradient with respect to the
weights of the actor for phase p, W = θ(p,βa), given by:

∇W J ≈
∑

s∈batch
∇aQ(s, a; p,βc)|a=μ(s;p,βa)∇Wμ(s; p,βa)

Experiments
In this section, we first describe the details of the environ-
ments we use and then analyze the results of our experi-
ments. We evaluate our proposed approach on both discrete
and continuous environments.

Discrete Problems
In order to perform controlled experiments for quantitative
evaluation of our phase-parametric Q-Networks, we model
two different types of discrete cyclic environments.

Freeway On-Ramp Problem (cyclic reward) In this grid
world problem, there are two possible goal states. Each rep-
resents the on-ramp to a freeway. Depending on the time
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of day, the traffic congestion for each on-ramp changes. To
simulate such an environment, we define the reward of each
goal state according to a sinusoidal function. In particular,
the reward at the first goal is R1 = A ∗ sin(ω1t + φ1) + c
and the second goal is R2 = A∗ sin(ω2t+φ2)+ c, where ω
and φ are the frequency and phase offset (not to be confused
with the phase of the policy), respectively. For all other lo-
cations (states), the reward is set to -1. The reinforcement
learning algorithm must plan an efficient path by utilizing
phase information so that it reaches an on-ramp at a certain
time with the least amount of congestion. Neglecting phase
information would lead to the agent receiving different re-
wards from the same goal state, creating ambiguity regard-
ing the desirability of that goal state.

Flying with Wind Problem (cyclic dynamics) In this grid
world problem, the aim is to fly a drone to a goal location
in the midst of intense wind. The reinforcement learning al-
gorithm must learn to adjust its actions depending on the
wind direction, using the wind when advantageous or resist-
ing it when necessary. To model such an environment, we
change the state transition dynamics based on the wind di-
rection. We generate the wind sequence by first sampling a
wind direction from one of k possible directions. After a di-
rection is sampled, wind continues to blow in that direction
for four time steps. The wind intensity however is stochas-
tic, exerting a push on the drone in the direction of the wind
with probability pwind and leaving it unaffected otherwise.
This stochasticity introduces noise in the phase information
which is in contrast to the previous problem. The rewards are
set to 20 and -20 at the two goal states and -1 for all other
states.

For each of these problems, the size of the grid world is
set to 12 × 12. The grid world consists of two ‘goal’ states:
(0, 11) and (11, 11). To make the problem suitable for ex-
periments with recurrent architectures, we make states par-
tially observable by including four evenly spaced obstacles
which follow a periodic motion1. State transition dynamics
are designed such that an agent cannot occupy a grid loca-
tion where there is an obstacle. The agent can take one of five
actions — up, down, left, right or no movement. See supple-
mental material for more discussion on design choices for
these experiments.

Continuous Problems

To evaluate the applicability of our approach to problems
with continuous action spaces, we experiment using popular
monoped and biped balancing tasks implemented using the
MuJoCo physics simulator (Todorov, Erez, and Tassa 2012).
The hopping motion of the monoped and the walking motion
of the biped are approximately cyclic as shown in Figure 1
and we aim to see whether our proposed methods can learn
better policies by taking advantage of this cyclic nature.

1To make the state fully observable for feed-forward networks,
the states at current and two previous time steps were provided as
input. The recurrent networks are provided with only the current
state as input and must learn to retain necessary information.

(a) R8:8,π:0 (b) R8:8,0:0

(c) R8:8,π:0 (d) R8:8,0:0

Figure 3: Performance plots for Freeway On-Ramp prob-
lem. The top and bottom rows show results using recurrent
and feed-forward architectures respectively. The plots show
the performance averaged over the previous 500 episodes,
during training. Curves for baselines with no phase and in-
put phase, and the proposed approach are shown in blue,
green and red respectively.

Hopper The aim in this problem is to make a multiple
degree of freedom monoped learn to move and keep from
falling. The states s ∈ R

11 and the actions a ∈ [−1, 1]3.
Walker This task consists of making a biped walker learn

to move as fast as possible without falling down. The dimen-
sionality of the states and actions is higher than the Hopper
task with s ∈ R

17 and a ∈ [−1, 1]6.

Comparative Baselines
Each of the proposed methods is compared against:

(1) A baseline approach in which phase is not given as in-
put. We wish to see how networks without phase informa-
tion perform on the tasks. We denote baselines of this type
as DQNNP, DRQNNP and DDPGNP, where NP stands for no
phase.
(2) A baseline approach in which phase is appended to the
state input. This baseline estimates how well networks pro-
vided with phase as an additional input work on the tasks.
We denote these baselines as DQNIP, DRQNIP and DDPGIP,
where IP stands for input phase.

Network configuration
For both discrete problems, all networks had 2 hidden lay-
ers with 8 units in each layer and a linear output layer with
5 units (one for each action). Rectified Linear units (ReLU)
were used for feed-forward architectures after every layer,
except the output layer. The recurrent architectures used
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Recurrent Networks Feed-forward Networks
DRQNNP DRQNIP Phase-DRQN DQNNP DQNIP Phase-DQN Random

R8:8,π:0 33, -34.7 19, -31.5 30, -9.9 18, -26.2 19, -31.5 24, -18 203, -178.5
R4:8,0:0 20, -14 22, -1.9 26, 0 21, -29.1 19, 1.1 18, 8 448, -442
R4:8,π:0 21, 3.5 35, -10.5 22, 4 21, -0.9 18, -32 21, -0.9 610, -624
R8:8,0:0 51, -26.5 37, -12.5 23, -9.3 17, -3.4 22, -1.9 20, 6 339, -314.5

Table 1: Results for the Freeway On-Ramp problem. Two values are reported: Number of steps, Return. Phase-DRQN and
Phase-DQN are the proposed methods

Recurrent Networks Feed-forward Networks Random
pwind DRQNIP Phase-DRQN DQNIP Phase-DQN

1 0.0 19.0, 2.0 22.6, -1.6 18.6, 2.4 21.5, -0.5 496.8, -496.1
2 0.2 36.8, -12.9 29.1, -8.1 18.5, 2.5 21.9, -0.9 344.6, -344.6
3 0.4 40.3, -26.0 25.4, -4.6 19.1, 1.9 22.8, -1.8 236.8, -236.3
4 0.6 30.7, -9.8 23.6, -2.6 20.6, 0.4 20.5, 0.5 162.8, -162.6
5 0.8 31.7, -10.7 25.0, -5.2 24.4, -3.4 22.1, -1.3 116.7, -116.3
6 1.0 34.7, -13.7 23.9, -2.9 25.0, -4.0 22.5, -1.8 95.2, -94.3

Table 2: Results for the Flying with Wind problem with varying wind probability pwind with 8 wind directions. Results are
listed as Number of steps, Return. Phase-DRQN and Phase-DQN are the proposed methods.

Gated Recurrent Units for the hidden layer. All networks
were trained for 50000 iterations using Adam optimization
(Kingma and Ba 2014) with an initial learning rate of 10−4.

We followed the settings outlined in Lillicrap et al. (2015)
when implementing the baseline DDPG and our Phase-
DDPG networks for the continuous problems. All networks
had two hidden layers with 400 and 300 units and ReLU
non-linearity. Actions were appended to the output of the
first hidden layer for the critic networks. The networks were
optimized using Adam with learning rates 10−4 and 10−3

for the actor and critic respectively. A replay memory of size
106 was used.

We refer the reader to the supplemental material for more
details on the training procedure.

Freeway On-Ramp Problem Analysis
The rewards at the two goal states in this problem are given
by sinusoidal functions of time. The desirability of a goal
state thus depends on the current phase and its distance from
the current state. An agent must learn to plan an efficient
path from its starting state to the desirable goal state such
that it reaches it at a time which yields the maximum possi-
ble return. Ignoring phase information may lead to ambigu-
ous feedback since the agent would receive different rewards
from the same goal state and such an agent should be unable
to learn to plan a path to the most desirable goal state.

Table 1 lists the results for this problem. We report the
return for an agent starting at state (0, 5) as it is equidistant
from the two goal states and is thus a good candidate for
a state from which the optimal path is dependent on phase.
The rows Rω1:ω2,φ1:φ2 denote the different settings of the
reward function at the two goal states.

DRQNNP and DQNNP agents often reach the goal state
when the sinusoidal reward function is negative leading to
much lower returns. Among the recurrent Q-networks, the
proposed Phase-DRQN outperformed the recurrent base-

lines in all experiments. It is interesting to note that the pro-
posed feed-forward Phase-DQN slightly outperformed all
other models, including our recurrent model Phase-DRQN.
We believe that this may be due to the explicit full observ-
ability of states in feed-forward models as compared to re-
current models where the network must learn to retain rele-
vant information. Also, feed-forward models allow for ran-
dom sampling of states for training while recurrent models
are trained using highly correlated states in a single episode.
The difficulty in training of recurrent policies has also been
reported in prior works (Duan et al. 2016). Qualitatively, we
observed that both the Phase-DRQN and Phase-DQN agents
often learn to wait close to the goal state for the reward func-
tion to reach its maximum, which can also be seen by the
higher number of steps in some cases for the proposed meth-
ods in Table 1.

Figure 3 shows the average return starting from random
grid locations as training proceeds. Notice how curves for
the proposed methods converge faster to a stable return as
compared to the baselines. The variance in obtained returns
towards the end of training is also smaller for the proposed
approach, indicating that a more stable optimum has been
reached.

Flying with Wind Problem Analysis
In this problem, a drone flying through the grid experiences
a blowing wind, the direction of which changes with phase.
The agent must learn to use the wind to its advantage when it
is blowing towards the desirable goal state and resist it when
it is pushing it towards the undesirable one. Unlike the previ-
ous problem, the phase information in this task is noisy due
to the stochastic nature of the wind which is strong enough
to exert a push with a probability pwind and leaves the drone
unaffected otherwise. We check robustness to noise in the
phase by varying pwind from 0.0 to 1.0.

Table 2 shows the results for this problem with 8 wind di-
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Environment Method
DDPGNP DDPGIP Phase-DDPG

(S) (L) (S) (L) (S) (L) (FT)
Hopper 2007.72 2050.00 2133.34 2559.47 1397.72 2630.16 3325.57
Walker 2820.99 3424.48 3333.92 3740.77 2532.24 4491.60 5124.44

Table 3: Average return over 100 episodes on Hopper and Walker environments. (S), (L) and (FT) denote short, long and
fine-tuned training procedures respectively. Phase-DDPG is the proposed method.

rections. These results were computed by taking the mean
of the performance over 1000 episodes for an agent starting
at state (0, 5). We select this starting state as it is equidistant
and far from the goal states, allowing several phase varia-
tions. We found the baseline methods without phase infor-
mation to perform poorly and do not report them for brevity.

The Phase-DRQN models outperformed the DRQNIP
models for all values of pwind except for 0.0. This makes
sense as the problem is under-determined making it diffi-
cult for the model to fit four different control weights to
data from only one transition dynamic model. More impor-
tantly, we observe that the return of our Phase-DRQN agents
remains largely unchanged as compared to the DRQNIP,
showing that our approach is more robust to noise in the
phase. Without explicitly modeling the phase, the return of
the DRQNIP baseline varies greatly as the probability of
pwind varies from 0.0 to 1.0. The Phase-DQN models per-
formed better than the DQNIP models for high values of
pwind when the wind behaviour is more consistent with the
phase. As with Phase-DRQN agents, the performance of the
Phase-DQN agents does not vary much as pwind is changed.
The feed-forward models performed slightly better than the
recurrent models, possibly because of reasons discussed pre-
viously. The superiority of the proposed Phase-Parametric
Q-Networks indicates that these networks were better able
to learn strategies specific to each phase. Moreover, while
we used 4 control points in our architecture for the 8 phase
problem, similar trends are observed when the task contains
4 phases (see supplemental material), showing that the net-
work was able to share relevant information between phases.

Hopper and Walker Problem Analysis
In the Hopper and Walker problems, we wish to evaluate
whether the approximately cyclic nature of monoped and
biped motion can be leveraged by the proposed architectures
to learn better policies. Apart from dealing with continuous
state and action spaces, these problems also differ from the
problems considered in the previous section in that we do
not have knowledge of an exact phase function. Instead, we
construct an approximate phase function using the desired
cyclic motion of the agent. The phase is thus self-generated
rather than exogenous as considered previously.

Since we did not have access to foot contact informa-
tion, we constructed the phase function as follows. We as-
sign a phase 0 whenever the centre of mass is at or below
a threshold dlow, representing the height of the agent when
in contact with the ground and assign a phase π whenever
the centre of mass is at or above a threshold dhigh, repre-
senting the highest height that the agent achieves during its

motion. Heights between dlow and dhigh are partitioned into
n/2 parts where n is the desired number of discrete phases.
A phase 2πi/n is assigned whenever the height of the cen-
tre of mass is greater than the ith but less than the (i+ 1)th

lower bound of the partition. If the vertical velocity of the
centre of mass is positive, the phase assigned in the previ-
ous step is the current phase. Otherwise, the computed phase
in the previous step is subtracted from 2π. The thresholds
were selected using the motion of the agent trained using
the DDPGNP method.

Table 3 shows the return obtained on the Hopper and
Walker tasks averaged over 100 episodes. We first dis-
cuss results with short training (S), where the models were
trained for 10000 episodes. The proposed Phase-DDPG al-
gorithm performed poorly compared to the baselines. We
hypothesize that this is due to the self-generating nature
of the phase. The control weights of the proposed model
will be trained sequentially as the agent learns to walk and
achieve states belonging to phases later in the cycle. This
may lead to slower training. In contrast, since the baseline
models use the same weights across phases, these models
can learn faster. To verify this hypothesis, we trained our
models for longer (40000 episodes). The results for this set-
ting are listed under columns labeled (L). The performance
of our proposed Phase-DDPG models improves greatly with
longer training as the agent learns to walk and visits newer
phases, allowing control weights for these to be learned.
The baseline performance only improves marginally. The
improved performance of our models provides evidence in
support of our hypothesis.

In another experiment to test our hypothesis, we ini-
tialized the control weights of our proposed model using
the weights of a baseline DDPGNP model trained for 7000
episodes (same weights for all control weights) and then
fine-tuned using a lower learning rate for another 3000
episodes. Note that the total episodes of training for the pro-
posed approach with fine-tuning is the same as that for the
baseline methods in the short training (S) setting. Column
labelled (FT) in Table 3 shows the results after fine-tuning.
The return using the proposed method with fine-tuning is
significantly higher than the baseline approaches, lending
further credence to our hypothesis. The fine-tuning approach
even outperforms models trained for much longer, indicat-
ing that bootstrapping the proposed models with meaningful
weights may be the best strategy in case of self-generating
phases. Qualitatively, we observed that the agents learned
using fine-tuning moved much faster and maintained better
balance than the agents learned using baseline approaches.
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Conclusion
Current deep reinforcement learning methods do not ex-
plicitly consider the changes that may occur in the model
as the agent learns. Such changes can lead to ambiguities
where different actions become optimal for the same state
as the model changes. A naive solution of including the
model phase as input often fails as it becomes difficult for
the network to produce different outputs when a large frac-
tion of the network’s input is the same. In this paper, we
use phase-functioned multi-layer perceptron and recurrent
neural networks for solving this problem. Phase-Parametric
policy and value networks based on these architectures were
used on two grid world navigation tasks with phase vary-
ing reward function and transition dynamics, and two pop-
ular benchmark locomotion tasks with continuous state and
actions spaces. Extensive experiments show that our Phase-
Parametric networks outperform traditional networks with
phase inputs on both discrete and continuous settings. Phase-
Parametric networks are able to learn phase specific poli-
cies while being able to share information across phases. We
show that the proposed networks are robust to noise and can
be used with self-generated phases.
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