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Abstract

In robotics, it is essential to be able to plan efficiently in high-
dimensional continuous state-action spaces for long horizons.
For such complex planning problems, unguided uniform sam-
pling of actions until a path to a goal is found is hopelessly in-
efficient, and gradient-based approaches often fall short when
the optimization manifold of a given problem is not smooth.
In this paper, we present an approach that guides search in
continuous spaces for generic planners by learning an action
sampler from past search experience. We use a Generative
Adversarial Network (GAN) to represent an action sampler,
and address an important issue: search experience consists of
a relatively large number of actions that are not on a solution
path and a relatively small number of actions that actually
are on a solution path. We introduce a new technique, based
on an importance-ratio estimation method, for using samples
from a non-target distribution to make GAN learning more
data-efficient. We provide theoretical guarantees and empiri-
cal evaluation in three challenging continuous robot planning
problems to illustrate the effectiveness of our algorithm.

Introduction

Planning efficiently for a long horizon in domains with con-
tinuous state and action spaces is a crucial yet challeng-
ing problem for a robot. For the classical path-planning
problem of getting from an initial state to a goal state,
random sampling strategies or gradient-based approaches
often work reasonably well (Kuffner and LaValle 2000;
Zucker et al. 2013).

In a variety of important planning problems, however,
these approaches fall short. Consider the problem in Fig-
ure 1a, where the robot has to find a collision-free inverse
kinematics solution to reach the orange object by reconfig-
uring the green objects. An unguided uniform sampling ap-
proach performs poorly since the state-space is extremely
high-dimensional, consisting of the combined configuration
spaces of the robot and many objects. A gradient computa-
tion is also difficult, since the robot has to make choices that
are both discrete, such as which object to move, and contin-
uous, such as where to place the chosen object, making the
problem’s optimization manifold non-smooth. This type of
hybrid search problem is difficult to solve efficiently.
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(a) An example of the reconfiguration task. The movable
obstacles are colored green, and the target object is col-
ored with orange.

(b) An example of the bin packing task. The color of
objects indicate the order of placement, and the darker
the earlier.

Figure 1: Examples of reconfiguration and bin packing. For
both tasks, the robot can only grasp objects from the side.

Several task and motion planning (TAMP) algorithms
were devised recently to more effectively deal with such
complex hybrid search problems (Kaelbling and Lozano-
Pérez 2011; Garrett, Lozano-Pérez, and Kaelbling 2014;
Toussaint 2015; Vega-Brown and Roy 2016). In sample-
based TAMP algorithms, the usual approach is to sample
from a continuous action space some predefined number of
actions in each state, and then treat the problem as a dis-
crete search problem. This discrete search problem is then
solved using a classical graph-search method or a generic
discrete PDDL-based planning algorithm. The feasibility of
an action, such as picking an object, is verified using a stan-
dard motion planner such as rapidly-exploring random tree
(RRT) and inverse kinematics.

In such approaches, the on-line computational burden im-
posed by a large continuous search space heavily depends
on the quality of the action sampler: if most of the sampled
actions will not lead to a goal, then a planner will spend most
of its time sampling actions, expanding nodes, and rejecting
them. On the other hand, if the action sampler has positive
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probabilities only on actions that will lead to a goal state,
then search would be much more efficient.

Based on this observation, this paper presents an approach
for learning an action sampler that maps a state and a de-
scription of a problem instance to a probability distribution
over actions from search experience. Unlike typical learn-
ing approaches for planning for continuous action space that
estimate a policy whose predicted action gets executed di-
rectly, an estimated action sampler is more robust to error
since it has a planner to fall back on.

We use a generative adversarial network (GAN), a recent
advance in generative model learning, to learn this action
sampler (Goodfellow et al. 2014). Unlike other methods, a
GAN only requires a forward pass through a neural network
to generate a sample, and does not require any prior distri-
butional assumptions.

The main challenge in learning an action sampler from
search experience data is that, in a successful episode of
search, there is a large number of state and action pairs that
are considered but are not known to be on a trajectory to the
goal in the episode, which we call off-target samples, and
only a relatively small number of samples that are known to
be on a trajectory to the goal, which we call on-target sam-
ples. While we could just use the small number of on-target
samples, learning would be much more effective if we could
find a way to use the abundant off-target samples as well.

In light of this, we propose a principled approach that can
learn an action sampler from both on- and off-target sam-
ples. To do this, we estimate the importance ratio between
the on-target and off-target distributions using both types of
samples. We then extend GAN to introduce a new genera-
tive model learning algorithm, called generative adversarial
network with direct importance estimation (GANDI), that
uses the estimated importance-ratio to learn from not only
on-target samples, but also from off-target samples. While
this algorithm is domain independent, we will demonstrate
its effectiveness in learning a target action sampler. We the-
oretically analyze how the importance-ratio estimation and
the difference between target and non-target distributions af-
fect the quality of the resulting approximate distribution.

We evaluate GANDI in three different problems that may
occur in warehousing applications. We use GANDI with two
sample-based search methods: heuristic-forward search and
a breadth-first-search. However, we note that it can be used
with any sampled-based planners for hybrid systems. We
show our algorithm outperforms a standard uniform sampler
and a standard GAN in terms of planning and data efficiency.

Related work

Our work touches upon four different topics: task and
motion planning (TAMP), learning to guide planning,
importance-ratio estimation, and generative model learning.
We provide descriptions of approaches in these areas that are
closest to our problem in terms of motivation and technique.

An effective sample-based algorithm for the classical path
planning problem in continuous search space is RRT. Al-
though uniform sampling plays a role in this algorithm, it is
effective mainly because, in the presence of an appropriate

metric, expanding the search node nearest to the randomly
sampled point creates a bias, known as the Voronoi bias, that
guides the search to unexplored regions of the configuration
space. In more complex problems, such as those requiring
manipulation of movable obstacles, manually designing ap-
propriate search bias is much more difficult. Recent sample-
based TAMP algorithms all employ uniform sampling strat-
egy without any bias, and this causes inefficiencies since a
node that is unlikely to get to a goal state gets added and
expanded often (Hauser and Ng-Thow-Hing 2011; Kael-
bling and Lozano-Pérez 2011; Vega-Brown and Roy 2016;
Garrett, Kaelbling, and Lozano-Pérez 2017). One way to
view our work is an attempt to resolve this inefficiency by
learning an effective action sampling bias.

In learning to guide search, there is a large body of work
that attempts to learn a policy or a value function off-line,
and then use this information during an on-line search to
make planning efficient. These methods are usually applied
to discrete-action problems. A recent prominent example is
AlphaGo (Silver et al. 2016). In that paper, Silver et. al train
a supervised policy off-line, using imitation learning and
train a value function using self-play; they then guide Monte
Carlo Tree Search (MCTS) in an on-line phase using these
functions. For learning to guide search in continuous-space
planning problems, Kim et. al (Kim, Kaelbling, and Lozano-
Pérez 2017) describe an approach for predicting constraints
on the solution space rather than a value function or an ac-
tion itself. The intuition is that a constraint is much more
easily transferable across problem instances than a specific
action in complex planning problems. We share this intu-
ition, and we may view the learned action distribution as
biasing, if not quite constraining, the search space of a plan-
ning problem to promising regions.

Two recent advancements in generative-model learning,
GANs (Goodfellow et al. 2014) and Variational Auto En-
coders (VAEs) (Kingma and Welling 2014), are appealing
choices for learning an action sampler because an inference
is simply a feed-forward pass through a network. GANs are
especially appealing, because for generic action spaces, we
do not have any metric information available. VAEs, on the
other hand, require a metric in an action space in order to
compute the distance between a decoded sample and a true
sample. Both of these methods require training samples to
be drawn from a target distribution that one wishes to learn.
Unfortunately, in our case we have limited access to sam-
ples from the target distribution, and this brings us to the
importance-ratio estimation problem.

There is a long history of work that uses importance sam-
pling to approximate desired statistics for a target distribu-
tion p using samples from another distribution q, for exam-
ple, in probabilistic graphical models (Koller and Friedman
2009) and reinforcement learning problems (Precup, Sutton,
and Dasgupta 2001; Sutton and Barto 1998). In these cases,
we have a surrogate distribution q that is cheaper to sample
than the target distribution p. Our work shares the same mo-
tivation as these problems, in the sense that in search experi-
ence data, samples that are on successful trajectories are ex-
pensive to obtain, while other samples are relatively cheaper
and more abundant.
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Recently, importance-ratio estimation has been studied
for the problem of covariate shift adaptation, which closely
resembles our setting. Covariate shift refers to the situa-
tion where we have samples from a training distribution
that is different from the target distribution. Usually, an
importance-ratio estimation method (Kanamori, Hido, and
Sugiyama 2009; Sugiyama et al. 2008; Huang et al. 2007) is
employed to re-weight the samples from the training dis-
tribution, so that it matches the target distribution in ex-
pectation for supervised learning. We list some prominent
approaches here. In kernel-based methods for estimating
the importance (Huang et al. 2007), authors try to match
the mean of samples of q and p in a feature space, by
re-weighting the samples from q. In the direct estimation
approach, Sugiyama et al. (Sugiyama et al. 2008) try to
minimize the KL divergence between the distributions q
and p by re-weighting q. In another approach, Kanamori
et al. (Kanamori, Hido, and Sugiyama 2009) directly min-
imize the least squares objective between the approximate
importance-ratios and the target importance-ratios. All these
formulations yield convex optimization problems, where the
decision variables are parameters of a linear function that
computes the importance weight for a given random vari-
able. Our algorithm extends the direct estimation approach
using a deep neural network, and then applies it for learning
an action sampler using both off-and-on target samples.

Background

Planning in continuous-spaces using sampling

A deterministic continuous state-action space planning
problem is a tuple [S,A, s0, Sg, T ] where S and A are con-
tinuous state and action spaces, T : S × A → S is a transi-
tion function that maps a state and an action to a next state,
s0 ∈ S is the initial state and Sg ⊂ S is a goal set.

A planning problem instance consists of a tuple
(s0, ω,G), where ω ∈ Ω represents parameters of a problem
instance. While the state changes according to T when an
action is executed, the parameters represent aspects of the
problem that do not change within the given instance. For
example, a state might represent poses of objects to be ma-
nipulated by a robot, while ω might represent their shapes.

Given a continuous state-action space planning problem,
a typical approach is to perform a sample-based search, in
which the planner repeatedly pops a search node off of a
search queue, samples a fixed number of possible actions
from an action sampler, possibly conditioned on ω and s,
and pushes the successors generated by those actions back
onto the search queue. Importantly, the original node must
also be pushed back into the queue so that it is available for
sampling additional actions in case none of the ones in this
batch leads to a goal. This process is repeated until a path to
a goal state in G is found.

In order to be applicable to a broad set of problem in-
stances, most of the planning algorithms use a uniform ac-
tion sampler to sample actions which may be inefficient. We
denote this default action sampler as qa|s, which defines a
distribution over actions given a state1.

1Technically, this should be conditioned on ω as well, but we

Problem formulation for learning an action
sampler

Ideally, our objective would be to learn an action sampler
that assigns zero probability to actions that are not on an
optimal trajectory to Sg , and non-zero probability to actions
on an optimal trajectory. Such a distribution would yield an
optimal path to a goal without any exploration.

Unfortunately, in sufficiently difficult problems, optimal
planners are not available, therefore it is impossible to deter-
mine whether an action was on an optimal path from the
search-experience data. Moreover, there may not even be
enough information available to learn to discriminate actions
on satisficing paths with complete accuracy. Thus, we con-
sider an alternative objective: learn a distribution that assigns
low probabilities to actions that do not reduce the distance
to a goal state.

Specifically, there are largely two types of such ineffi-
cient actions. First, consider an example shown in Figure 1b.
Here, the robot is asked to pack five objects into the rela-
tively tight bin. It cannot move an object once it is placed,
so if the robot places a first few objects in the front of the bin
like in Figure 1b (left), then it will be in a dead-end state, in
which it is impossible to reduce the distance to a goal state.
A different kind of an inefficient action example is shown
in Figure 1a, where the robot has to reconfigure poses of
the green objects to find a collision-free path to reach the
orange object with its left arm. When the robot moves the
light green object as shown in Figure 1a (left) to (right), this
action does not constitute a progress towards making room
for reaching the target object; albeit it is not a dead-end, this
is a wasted effort.

Based on these observations, our objective is to learn
a target distribution, which we denote pa|s, that assigns
low probabilities to such inefficient actions. We denote
the m search experience episodes for training data, col-
lected using a domain-independent action sampler qa|s, as{[

(si, a
(i)
p )

np

i=1, (si, a
(i)
q )

nq

i=1, (ω
(j), s

(j)
0 , S

(j)
g )

]}m

j=1
where

a
(i)
p is an action on the trajectory from s

(j)
0 to s ∈ S

(j)
g , a(i)q

is an action in the search tree, but not the solution trajectory,
and si is the state in which a

(i)
p or a(i)q was executed. np and

nq denote the number of state and action pairs that are on
the trajectory to the goal and the rest, respectively.

Fortunately, the distribution of (s, a) pairs on successful
trajectories in experience data have the following properties:
they have zero probability assigned to dead-end states and
actions, such as Figure 1b (left), since dead-ends cannot oc-
cur on a path to the goal. They also have low probability as-
signed to cycling actions like in Figure 1a, because most ac-
tions, though not necessarily all, are making progress. How-
ever, we cannot say anything about (s, a) pairs not on a suc-
cessful trajectory: they may turn out to be a dead-end or a
cycle, but they may lead to a goal if searched further enough.
Therefore, we will call the a(i)p values on-target samples, and
the a

(i)
q as off-target samples. Our algorithm, GANDI, uses

subsume it as a part of a state
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both of these two sources of data to learn a target distribu-
tion.

Generative Adversarial Networks

The objective of a GAN is to obtain a generator G that trans-
forms a random variable z, sampled usually from a Gaussian
or a uniform distribution, to a random variable of interest
which in our case is an action a. A GAN learns pG, an ap-
proximation of the target distribution, which in our case is
pa|s. For the purpose of the description of GAN, we will
treat the distributions as unconditional; they can be directly
extended to condition on s by viewing the transformation as
mapping from (s, z) to a.

We denote the on-target samples Ap := {a(i)p }np

i=1, and
the samples generated by G as {a(i)g }ng

i=1. To learn the gen-
erator G, a GAN alternates between optimizing a function
D, which tries to output 1 on on-target samples and output
0 on samples generated by G, and optimizing G, which tries
to generate samples that make D to output 1. This leads to
the following objectives:

min
D

Eap∼pa|s

[
logD(ap)

]
+ Eag∼pG

[
log(1−D(ag))

]

≈ min
D

np∑
i=1

logD(a(i)p ) +

ng∑
i=1

log(1−D(a(i)g )) (1)

max
G

E
a
(i)
g ∼pG

[
logD(a(i)g )

]

≈ argmax
G

ng∑
i=1

logD(a(i)g ) (2)

where np = ng to force D to assume the classes are equally
likely. After training, given a sample of z ∼ pz , the neural
network G(z) outputs a with probability pG(a).

The first term in objective (1) is with respect to the tar-
get distribution pa|s which we only have very small number
of data points from. We wish to use qa|s instead, since we
have much more data from this distribution. This motivates
the importance ratio esitmation problem between these two
distributions, which we describe next.

Direct importance ratio estimation

We now describe an approach to estimating importance-
ratio between the target and uniform distribution, w(a; s) =
pa|s(a|s)/qa|s(a|s) using a deep neural network (DNN). If
we had these ratios, then we could use Aq to augment Ap

used for training the generative model pG to approximate
pa|s. We will use the least squares approach of Kanamori et
al. (Kanamori, Hido, and Sugiyama 2009) because it inte-
grates easily into DNN-based methods. In this approach, we
approximate w with ŵ using the objective function

J(ŵ) =

∫
a

(ŵ(a)− w(a))2q(a)da .

In practice, we optimize its sample approximation version,
Ĵ(ŵ), which yields

ŵ = argmin
ŵ

nq∑
i=1

ŵ2(a(i)q )− 2

np∑
i=1

ŵ(a(i)p ), s.t ŵ(a) ≥ 0

(3)

where the constraint is enforced to keep the importance-
ratios positive. Intuitively, ŵ attempts to assign high values
to a

(i)
p and low values to a

(i)
q , to the degree allowed by its

hypothesis class.
The method was originally proposed to be used with a

linear architecture, in which ŵ(a) = θTφ(a); this implies
there is a unique global optimum as a function of θ, but re-
quires a hand-designed feature representation φ(·). For robot
planning problems, however, manually designing features is
difficult, while special types of DNN architectures, such as
convolutional neural networks, may effectively learn a good
representation. In light of this, we represent ŵ with a DNN.
The downside of this strategy is the loss of convexity with
respect to the free parameters θ, but we have found that the
flexibility of representation offsets this problem.

Generative Adversarial Network with Direct

Importance Estimation

In this section, we introduce our algorithm, GANDI, which
can take advantage of off-target samples from qa|s using
importance-ratios. We first describe how to formulate the ob-
jective for training GANs with importance weights. For the
purpose of exposition, we begin by assuming we are given
w(a; s), the true importance-ratio between qa|s and pa|s, for
all aq distributed according to qa|s, and we only have sam-
ples from the off-target distribution, Aq , and none from the
target distribution. Using importance weights w(a), the ob-
jective for the discriminator, equation (1), becomes

min
D

Eaq∼qa|s

[
w(aq) logD(aq)

]
+ Eag∼pG

[
log(1−D(ag))

]
≈ min

D

nq∑
i=1

w(a(i)q ) logD(a(i)q ) +

ng∑
i=1

log(1−D(a(i)g ))

(4)

Notice that this objective is now with respect to qa|s instead
of pa|s. In trying to solve the equation (4), it is critical to
have balanced training set sizes np and ng in order to pre-
vent the class imbalance problem for D. In the importance
weighted version of the GAN shown in equation 4, however,
the sum of the weights c =

∑nq

i=1 w(a
(i)
q ), serves as an ef-

fective sample size for the data Aq . To achieve a balanced
objective, we might then select ng to be equal to c.

Taking this approach would require adjusting the GAN
objective function and modifying mini-batch gradient de-
scent algorithm to use uneven mini-batch sizes in every
batch in training, which may lead to unstable gradient es-
timation.

Instead, we develop a method for bootstrapping Aq that
allows us to use existing mini-batch gradient descent without
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modification. Specifically, instead of multiplying each off-
target sample by its importance weight, we bootstrap (i.e. re-
sample the data from Aq with replacement), with a probabil-
ity pw(a), where pw(a) =

w(a)∑nq
i=1 w(a

(i)
q )

. This method allows

us to generate a dataset Â in which the expected number of
instances of each element of A is proportional to its impor-
tance weight. Moreover, since we bootstrap, the amount of
training data remains the same, and D now sees a balanced
number of samples effectively drawn from p(a) = w(a)q(a)
and pG.

One can show that pw is actually proportional to p.

Proposition 1 For a ∈ Aq ,

pw(a) = k · p(a) where k =
1∑nq

i=1 w(a
(i)
q )

.

This means that samples drawn from the importance-
reweighted data A can play the role of Ap in the GAN ob-
jective.

We now describe some practical details for approximat-
ing w(a) with ŵ(a), whose architecture is a DNN. Equa-
tion 3 can be solved by a mini-batch gradient-descent algo-
rithm implemented using any readily available NN software
package. The non-negativity constraint can also be straight-
forwardly incorporated by simply using the rectified linear
activation function at the output layer2.

Now, with estimated importance weights and boot-
strapped samples, the objective for D shown in equation 4
becomes

D̂ = argmin
D

nq∑
i=1

D(a(i)w ) +

ng∑
i=1

log(1−D(a(i)g )) (5)

where a
(i)
w denotes a bootstrapped sample from Aq , and

nq = ng . This involves just using Aq , but in practice, we
also use Ap, by simply augmenting the dataset Aq to con-
struct A := Aq ∪Ap, and then applying ŵ(·) to A for boot-
strapping, yielding final dataset Â. Algorithm 1 contains the
code for GANDI.

We illustrate the result of the bootstrapping with a simple
example, shown in Figure 2, where we have a Gaussian mix-
ture model for both on-and off-target distributions p and q,
where p is a mixture of two Gaussians centered at (1, 1) and
(3, 1), and q is a mixture of three Gaussians at (1, 1), (3, 1),
and (2, 2) with larger variances than those of p.

In Figure 2, the left-most shows the true distributions of
on- and off-target distributions, p and q denoted with blue
and red, respectively. The second plot shows our data points
from each of these distributions, Ap and Aq . The next plot
shows the estimated importance weights, ŵ, using objec-
tive (3), where darker color indicates higher ŵ(a) value. We
can see that ŵ is almost zero in regions where Ap and Aq do
not overlap, especially around (2,2). The next plot shows our

2In practice, this often lead gradients to shrink to 0 due to sat-
uration. Although this can be avoided with a careful initialization
method, we found that it is effective to just use linear activation
functions, and then just set w(a) = 0 if w(a) < 0.

Algorithm 1 GANDI(Ap,Aq)

ŵ ← EstimateImportanceWeights(Ap,Aq) // obj. (3)
pw(a) :=

ŵ(a)∑nq
i=1 ŵ(a

(i)
q )+

∑np
i=1 ŵ(a

(i)
p )

// bootstrap prob dist

A ← Ap ∪Aq

̂A ← Bootstrap(A, pw) // sample A ∼ pw with replacement
G ← TrainGAN(̂A) // objs (1) and (2) with ̂A as data
return G

bootstrapped samples, Â, sampled from our bootstrap prob-
ability distribution pw in green, and Ap again in red. We can
see that it reflects the values of ŵ. Lastly, the right-most plot
shows the result of training GANDI using Â, from which
we can see it is quite similar to p.

Theoretical analysis

In this section, we analyze how error in importance estima-
tion affects the performance of pG in approximating p. The
basic result on GANs, shown in the limit of infinite data,
representational and computational capacity, is that pG con-
verges to p (Goodfellow et al. 2014), although subsequent
papers have presented more subtle form of analysis (Ar-
jovsky and Bottou 2017).

Now, under the same assumptions, we consider the effect
of using importance weighted off-target data. If w is exact,
then p(a) = w(a)q(a) and the GAN objective is unchanged.
If, however, we use an estimation of importance weighting
function ŵ, then the objective of D̂, the importance-weight
corrected discriminator, differs from D and they achieve dif-
ferent solutions.

We wish to analyze the effect of importance estimation
error on KL and reverse-KL divergence between p and pG.
First, define ρ = supa∈Ap

q(a)/p(a), where Ap is the sup-
port of p. We can see that ρ >= 1, with equality occurring
when p(a) = q(a) for all a.

For the KL divergence, we have the following theorem.

Theorem 1 If w(a) ≥ ε ∀a ∈ Aq , ε ≥ 0, and J(ŵ) ≤ ε2,
then

KL(p||pG) ≤ log
( 1

1− ερ

)
.

Note that 0 ≤ ερ ≤ 1 due to the condition w(a) ≥ ε. For
reverse KL we have:

Theorem 2 If J(ŵ) ≤ ε2, KL(pG||p) ≤ (1 + ε) log(1 +
ερ) .

The proofs are included in the supplementary material.
These theorems imply three things: (1) If w = ŵ, then

ε = 0, and both divergences go to 0, regardless of ρ; (2) If
p = q, then the error in importance weight estimation is the
only source of error in modeling p with pG. This error can
be arbitrarily large, as ε becomes large; and (3) If p �= q then
ρ > 1, and it contributes to the error in modeling p with pG.

Experiments

We validate GANDI on three different robot planning tasks
that involve continuous state and action spaces and finite
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(a) (b) (c) (d) (e)

Figure 2: (a) target and off target distributions, (b) training data points a
(i)
p and a

(i)
q , (c) importance weight estimation, (d)

bootstrapping result and (e) learned distribution pG and target distribution p.

depths. These experiments have two purposes: first, to ver-
ify the hypothesis that learning an action sampler improves
planning efficiency relative to a standard uniform sampler
and second, a GANDI is more data efficient than a standard
GAN that is only trained with on-target samples.

We have three tasks that might occur in a warehouse. The
first is a bin-packing task, where a robot has to plan to pack
different numbers of objects of different sizes into a rela-
tively tight bin. The second task is planning to stow eight
objects into crowded bins, where there already are obsta-
cles. The final task is a reconfiguration task, where a robot
needs to reconfigure five randomly placed moveable objects
in order to make room to reach a target object.

These are highly intricate problems that require long-term
geometric reasoning about object placements and robot con-
figurations; for each object placement, we require that there
is a collision-free path and an inverse kinematics (IK) solu-
tion to place the object. For the placement of an object, we
verify an existence of the IK solution by solving for IK so-
lutions for a set of predefined grasps, and then check for the
existence of a collision-free path from the initial state to the
IK solution using a linear path3.

In the first two tasks, the robot is not allowed to move the
objects once they are placed, which leads to a large volume
of dead-end states that cause wasted computational effort for
a planner with a uniform action sampler. In the third task,
we have no dead-end states, but a planner could potentially
waste computational effort in trying no-progress actions. For
all tasks, the robot is only allowed to grasp objects from the
side; this is to simulate a common scenario in a warehouse
environment, with objects in a place covered on top, such
as a shelf. For the first two experiments, we use heuristic
search with a heuristic that estimates the cost-to-go to be the
number of objects remaining to be placed, since we cannot
move objects once they are placed. For the last experiment
we use breadth-first-search with no heuristic. For all cases,
the number of action samples per node, k, is 4.

In each task, we compare three different action sampler
in terms of success rate within a given time limit: one that
uniformly samples an action from the action space, a stan-
dard GAN trained only with on-target samples, and GANDI,
which is trained with both on and off-target samples. We
use the same architecture for both the standard GAN and

3A more sophisticated motion planners, such as RRT, can be
used instead.

GANDI, and perform 100 repetitions to obtain the 95% con-
fidence intervals for all the plots. The architecture descrip-
tion for the DNNs is in the appendix.

A crucial drawback of generative adversarial networks is
that they lack an evaluation metric; thus it is difficult to know
when to stop training. We deal with this by testing weights
from all epochs on 10 trials, and then picking the weights
with the best performance, with which we performed 100
additional repetitions to compute the success rates.

Bin packing problem

In this task, a robot has to move 5, 6, 7 or 8 objects into a
region of size 0.3m by 1m. The number of objects is cho-
sen uniform randomly. The size of each object is uniformly
random between 0.05m to 0.11m, depending on how many
objects the robot has to pack. A problem instance is de-
fined by the number of objects and the size of each object,
ω = [nobj , Osize]. A state is defined by the object place-
ments. For a given problem instance, all objects have the
same size. An example of a solved problem instance with
nobj = 5 and Osize = 0.11m is given in Figure 1b (right).

The action space consists of the two dimensional (x,y) lo-
cations of objects inside the bin, and a uniform action sam-
pler uniformly samples these values from this region. The
robot base is fixed. The planning depth varies from 5 to
8, depending on how many objects need to be placed. This
means that plans consist of 10 to 16 decision variables.

Figure 4a plots, for each method, the success rate when
given 5.0 seconds to solve a problem instance. We can see
the data efficiency of GANDI: with 20 training episodes, it
outperforms the uniform sampler, while a standard GAN re-
quires 50 training episodes to do so. The uniform sampler
can only solve about 50% of the problem instances within
this time limit, while GANDI can solve more than 70%.

We also compare the action samplers trained using GAN
and GANDI when the same number of training data are
given. Figures 3a and 3b show 1000 samples from GAN and
GANDI for packing 5 objects. While GANDI learns to avoid
the front-middle locations, GAN is still close to a uniform
action sampler, and has a lot of samples in this region which
lead to dead-end states. GANDI focuses its samples on the
corners at the back or the front so that it has spaces for all 5
objects.
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(a) (b) (c) (d)

Figure 3: Figures (a) and (b) respectively show actions sampled from action samplers trained with GAN and GANDI from
the bin packing domain when 20 episodes of training data are used. Green indicates the on-target samples, and blue indicates
the learned samplers. Figure (c) shows an action distribution for the reconfiguration domain when given 35 training episodes.
Figure (d) is a stow domain problem instance.

(a) (b) (c)

Figure 4: Plots of success rate vs. number of training episodes for the (a) bin packing, (b) stow, and (c) reconfiguration domains

Stowing objects into crowded bins

In this task, a robot has to stow 8 objects into three different
bins, where there already are 10 obstacles. A bin is of size
0.4m by 0.3m, an obstacle is of size 0.05m by 0.05m, and the
objects to be placed down are all of size 0.07m by 0.07m. A
problem instance is defined by the (x,y) locations of 10 ob-
stacles, each of which is randomly distributed in one of the
bins. Figure 3d shows an instance of a solved stow problem.

The action space for this problem consists of (x,y) loca-
tions of an object to be placed, and the robot’s (x,y) base
pose. This makes a 4 dimensional continuous action-space.
The planning depth is always 8, for placing 8 objects. Thus
plans consist of of 36 continuous decision variables. Again,
there is a large volume of dead-end actions, similarly to the
previous problem: putting objects down without considera-
tion of poses of later objects can potentially block collision-
free paths for placing them.

Figure 4b compares the success rates of the algorithms
with a 30-seconds time limit for planning. For the uniform
sampler, we sample first an object placement pose, and then
sample a base pose that can reach the object at its new lo-
cation without colliding with other objects. Unlike the pre-
vious task, learning-based approaches significantly outper-
form the uniform sampling approach for this task. This is
because there is a small volume of action space that will

lead to a goal, and a large volume of search space. Again,
we can observe the data efficiency of GANDI compared to
GAN. When the number of training data points is small, it
outperforms it.

Reconfiguration planning in a tight space

In this task, a robot has to reconfigure movable obstacles out
of the way in order to find a collision-free IK solution for
its left-arm to reach the target object. There are five movable
obstacles in this problem, each with size 0.05m by 0.05m,
and the target object of size 0.07m by 0.07m, and the recon-
figuration must happen within a bin, which is of size 0.7m
by 0.4m. A problem instance is defined by (x,y) locations
of the movable obstacles and the target object. The movable
obstacles are randomly distributed within the bin; the tar-
get object location is distributed along the back of the bin.
Figure 3c shows an example of a rearrangement problem in-
stance at its initial state, with the black region indicating the
distribution of target object locations.

An action specification consists of one discrete value and
two continuous values: what object to move and the (x,y)
placement pose of the object being moved. There is no fixed
depth. For both the uniform random sampler and the learned
sampler, we uniformly at random choose an object to move.
The robot base is fixed, and the robot is not allowed to use
its right arm.
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Figure 4c compares the success rates of the algorithms
with a 10-seconds time limit for planning. In this problem,
the learning-based approaches outperform the uniform sam-
pler even with a small number of training data points. The
relationship between GANDI and GAN is similar to the pre-
vious experiment, except that GANDI and GAN are within
the each other’s confidence interval when a small number
of training points are used. Eventually, GANDI comes to
clearly outperform GAN.

We would like to know if GANDI’s distribution indeed as-
signs low probabilities to no-progress actions. In Figure 3c,
we show GANDI’s distribution of object placements after
training on 35 episodes. The left top corner of the bin is
empty because there are no collision-free IK solutions for
that region4. As the figure shows, there are no placement
samples in front of the target object, but only on the sides
that would contribute to clearing space for the robot’s left
arm to reach the target object.

Conclusion

We presented GANDI, a generative-model learning algo-
rithm that uses both on-target and cheaper off-target samples
for data efficiency using importance-ratio estimation. We
provided guarantees on how the error in importance-ratio
estimation affects the performance of the learned model. In
three different robot task and motion planning problems that
require a long horizon geometric reasoning over continuous
state and action spaces, we showed that GANDI can effec-
tively accelerate the search of sample-based planners with a
relatively small amount of search experience.
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