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Abstract

There has been substantial work in recent years on grounded
language acquisition, in which a model is learned that relates
linguistic constructs to the perceivable world. While power-
ful, this approach is frequently hindered by ambiguities and
omissions found in natural language. One such omission is
the lack of negative labels on objects. We describe an unsu-
pervised system that learns visual classifiers associated with
words, using semantic similarity to automatically choose neg-
ative examples from a corpus of perceptual and linguistic
data. We evaluate the effectiveness of each stage as well as
the system’s performance on the overall learning task.

Introduction
Semantic representations of real-world environments are a
powerful tool for supporting user interaction and action
planning. Our goal is to obtain such representations from
conversation with users, allowing physically situated agents
to learn appropriate world models “on the fly” for a wide
range of situations. Learning these models from natural lan-
guage provides a framework for learning such semantics at
the right granularity in an intuitive, natural way.

One promising approach is to treat learning language
about percepts as a joint modeling problem (Matuszek* et
al. 2013; Pillai, Budhraja, and Matuszek 2016), in which de-
scriptive language paired with sensor and actuator data is
used to jointly train visual classifiers in conjunction with lan-
guage models. In this approach, descriptions are treated as
labels for visual percepts, making it possible to learn novel
language describing entirely novel visual concepts.

However, building semantic models from natural lan-
guage is challenging. People’s use of language is frequently
not a good match for statistical learning systems. For exam-
ple, descriptions of physical things rarely contain negative
data: It is unusual for people to provide negative examples
without prompting. (Objects are rarely described as “not yel-
low.”) A lack of a positive label does not imply a negative
grounding; something described as “an apple” is not a good
negative grounding for a “red” classifier. This problem has
an effect on parser learning, (Hastings and Lytinen 1994),
lexical acquisition (Roy 2002), and human grammar acqui-
sition (Bowerman 1988; Lasnik 1989).
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Figure 1: Automatically selected terms and training data for
grounded language learning.

In this paper, we use statistical language processing tools
to address two outstanding problems in grounded language
learning. First, we automatically select terms to consider as
candidate labels for visual classifiers; second, we use doc-
ument similarity metrics to select appropriate negative ex-
amples from a corpus of training data (see Figure 1). We
evaluate our approach on a new data set of objects and de-
scriptions, and our initial results support the idea that purely
linguistic tools can be used to overcome weaknesses in cor-
pora of perceptual training data.

Related Work

Much of the work on learning to understand grounded lan-
guage relies in some part on algorithms that use negative la-
bels as part of learning. The most straightforward approach
is to explicitly collect negative labels (Tellex et al. 2013;
Dindo and Zambuto 2010), possibly through crowdsourc-
ing (Tellex et al. 2014; Knepper et al. 2015) or gameplay-
ing (Thomason 2016). However, this may not be applicable
to all mechanisms for gathering language. Another possibil-
ity is to associate randomly chosen groundings with terms
that are not used to describe those images (Silberer, Ferrari,
and Lapata 2016; Chrupala, Gelderloos, and Alishahi 2017).
Because language is not exhaustive, this approach is noisy
and may require manual cleanup (Tellex et al. 2011).

Another practical technique is to design language collec-
tion trials that either use objects that have no shared visual
characteristics (Matuszek* et al. 2013), or explicitly design
trials that exhibit negative characteristics (Schenck and Fox
2017). Our work is most similar to the fully unsupervised

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6517



label identification of Roy (2002), but uses document simi-
larity metrics, rather than term clustering.

In order to choose appropriate language terms for which
to train classifiers, we rely on the well-known tf-idf algo-
rithm, which can be used to determine the descriptive power
of terms (Salton and McGill 1983), their relevance to par-
ticular documents (Zobel and Moffat 1998), or as a docu-
ment similarity metric (Salton and Buckley 1988). Our se-
lection of negative labels uses the Paragraph Vector algo-
rithm, which learns representations of features from varying
length documents (Mikolov et al. 2013a; 2013b). We em-
ploy the Distributed Memory Model of Paragraph Vectors
(PV-DM) for this work (Le and Mikolov 2014).

Notable research exists in generating descriptions from
images or videos (Yu and Ballard 2004; BenAbdallah et
al. 2010; Kojima, Tamura, and Fukunaga 2002a; 2002b;
Chen and Lawrence Zitnick 2015); for this work we used
Amazon Mechanical Turk to obtain descriptions. This work
is similar to zero-shot learning for visual classifiers (Elho-
seiny, Saleh, and Elgammal 2013), but we use color/depth
images to learn classifiers, rather than purely textual de-
scriptions. Like Berg, Berg, and Shih (2010) and Farhadi
et al. (2009), our focus is learning classifiers for object at-
tributes; however, we learn the fixed attributes color, shape,
and object while they infer higher level attributes.

Linguistic indexing (Li and Wang 2003; 2005) is a related
area, but here we intend to learn one attribute/word associa-
tion. Visual Question Answering (VQA) (Antol et al. 2015)
learns image attributes and produces answers to open-ended
questions, while we limit ourselves to learning attributes.
Previous language representations have used vector models
and multimodal topic models for image retrieval (Socher et
al. 2014; Lienhart, Romberg, and Hörster 2009), whereas we
use a vector model of language to measure the similarity be-
tween descriptions of images. We use a simple bag-of-words
model, unlike work on generating advanced sentences to de-
scribe images by predicting the most likely nouns, verbs,
scenes and prepositions (Yang et al. 2011).

Background

TF-IDF: In order to select relevant terms to learn the mean-
ings of, we use tf-idf, for term frequency-inverse document
frequency, a well-studied metric reflecting how important a
word is to a document in a corpus. The tf-idf value increases
proportionally to the number of times a term appears in the
document, which reflects the term’s relevance to that docu-
ment, and decreases with the number of documents contain-
ing that term, reflecting its discriminative power.

In this work, tf(t, d) is a raw count of the number of
times a term t appears in a document d. Inverse document
frequency is the inverse logarithmic fraction of the number
of documents that contain the term from the set of all doc-
uments, D. This gives the tf-idf value of t for a particular
descriptive document d:

tf-idf(t, d,D) = tf(t, d) · log N

|{d ∈ D : t ∈ d}|
Where tf(t, d) is the number of times a term t appears in
document d, N is the size of the set of documents N = |D|,

and |{d ∈ D : t ∈ d}| is the number of documents in which
the term t appears.
Paragraph Vector: In order to find negative examples for
terms selected by tf-idf, we use a similarity metric to max-
imize the semantic distance between object descriptions.
Paragraph Vector is an unsupervised learning algorithm that
maps documents into a fixed-length feature vector that is ro-
bust against varying document sizes (Le and Mikolov 2014).
A neural network with one hidden layer is used to derive
the error gradients from the loss function, which is calcu-
lated using the probability of words in a visual context given
the input terms. We use that model to measure dissimilarity
between descriptions. In the Paragraph Vector model, para-
graphs and words in these paragraphs are mapped to vectors
P and W respectively. We calculate the non-normalized log-
probability vector of P :

y = b+ Uh

Here yi is the non-normalized log-probability of a word in
the vector. U and b are softmax parameters, and h is a vec-
tor formed by a concatenation of word vectors W and para-
graph vector P . Prediction of the ‘next word’ in the context
or ‘topic’ of the paragraph is achieved using a softmax clas-
sifier. A fixed length sliding window is applied to choose
contexts. Here, w1,w2, ...., wT denote the sequence of words
being trained on:

p(wt|wt−k, ...wt+k) =
eywt

∑
i e

yi

The average log probability is then maximized:

1

T

T−k∑

t=k

log p(wt|wt−k, ...wt+k)

Training is performed using gradient descent with backprop-
agation. The output is a fixed length dense vector, as in a bag
of words model, but retains the predictive power of a more
semantically informed model. The trained paragraph vector
represents the “topic” of a document, and has shown good
performance for predicting other terms that may be found
in that document. Paragraph Vector maps every document to
a point in fixed-dimensional space irrespective of their vary-
ing description size; empirically, 2000 dimensions gives suf-
ficient representative power.

Approach

We build on previous work that treats the grounding prob-
lem as one in which words are associated with classifiers,
jointly training classifiers and descriptive language to de-
velop semantic understanding of the visual characteristics
of objects (Matuszek* et al. 2013; Pillai, Budhraja, and Ma-
tuszek 2016). We use a two-step approach: first, choosing
relevant terms for which to train visual classifiers; second,
using semantic dissimilarity between descriptions of objects
to find negative examples of that term.

Specifically, we treat all of the descriptions of a particular
object, concatenated, as a “document” associated with that
object. We use tf-idf to find the most discriminative terms
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for a particular document, and use all objects people de-
scribed using that term as positive examples for a classifier.
We choose negative examples by learning a paragraph vec-
tor for each document, and using cosine similarity to find the
most distant paragraph vectors.

Data Corpus

Our data set contains 72 objects, divided into 18 classes.
(Classes included both food objects, such as ‘banana,’ ‘cab-
bage,’ and ‘carrot,’ and children’s blocks in various shapes,
such as cylinders and cuboids.) We took 3-4 RGB-D images
of each object from a variety of angles (see Figure 2).

To obtain descriptive language, the RGB images were
posted on Amazon Mechanical Turk, and users provided
short descriptions. A total of 3055 descriptions were col-
lected, an average of 42 per object. All descriptions of a
single object are concatenated into a “document” describing
that object. Documents range from 200–450 words, and our
corpus contains 19,947 unique words. A short list of stop
words is stripped from the documents, and the remaining
words are lemmatized as “terms.”

Figure 2: Sample RGB images for each class in the dataset,
as taken with a Kinect2 camera and presented to Mechanical
Turk annotators.

Selecting Relevant Terms

In order to select words to learn,we employ tf-idf to find dis-
criminative terms from the set of descriptive documents and
pass it through an activation function to learn how impor-
tant the term is to that document. This function is currently
thresholding; in future, we plan to experiment with more
sophisticated context-aware functions. Important terms are
then used as labels for visual classifiers (see Figure 3 for ex-
amples). Varying this threshold affects the precision of this
selection process (see Experimental Results).

For each term, all images that have been described using
that term become positive examples for training a classifier.
From the original 19,947 words used to describe 72 objects,
230 words were selected as tokens for classifier training.
This process successfully screens out words that are used
frequently when people are asked to describe objects, but
that have poor discriminative or semantic power (such as
‘picture’, ‘look’, or ‘image’).

Figure 3: Selected and discarded terms after tf-idf. Terms
above the threshold (green) will name a classifier that uses
this object as a training example; terms below the threshold
(red) will not.

Finding Negative Examples for Concepts

We are building a world model in which both the words be-
ing used and the concepts they are describing are initially
unknown. Once a set of images has been selected as positive
training examples, the next step is to find dissimilar objects
in the corpus to serve as negative examples. This presents
a bootstrapping problem: counterexamples are critical to ef-
ficient learning of word meanings (Elkan 2001) for a new
term, but no classifier has yet been trained to automatically
select negative examples. However, we expect that the de-
scriptions of similar objects will be semantically similar.

A Paragraph Vector model is used to find the semantic dis-
tance between descriptions in vector space, which can then
be treated as reflective of dissimilarity between objects in the
world. All descriptions of each object are concatenated into
an unordered “document,” from which a PV is generated.
The cosine similarity of these PVs then serves as a distance
metric (Figure 4). From a matrix of all cosine similarities,
we choose the objects with the most semantically dissimi-
lar descriptions as negative training data. Our experimental
results validate this approach.

Figure 4: Cosine similarity of the Paragraph Vectors of de-
scriptive documents for a single banana in our dataset vs.
selected other objects. Each PV represents an individual ob-
ject in the dataset.
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Classifier Learning

We first select terms for which to create classifiers, as de-
scribed above. For the perceptual learning problem, we use
RGB and RGB-D images of objects. We extract RGB fea-
tures from the color channel and use kernel descriptors (Bo
et al. 2011; Lai et al. 2013) to extract shape and object fea-
tures from the depth channel. Kernel descriptors model size,
3D shape, and depth edge from the depth channel, and ex-
periments show that it significantly enhances the quality of
object classification results.

To test the effectiveness of our approach, we use three dif-
ferent types of classifiers: color, shape, and type of object.
The first two are suitable for the current problem and have
been used in previous work on this topic, (Pillai, Budhraja,
and Matuszek 2016) while object type classifiers demon-
strate the possibility of learning more complex concepts. Be-
cause an unsupervised learner has no way of knowing which
of these categories a word actually refers to, it is necessary to
train multiple classifiers for each term, one of each type (Ma-
tuszek* et al. 2013). All objects that were described with that
term are used as positive examples. Training is performed
using logistic regression.

Experimental Results

In this section, we present experiments testing each stage
of the learning pipeline: selecting semantically meaningful
words, finding negative training data, and the quality of the
final trained classifiers.

Selecting Terms

To evaluate our approach to finding semantically meaning-
ful words, we compared the results to ground truth provided
by human annotators. All unique words in the data set were
given to two annotators to categorize as ‘Visually meaning-
ful’ or ‘Not meaningful.’1 Figure 5 shows precision and re-
call as the tf-idf threshold used for term selection is adjusted.
Our method gives promising results in determining the sig-
nificance of words for which to learn visual groundings.
Discussion: As presented, this method selects preferentially
for precision, i.e., reliably returns semantically meaningful
terms at the cost of thoroughness. This is appropriate; as
classifiers trained on visually uninformative words will show
poor predictive power and can be screened later, the purpose

Figure 5: Precision (blue) and recall (orange) of term selec-
tion as the tf-idf threshold is varied.
1For ease of annotation, the choices ‘Hard to say’ and ‘Not a word’
were provided, but were selected too infrequently to affect results.

of the term selection is to focus the learning effort on the
most promising terms.

Negative Example Selection

One of our primary contributions is a distance metric for
perceptual training data based entirely on paired, novel lan-
guage. Using the Paragraph Vector model addresses a ma-
jor failing in the simpler bag-of-words model: it considers
the ordering and semantics of words, but still allows vector-
space-based comparisons. We treat the cosine distance be-
tween the Paragraph Vectors as an implicit distance in the
grounding space (see Figure 4). Images of the most distant
objects can then be used as negative samples for training the
visual classifier (see Figure 1 for examples).

As the “similarity” of objects is highly contextual, ground
truth for this distance metric is not clearly defined. We ap-
proximate ground truth by using the Amazon Mechanical
Turk (AMT) infrastructure to ask people for evaluations of
object similarity. Because asking for a complete ordering of
objects in the dataset is impractical, we tested a subset of
cases, asking five annotators to decide which of two objects
was most similar to another. We presented 360 comparisons
of the 72 objects in our dataset to five different evaluators
for a total of 1800 comparisons. A simple majority of an-
notators agree with our similarity metric in 84% of cases.
Figure 6 shows examples of the results.

Figure 6: Examples of AMT similarity results. Five partic-
ipants select which of two choices was more similar to a
target object. In the first row, most users selected the green
arch; the second row shows a less clear case.

Discussion: Our paragraph vector model is generally able
to select good negative samples from the corpus, accord-
ing to comparison with human evaluators. Visual classifiers
trained using these negative samples outperform baseline
classifiers trained using random sampling from the dataset.
A more complex evaluation of similarity with better defined
parameters might be appropriate in the future; for example,
some users never considered color when designating simi-
larity, while others clearly based their decisions on whether
something was food or not. These are informed and reason-
able aspects of similarity, but did not always align with the
visual classifier training problem.

End-to-End Quality of Trained Classifiers

The quality of the grounded language model—the learned
model of the relationship between language and percepts—
is a product of the association between language tokens and
the trained visual classifiers. Ideally, attribute descriptions
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should be associated primarily with a single classifier with
good predictive power.

As a baseline, we compared classification accuracy of the
end-to-end system described in this paper with a model that
chooses random negative samples and all non-overlapping
samples from the data set. We used the same dataset for eval-
uating our method, random selection, and all other samples
method. Our evaluation was conducted on our corpus of im-
ages and descriptions. Cross-validation was used for testing.
As described above, we trained color, shape and object clas-
sifiers for all selected terms.
Color: Our color classification results show good results
on color labels (see Figure 7). There is some overfitting re-
sulting from the relatively small set of objects. For example,
objects were frequently described as being on a white back-
ground, leading to conflation in the “white.’ The “orange”
and “red” classifiers overlap, in part because users described
both tomatoes and carrots using both terms; in addition, pol-
ysemy had a negative impact, as the term “orange” can refer
to the color or object.

One possible solution to the need for extensive anno-
tation is using efficient active learning techniques. Previ-
ous grounded language acquisition experiments that exercise
active learning techniques (Pillai, Budhraja, and Matuszek
2016) have shown promising outcomes in reducing annota-
tion efforts without compromising classification accuracy.
Shape: Training shape classifiers on small RGB-D images
is significantly more difficult than color, in part because the
shape of an object from different angles can vary consider-
ably. While still performing well, the quality of the results is
somewhat less. A few sources of complication included the
tendency of annotators not to describe the shape of common
objects; cucumbers were frequently referred to as green, but
never as cylindrical. In addition, certain terms, such as rect-

Figure 7: Performance of color classifiers for words (y-axis)
versus ground truth (x-axis). Only a small subset of rep-
resentative classifiers are shown, since one is created for
each keyword in the corpus. This confusion matrix show
the confidence of trained classifiers when run against ob-
jects of each type; for example, the trained model for the
word “yellow” classifies the first object as positive with 93%
confidence, but is only 20% confident that the second object
matches. Classifiers associated with color words have strong
predictive power, as does the color classifier associated with
the token “tomato.” The visually uninformative word “build-
ing,” by contrast, is not strongly associated with a classifier.

angular, were overused. Figure 8 shows the results of some
selected shape classifiers.

Figure 8: Performance of selected shape classifiers (x-axis)
against objects (y-axis). The confusion between rectangles
and arches is a product of the data, as the blocks usually de-
scribed as arch-shaped have a rectangular top. This confu-
sion matrix show the confidence of trained classifiers when
run against sample objects of each type.

Object class: Object classifiers, which are intended to de-
termine the class an object belongs to, are trained using a
combination of color and shape features. While our object
classification has good results on our data set, this is partly
due to the strong influence of color in classification; both the
toys and the food objects in our data set tended to be primar-
ily a single strong color.

Figure 9: Performance of selected object classifiers (x-axis)
against objects (y-axis). This confusion matrix show the
confidence of trained classifiers when run against sample ob-
jects of each type.

Overall: Our system convincingly outperforms two base-
line models, one that randomly selects objects to serve as
negative examples, and one using all other objects as nega-
tive examples (see Figure 10), demonstrating improvement
in the state of the art on unsupervised grounded language ac-
quisition. A classifier trained with all other samples as neg-
ative data performs well, while random sampling performs
almost as well in most cases but represents a fair comparison
in terms of training time and resource.

The overall goal of this work is to allow agents to improve
their ability to learn semantic representations of their per-
ceived environments, using natural language as the training
signal. While not a complete metric, one way of consider-
ing whether this work makes progress towards that goal is to
verify that the most obvious terms for the intended ground
truth have been identified as having important semantic rel-
evance, and how accurately the classifiers associated with
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Figure 10: Average performance of color, shape, and object
classifiers. Negative data is selected randomly (red), by us-
ing all non-overlapping objects (gray), and using our dissim-
ilarity measure. Using meaningful negative examples im-
proves performance in every category.

those terms perform on the complete dataset. By this metric,
we find that all of our ground truth labels have been discov-
ered; classifier performance is shown in Figure 11.

Conclusion and Future Work

While a number of different approaches have explored how
to acquire semantic representations of perceptual data, the
need for automated selection of learning targets and, espe-
cially, negative natural language exemplars recurs through-
out the literature. Our results demonstrate that statistical
tools from natural language can be applied to corpora of
mixed language and perceptual data, automatically identify-
ing terms that should be considered as candidates for learn-
ing groundings and selecting negative examples automati-
cally for training classifiers. This reduces the need for hu-
man supervision, allowing language-learning agents to learn
end-to-end in an unsupervised fashion, from collecting data
to fully trained grounded language models.

An evaluation of our process for finding meaningful
words and selecting negative examples suggests that these
approaches are effective. These results illustrate the perfor-
mance and effectiveness of the classification model by com-
paring it with two baselines, either randomly selecting nega-
tive samples or using all non-positive examples as negatives.
In future, our intention is to extend this work to a more var-
ied set of objects, additional kinds of classifiers, and com-
plex visual classification tasks, as well as to apply the iden-
tification of negative grounding examples to ongoing work
on grounded language acquisition for robotics.

We use the word-as-classifier approach because, while is
a simplification of the language problem, it is an applicable
starting point for the robotic language understanding task
applied to noisy perceptual data. This language model is
preliminary, and we intend to extend this to more seman-
tically driven and context-sensitive model in future. We also
hope to extend this research to a conversational agent. In a
conversation-based interaction, the system will have the op-
portunity to ask for negative examples explicitly, which we
hope will improve results. The approach in this paper would
then be useful to reduce the number of (possibly repetitive)
questions and to enhance the quality of the dialogue.

blue:
green:

orange:
purple:

red:
white:

yellow:

0.995
0.947
0.720
0.499
0.844
0.772
0.918

arch:
cube:

cylinder:
rectangle:

triangle:

0.532
0.590
0.725
0.621
0.649

banana:
cabbage:

carrot:
corn:

cucumber:
eggplant:

0.942
0.879
0.887
0.922
0.615
0.646

lemon:
lime:

orange:
potato:

tomato:

0.777
0.936
0.921
0.715
0.926

Figure 11: Average cross-validation performance of classi-
fiers for words. In general, color classifiers (top left) per-
form best; the outlier, purple, reflects the color differences
between the objects described as purple (typically eggplants,
red cabbage, and plums). Classifiers for object types (bottom
left and right) perform well in general. Shape classifiers (top
right) perform worst, stemming from the fact that people do
not provide a shape description as often as the other classes.
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