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Abstract

We propose a novel variant of the UCB algorithm (referred to
as Efficient-UCB-Variance (EUCBV)) for minimizing cumu-
lative regret in the stochastic multi-armed bandit (MAB) set-
ting. EUCBV incorporates the arm elimination strategy pro-
posed in UCB-Improved (Auer and Ortner 2010), while tak-
ing into account the variance estimates to compute the arms’
confidence bounds, similar to UCBV (Audibert, Munos, and
Szepesvári 2009). Through a theoretical analysis we estab-
lish that EUCBV incurs a gap-dependent regret bound of

O

(
Kσ2

max log(TΔ2/K)

Δ

)
after T trials, where Δ is the min-

imal gap between optimal and sub-optimal arms; the above
bound is an improvement over that of existing state-of-the-
art UCB algorithms (such as UCB1, UCB-Improved, UCBV,
MOSS). Further, EUCBV incurs a gap-independent regret
bound of O

(√
KT

)
which is an improvement over that of

UCB1, UCBV and UCB-Improved, while being compara-
ble with that of MOSS and OCUCB. Through an extensive
numerical study we show that EUCBV significantly outper-
forms the popular UCB variants (like MOSS, OCUCB, etc.)
as well as Thompson sampling and Bayes-UCB algorithms.

1 Introduction

In this paper, we deal with the stochastic multi-armed ban-
dit (MAB) setting. In its classical form, stochastic MABs
represent a sequential learning problem where a learner is
exposed to a finite set of actions (or arms) and needs to
choose one of the actions at each timestep. After choosing
(or pulling) an arm the learner receives a reward, which is
conceptualized as an independent random draw from sta-
tionary distribution associated with the selected arm. The
mean of the reward distribution associated with an arm i
is denoted by ri whereas the mean of the reward distri-
bution of the optimal arm ∗ is denoted by r∗ such that
ri < r∗, ∀i ∈ A, where A is the set of arms such that
|A| = K. With this formulation the learner faces the task
of balancing exploitation and exploration. In other words,
should the learner pull the arm which currently has the best
known estimates or explore arms more thoroughly to ensure
that a correct decision is being made. The objective in the
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stochastic bandit problem is to minimize the cumulative re-
gret, which is defined as follows:

RT = r∗T −
K∑
i=1

rizi(T ),

where T is the number of timesteps, and zi(T ) is the number
of times the algorithm has chosen arm i up to timestep T .
The expected regret of an algorithm after T timesteps can
be written as,

E[RT ] =

K∑
i=1

E[zi(T )]Δi,

where Δi = r∗ − ri is the gap between the means of the
optimal arm and the i-th arm.

In recent years the MAB setting has garnered extensive
popularity because of its simple learning model and its prac-
tical applications in a wide-range of industries, including,
but not limited to, mobile channel allocations, online adver-
tising and computer simulation games.

1.1 Related Work

Bandit problems have been extensively studied in several
earlier works such as Thompson (1933), Robbins (1952)
and Lai and Robbins (1985). Lai and Robbins (1985) es-
tablished an asymptotic lower bound for the cumulative re-
gret. Over the years stochastic MABs have seen several al-
gorithms with strong regret guarantees. For further refer-
ence an interested reader can look into Bubeck and Cesa-
Bianchi (2012). The upper confidence bound algorithms
balance the exploration-exploitation dilemma by linking
the uncertainty in estimate of an arm with the number of
times an arm is pulled, and therefore ensuring sufficient
exploration. One of the earliest among these algorithms
is UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), which
has a gap-dependent regret upper bound of O

(
K log T

Δ

)
,

where Δ = mini:Δi>0 Δi. This result is asymptotically
order-optimal for the class of distributions considered. But,
the worst case gap-independent regret bound of UCB1 is
found to be O

(√
KT log T

)
. In the later work of Audib-

ert and Bubeck (2009), the authors propose the MOSS al-
gorithm and showed that the worst case gap-independent re-
gret bound of MOSS is O

(√
KT

)
which improves upon

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6417



UCB1 by a factor of order
√
log T . However, the gap-

dependent regret of MOSS is O

(
K2 log(TΔ2/K)

Δ

)
and in

certain regimes, this can be worse than even UCB1 (see Au-
dibert and Bubeck; Lattimore (2009; 2015)).

The UCB-Improved algorithm, proposed in Auer and Or-
tner (2010), is a round-based1 variant of UCB1, that incurs
a gap-dependent regret bound of O

(
K log(TΔ2)

Δ

)
, which

is better than that of UCB1. On the other hand, the worst
case gap-independent regret bound of UCB-Improved is
O
(√

KT logK
)
. Recently in Lattimore (2015), the authors

showed that the algorithm OCUCB achieves order-optimal
gap-dependent regret bound of O

(∑K
i=2

log(T/Hi)
Δi

)
where

Hi =
∑K

j=1 min
{

1
Δ2

i
, 1
Δ2

j

}
, and a gap-independent regret

bound of O
(√

KT
)

. This is the best known gap-dependent
and gap-independent regret bounds in the stochastic MAB
framework. However, unlike our proposed EUCBV algo-
rithm, OCUCB does not take into account the variance of
the arms; as a result, empirically we find that our algorithm
outperforms OCUCB in all the environments considered.

In contrast to the above work, the UCBV (Audib-
ert, Munos, and Szepesvári 2009) algorithm utilizes vari-
ance estimates to compute the confidence intervals for
each arm. UCBV has a gap-dependent regret bound of
O
(

Kσ2
max log T
Δ

)
, where σ2

max denotes the maximum vari-
ance among all the arms i ∈ A. Its gap-independent re-
gret bound can be inferred to be same as that of UCB1
i.e O

(√
KT log T

)
. Empirically, Audibert, Munos, and

Szepesvári (2009) showed that UCBV outperforms UCB1
in several scenarios.

Another notable design principle which has recently
gained a lot of popularity is the Thompson Sampling (TS) al-
gorithm ((Thompson 1933), (Agrawal and Goyal 2011)) and
Bayes-UCB (BU) algorithm (Kaufmann, Cappé, and Gariv-
ier 2012). The TS algorithm maintains a posterior reward
distribution for each arm; at each round, the algorithm sam-
ples values from these distributions and the arm correspond-
ing to the highest sample value is chosen. Although TS is
found to perform extremely well when the reward distribu-
tions are Bernoulli, it is established that with Gaussian pri-
ors the worst case regret can be as bad as Ω

(√
KT log T

)
(Lattimore 2015). The BU algorithm is an extension of the
TS algorithm that takes quartile deviations into considera-
tion while choosing arms.

The final design principle we state is the information the-
oretic approach of DMED (Honda and Takemura 2010) and
KLUCB (Garivier and Cappé 2011) algorithms. The algo-
rithm KLUCB uses Kullbeck-Leibler divergence to compute
the upper confidence bound for the arms. KLUCB is stable
for a short horizon and is known to reach the Lai and Rob-
bins (1985) lower bound in the special case of Bernoulli dis-
tribution. However, Garivier and Cappé (2011) showed that

1An algorithm is round-based if it pulls all the arms equal num-
ber of times in each round and then eliminates one or more arms
that it deems to be sub-optimal.

KLUCB, MOSS and UCB1 algorithms are empirically out-
performed by UCBV in the exponential distribution as they
do not take the variance of the arms into consideration.

1.2 Our Contributions

In this paper we propose the Efficient-UCB-Variance
(henceforth referred to as EUCBV) algorithm for the
stochastic MAB setting. EUCBV combines the approaches
of UCB-Improved, CCB (Liu and Tsuruoka 2016) and
UCBV algorithms. EUCBV, by virtue of taking into ac-
count the empirical variance of the arms, exploration param-
eters and non-uniform arm selection (as opposed to UCB-
Improved), performs significantly better than the existing
algorithms in the stochastic MAB setting. EUCBV out-
performs UCBV (Audibert, Munos, and Szepesvári 2009)
which also takes into account empirical variance but is
less powerful than EUCBV because of the usage of explo-
ration regulatory factor by EUCBV. Also, we carefully de-
sign the confidence interval term with the variance estimates
along with the pulls allocated to each arm to balance the
risk of eliminating the optimal arm against excessive opti-
mism. Theoretically we refine the analysis of Auer and Or-
tner (2010) and prove that for T ≥ K2.4 our algorithm is
order optimal and achieves a worst case gap-independent re-
gret bound of O

(√
KT

)
which is same as that of MOSS

and OCUCB but better than that of UCBV, UCB1 and UCB-
Improved. Also, the gap-dependent regret bound of EU-
CBV is better than UCB1, UCB-Improved and MOSS but
is poorer than OCUCB. However, EUCBV’s gap-dependent
bound matches OCUCB in the worst case scenario when all
the gaps are equal. Through our theoretical analysis we es-
tablish the exact values of the exploration parameters for the
best performance of EUCBV. Our proof technique is highly
generic and can be easily extended to other MAB settings. In
Table 1 we show the regret bounds of different algorithms.

Table 1: Regret upper bound of different algorithms

Algo Gap-Dependent Gap-Independent

EUCBV O

(
Kσ2

max log(
TΔ2

K )

Δ

)
O
(√

KT
)

UCB1 O

(
K log T

Δ

)
O
(√

KT log T
)

UCBV O

(
Kσ2

max log T

Δ

)
O
(√

KT log T
)

UCB-
Imp

O

(
K log(TΔ2)

Δ

)
O
(√

KT logK
)

MOSS O

(
K2 log(TΔ2/K)

Δ

)
O
(√

KT
)

OCUCB O

(
K log(T/Hi)

Δ

)
O
(√

KT
)

Empirically, we show that EUCBV, owing to its estimat-
ing the variance of the arms, exploration parameters and
non-uniform arm pull, performs significantly better than
MOSS, OCUCB, UCB-Improved, UCB1, UCBV, TS, BU,
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DMED, KLUCB and Median Elimination algorithms. Note
that except UCBV, TS, KLUCB and BU (the last three with
Gaussian priors) all the aforementioned algorithms do not
take into account the empirical variance estimates of the
arms. Also, for the optimal performance of TS, KLUCB and
BU one has to have the prior knowledge of the type of distri-
bution, but EUCBV requires no such prior knowledge. EU-
CBV is the first arm-elimination algorithm that takes into
account the variance estimates of the arm for minimizing
cumulative regret and thereby answers an open question
raised by Auer and Ortner (2010), where the authors conjec-
tured that an UCB-Improved like arm-elimination algorithm
can greatly benefit by taking into consideration the variance
of the arms. A similar variance based arm-elimination al-
gorithm has been proposed before for minimizing the ex-
pected loss in pure-exploration thresholding bandit setup in
Mukherjee et al. (2017). Also, EUCBV is the first algorithm
that follows the same proof technique of UCB-Improved
and achieves a gap-independent regret bound of O

(√
KT

)
thereby, closing the gap of UCB-Improved which achieved
a gap-independent regret bound of O

(√
KT logK

)
.

The rest of the paper is organized as follows. In section 2
we present the EUCBV algorithm. Our main theoretical re-
sults are stated in section 3, while the proofs are established
in section 4. Section 5 contains results and discussions from
our numerical experiments. We draw our conclusions in sec-
tion 6 and section 7 is Appendix (supplementary material).

2 Algorithm: Efficient UCB Variance

2.1 Notations: We denote the set of arms by A, with the in-
dividual arms labeled i, where i = 1, . . . ,K. We denote an
arbitrary round of EUCBV by m. For simplicity, we assume
that the optimal arm is unique and denote it by ∗. We denote
the sample mean of the rewards for an arm i at time instant t
by r̂i(t) =

1
zi(t)

∑zi(t)
�=1 Xi,�, where Xi,� is the reward sam-

ple received when arm i is pulled for the �-th time, and zi(t)
is the number of times arm i has been pulled until timestep
t. We denote the true variance of an arm by σ2

i while v̂i(t) is
the estimated variance, i.e., v̂i(t) = 1

zi(t)

∑zi(t)
�=1 (Xi,�− r̂i)

2.
Whenever there is no ambiguity about the underlaying time
index t, for simplicity we neglect t from the notations and
simply use r̂i, v̂i, and zi to denote the respective quantities.
We assume the rewards of all arms are bounded in [0, 1].

2.2 The algorithm: Earlier round-based arm elimination
algorithms like Median Elimination (Even-Dar, Mannor,
and Mansour 2006) and UCB-Improved mainly suffered
from two basic problems:
(i) Initial exploration: Both of these algorithms pull each
arm equal number of times in each round, and hence waste
a significant number of pulls in initial explorations.
(ii) Conservative arm-elimination: In UCB-Improved, arms
are eliminated conservatively, i.e, only after εm < Δi

2 ,
where the quantity εm is initialized to 1 and halved after
every round. In the worst case scenario when K is large,
and the gaps are uniform (r1 = r2 = · · · = rK−1 < r∗) and
small this results in very high regret.

Algorithm 1 EUCBV

Input: Time horizon T , exploration parameters ρ and ψ.
Initialization: Set m := 0, B0 := A, ε0 := 1, M =⌊
1
2 log2

T
e

⌋
, n0 =

⌈ log (ψTε20)
2ε0

⌉
and N0 = Kn0.

Pull each arm once
for t = K + 1, .., T do

Pull arm i ∈ argmaxj∈Bm

{
r̂j +√

ρ(v̂j+2) log (ψTεm)
4zj

}
, where zj is the number of

times arm j has been pulled.
Arm Elimination

For each arm i ∈ Bm, remove arm i from Bm if,

r̂i+

√
ρ(v̂i + 2) log (ψTεm)

4zi

< max
j∈Bm

{
r̂j −

√
ρ(v̂j + 2) log (ψTεm)

4zj

}

if t ≥ Nm and m ≤ M then
Reset Parameters

εm+1 := εm
2

Bm+1 := Bm

nm+1 :=

⌈
log (ψTε2m+1)

2εm+1

⌉
Nm+1 := t+ |Bm+1|nm+1

m := m+ 1

end if
Stop if |Bm| = 1 and pull i ∈ Bm till T is reached.

end for

The EUCBV algorithm, which is mainly based on the
arm elimination technique of the UCB-Improved algorithm,
remedies these by employing exploration regulatory factor
ψ and arm elimination parameter ρ for aggressive elimi-
nation of sub-optimal arms. Along with these, similar to
CCB (Liu and Tsuruoka 2016) algorithm, EUCBV uses
optimistic greedy sampling whereby at every timestep it
only pulls the arm with the highest upper confidence bound
rather than pulling all the arms equal number of times
in each round. Also, unlike the UCB-Improved, UCB1,
MOSS and OCUCB algorithms (which are based on mean
estimation) EUCBV employs mean and variance estimates
(as in Audibert, Munos, and Szepesvári (2009)) for arm
elimination. Further, we allow for arm-elimination at every
time-step, which is in contrast to the earlier work (e.g., Auer
and Ortner (2010); Even-Dar, Mannor, and Mansour (2006))
where the arm elimination takes place only at the end of the
respective exploration rounds.

3 Main Results

The main result of the paper is presented in the following
theorem, where we establish a regret upper bound for the

6419



proposed EUCBV algorithm.

Theorem 1 (Gap-Dependent Bound) For T ≥ K2.4, ρ =
1
2 and ψ = T

K2 , the regret RT for EUCBV satisfies

E[RT ] ≤
∑

i∈A:Δi>b

{
C0K

4

T
1
4

+

(
Δi +

320σ2
i log (

TΔ2
i

K
)

Δi

)}

+
∑

i∈A:0<Δi≤b

C2K
4

T
1
4

+ max
i∈A:0<Δi≤b

ΔiT.

for all b ≥ √
e
T and C0, C2 are integer constants.

Proof 1 (Outline) The proof is along the lines of the tech-
nique in Auer and Ortner (2010). It comprises of three mod-
ules. In the first module we prove the necessary conditions
for arm elimination within a specified number of rounds.
However, here we require some additional technical results
(see Lemma 1 and Lemma 2) to bound the length of the con-
fidence intervals. Further, note that our algorithm combines
the variance-estimate based approach of Audibert, Munos,
and Szepesvári (2009) with the arm-elimination technique
of Auer and Ortner (2010) (see Lemma 3). Also, while Auer
and Ortner (2010) uses Chernoff-Hoeffding bound to derive
their regret bound whereas in our work we use Bernstein
inequality (as in Audibert, Munos, and Szepesvári (2009))
to obtain the bound. To bound the probability of the non-
uniform arm selection before it gets eliminated we use
Lemma 4 and Lemma 5. In the second module we bound the
number of pulls required if an arm is eliminated on or before
a particular number of rounds. Note that the number of pulls

allocated in a round m for each arm is nm :=

⌈
log (ψTε2m)

2εm

⌉
which is much lower than the number of pulls of each arm
required by UCB-Improved or Median-Elimination. We in-
troduce the variance term in the most significant term in the
bound by Lemma 6. Finally, the third module deals with case
of bounding the regret, given that a sub-optimal arm elimi-
nates the optimal arm. �

Discussion: From the above result we see that the most
significant term in the gap-dependent bound is of the or-
der O

(
Kσ2

max log (TΔ2/K)
Δ

)
which is better than the existing

results for UCB1, UCBV, MOSS and UCB-Improved (see
Table 1). Also, like UCBV, this term scales with the vari-
ance. Audibert and Bubeck (2010) have defined the term
H1 =

∑K
i=1

1
Δ2

i
, which is referred to as the hardness of

a problem; Bubeck and Cesa-Bianchi (2012) have conjec-
tured that the gap-dependent regret upper bound can match
O
(

K log (T/H1)
Δ

)
. However, in Lattimore (2015) it is proved

that the gap-dependent regret bound cannot be lower than
O
(∑K

i=2
log(T/Hi)

Δi

)
, where Hi =

∑K
j=1 min

{
1
Δ2

i
, 1
Δ2

j

}
(OCUCB proposed in Lattimore (2015) achieves this
bound). Further, in Lattimore (2015) it is shown that only
in the worst case scenario when all the gaps are equal (so
that H1 = Hi =

∑K
i=1

1
Δ2 ) the above two bounds match. In

the latter scenario, considering σ2
max ≤ 1

4 as all rewards are
bounded in [0, 1], we see that the gap-dependent bound of

EUCBV simplifies to O
(

K log (T/H1)
Δ

)
, thus matching the

gap-dependent bound of OCUCB which is order optimal.
Next, we specialize the result of Theorem 1 in Corollary

1 to obtain the gap-independent worst case regret bound.
Corollary 1 (Gap-Independent Bound) When the gaps of
all the sub-optimal arms are identical, i.e., Δi = Δ =√

K logK
T >

√
e
T , ∀i ∈ A and C3 being an integer con-

stant, the regret of EUCBV is upper bounded by the follow-
ing gap-independent expression:

E[RT ] ≤ C3K
5

T
1
4

+ 80
√
KT.

The proof is given in Appendix.
Discussion: In the non-stochastic scenario, Auer et

al. (2002) showed that the bound on the cumulative regret
for EXP-4 is O

(√
KT logK

)
. However, in the stochas-

tic case, UCB1 proposed in Auer, Cesa-Bianchi, and Fis-
cher (2002) incurred a regret of order of O

(√
KT log T

)
which is clearly improvable. From the above result we see
that in the gap-independent bound of EUCBV the most sig-
nificant term is O

(√
KT

)
which matches the upper bound

of MOSS and OCUCB, and is better than UCB-Improved,
UCB1 and UCBV (see Table 1).

4 Proofs
We first present a few technical lemmas that are required to
prove the result in Theorem 1.
Lemma 1 If T ≥ K2.4, ψ = T

K2 , ρ = 1
2 and m ≤

1
2 log2

(
T
e

)
, then,

ρm log(2)

log(ψT )− 2m log(2)
≤ 3

2
.

Lemma 2 If T ≥ K2.4, ψ = T
K2 , ρ = 1

2 , mi =

min{m|√4εm < Δi

4 } and ci =
√

ρ(v̂i+2) log(ψTεmi
)

4zi
, then,

ci <
Δi

4 .

Lemma 3 If mi = min{m|√4εm < Δi

4 }, ci =√
ρ(v̂i+2) log(ψTεmi

)

4zi
and nmi =

log (ψTεmi
)

2εmi
then we can

show that in the mi-th round,

P(r̂i > ri + ci) ≤ 2

(ψTεmi
)

3ρ
2

.

Lemma 4 If mi = min{m|√4εm < Δi

4 }, ψ = T
K2 , ρ = 1

2 ,

ci =
√

ρ(v̂i+2) log(ψTεmi
)

4zi
and nmi

=
log (ψTε2mi

)

2εmi
then in

the mi-th round,

P{c∗ > ci} ≤ 182K4

T
5
4
√
εmi

.

Lemma 5 If mi = min{m|√4εm < Δi

4 },ψ = T
K2 , ρ = 1

2 ,

ci =
√

ρ(v̂i+2) log(ψTεmi
)

4zi
and nmi =

log (ψTε2mi
)

2εmi
then in

the mi-th round,

P{zi < nmi
} ≤ 182K4

T
5
4
√
εmi

.
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Lemma 6 For two integer constants c1 and c2, if 20c1 ≤ c2
then,

c1
4σ2

i + 4

Δi
log

(
TΔ2

i

K

)
≤ c2

σ2
i

Δi
log

(
TΔ2

i

K

)
.

The proofs of lemmas 1 - 6 can be found in Appendix.

Proof of Theorem 1

Proof 2 1 For each sub-optimal arm i ∈ A, let mi =
min

{
m|√4εmi

< Δi

4

}
. Also, let A′

= {i ∈ A : Δi > b}
and A′′

= {i ∈ A : Δi > 0}. Note that as all rewards are
bounded in [0, 1], it implies that 0 ≤ σ2

i ≤ 1
4 , ∀i ∈ A. Now,

as in Auer and Ortner (2010), we bound the regret under the
following two cases:

• Case (a): some sub-optimal arm i is not eliminated in
round mi or before and the optimal arm ∗ ∈ Bmi

• Case (b): an arm i ∈ Bmi
is eliminated in round mi (or

before), or there is no optimal arm ∗ ∈ Bmi

The details of each case are contained in the following sub-
sections.

Case (a): For simplicity, let ci :=
√

ρ(v̂i+2) log(ψTεmi
)

4zi
denote the length of the confidence interval corresponding to
arm i in round mi. Thus, in round mi (or before) whenever

zi ≥ nmi ≥ log (ψTε2mi
)

2εmi
, by applying Lemma 2 we obtain

ci <
Δi

4 .
Now, the sufficient conditions for arm i to get eliminated

by an optimal arm in round mi is given by

r̂i ≤ ri + ci, r̂∗ ≥ r∗ − c∗, ci ≥ c∗ and zi ≥ nmi
. (1)

Indeed, in round mi suppose (1) holds, then we have

r̂i + ci ≤ ri + 2ci = ri + 4ci − 2ci

< ri +Δi − 2ci ≤ r∗ − 2c∗ ≤ r̂∗ − c∗

so that a sub-optimal arm i ∈ A′
gets eliminated. Thus, the

probability of the complementary event of these four condi-
tions in (1) yields a bound on the probability that arm i is
not eliminated in round mi. Following the proof of Lemma
1 of Audibert, Munos, and Szepesvári (2009) we can show
that a bound on the complementary of the first condition is
given by,

P(r̂i > ri + ci) ≤ P (r̂i > ri + c̄i) + P
(
v̂i ≥ σ2

i +
√
εmi

)
(2)

where

c̄i =

√
ρ(σ2

i +
√
εmi + 2) log(ψTεmi)

4nmi

.

From Lemma 3 we can show that P(r̂i > ri + ci) ≤
P (r̂i > ri + c̄i)+P

(
v̂i ≥ σ2

i +
√
εmi

) ≤ 2

(ψTεmi
)
3ρ
2

. Sim-

ilarly, P{r̂∗ < r∗ − c∗} ≤ 2

(ψTεmi
)
3ρ
2

. Summing the above

two contributions, the probability that a sub-optimal arm i

is not eliminated on or before mi-th round by the first two
conditions in (1) is,(

4

(ψTεmi
)

3ρ
2

)
. (3)

Again, from Lemma 4 and Lemma 5 we can bound the
probability of the complementary of the event ci ≥ c∗ and
zi ≥ nmi

by,

182K4

T
5
4
√
εmi

+
182K4

T
5
4
√
εmi

≤ 364K4

T
5
4
√
εmi

. (4)

Also, for eq. (3) we can show that for any εmi
∈ [

√
e
T , 1](

4

(ψTεmi)
3ρ
2

)
(a)

≤
(

4

( T2

K2 εmi)
3
4

)
≤

(
4K

3
2

(T
3
2 ε

1
4
mi

√
εmi)

)

(b)

≤
(

4K
3
2

(T
3
2
− 1

8
√
εmi)

)
≤ 4K4

T
5
4
√
εmi

. (5)

Here, in (a) we substitute the values of ψ and ρ and (b)

follows from the identity ε
1
4
mi ≥ ( e

T )
1
8 as εmi

≥ √
e
T .

Summing up over all arms in A′
and bounding the regret

for all the four arm elimination conditions in (1) by (4)+(5)

for each arm i ∈ A′
trivially by TΔi, we obtain

∑
i∈A′

(
4K4TΔi

T
5
4
√
εmi

)
+

∑
i∈A′

(
364K4TΔi

T
5
4
√
εmi

)

(a)

≤
∑
i∈A′

(
368K4TΔi

T
5
4

(
Δ2

i

4.16

) 1
2

)
(b)

≤
∑
i∈A′

(
C1K

4

(T )
1
4

)
.

Here, (a) happens because
√
4εmi < Δi

4 , and in (b), C1

denotes a constant integer value.

Case (b): Here, there are two sub-cases to be considered.
Case (b1) (∗ ∈ Bmi

and each i ∈ A′
is eliminated on or

before mi ): Since we are eliminating a sub-optimal arm i
on or before round mi, it is pulled no longer than,

zi <

⌈
log (ψTε2mi

)

2εmi

⌉

So, the total contribution of i until round mi is given by,

Δi

⌈
log (ψTε2mi

)

2εmi

⌉
(a)

≤ Δi

⌈ log (ψT ( Δi

16× 256
)4)

2(
Δi

4
√
4
)2

⌉

≤ Δi

(
1 +

32 log (ψT (
Δ4

i

16384
)

Δ2
i

)

≤ Δi

(
1 +

32 log (ψTΔ4
i )

Δ2
i

)
.
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Here, (a) happens because
√
4εmi < Δi

4 . Summing over
all arms in A′

the total regret is given by,∑
i∈A′

Δi

(
1 +

32 log (ψTΔ4
i )

Δ2
i

)

=
∑
i∈A′

(
Δi +

32 log (ψTΔ4
i )

Δi

)

(a)

≤
∑
i∈A′

(
Δi +

64 log (
TΔ2

i

K )

Δi

)

(b)

≤
∑
i∈A′

(
Δi +

16(4σ2
i + 4) log (

TΔ2
i

K )

Δi

)

(c)

≤
∑
i∈A′

(
Δi +

320σ2
i log (

TΔ2
i

K )

Δi

)
.

We obtain (a) by substituting the value of ψ, (b) from
0 ≤ σ2

i ≤ 1
4 , ∀i ∈ A and (c) from Lemma 6.

Case (b2) (Optimal arm ∗ is eliminated by a sub-optimal
arm): Firstly, if conditions of Case a holds then the opti-
mal arm ∗ will not be eliminated in round m = m∗ or it
will lead to the contradiction that ri > r∗. In any round
m∗, if the optimal arm ∗ gets eliminated then for any round
from 1 to mj all arms j such that mj < m∗ were elimi-
nated according to assumption in Case a. Let the arms sur-
viving till m∗ round be denoted by A′

. This leaves any arm
ab such that mb ≥ m∗ to still survive and eliminate arm
∗ in round m∗. Let such arms that survive ∗ belong to A′′

.
Also maximal regret per step after eliminating ∗ is the max-
imal Δj among the remaining arms j with mj ≥ m∗. Let
mb = min

{
m|√4εm < Δb

4

}
. Hence, the maximal regret

after eliminating the arm ∗ is upper bounded by,

max
j∈A′ mj∑

m∗=0

∑
i∈A′′ :mi>m∗

(
368K4

(T
5
4
√
εm∗)

)
.T max

j∈A′′ :mj≥m∗
Δj

≤
max

j∈A′ mj∑
m∗=0

∑
i∈A′′ :mi>m∗

(
368K4

√
4

(T
5
4
√
εm∗)

)
.T.4

√
εm∗

(a)

≤
max

j∈A′ mj∑
m∗=0

∑
i∈A′′ :mi>m∗

(
C2K

4

T
1
4 ε

1
2− 1

2
m∗

)

≤
∑

i∈A′′ :mi>m∗

min {mi,mb}∑
m∗=0

(
C2K

4

T
1
4

)

≤
∑
i∈A′

(
C2K

4

T
1
4

)
+

∑
i∈A′′\A′

(
C2K

4

T
1
4

)
.

Here at (a), C2 denotes an integer constant.

Finally, summing up the regrets in Case a and Case b, the
total regret is given by

E[RT ] ≤
∑

i∈A:Δi>b

{
C0K

4

T
1
4

+

(
Δi +

320σ2
i log (

TΔ2
i

K
)

Δi

)}

+
∑

i∈A:0<Δi≤b

C2K
4

T
1
4

+ max
i∈A:0<Δi≤b

ΔiT

where C0, C1, C2 are integer constants s.t. C0 = C1+C2.

5 Experiments

In this section, we conduct extensive empirical evaluations
of EUCBV against several other popular MAB algorithms.
We use expected cumulative regret as the metric of com-
parison. The comparison is conducted against the following
algorithms: KLUCB+ (Garivier and Cappé 2011), DMED
(Honda and Takemura 2010), MOSS (Audibert and Bubeck
2009), UCB1 (Auer, Cesa-Bianchi, and Fischer 2002),
UCB-Improved (Auer and Ortner 2010), Median Elimi-
nation (Even-Dar, Mannor, and Mansour 2006), Thomp-
son Sampling (TS) (Agrawal and Goyal 2011), OCUCB
(Lattimore 2015), Bayes-UCB (BU) (Kaufmann, Cappé,
and Garivier 2012) and UCB-V (Audibert, Munos, and
Szepesvári 2009)2. The parameters of EUCBV algorithm for
all the experiments are set as follows: ψ = T

K2 and ρ = 0.5
(as in Corollary 1). Note that KLUCB+ empirically outper-
forms KLUCB (see Garivier and Cappé (2011)).
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Figure 1: A comparison of the cumulative regret incurred by
the various bandit algorithms.

Experiment-1 (Bernoulli with uniform gaps): This ex-
periment is conducted to observe the performance of EU-
CBV over a short horizon. The horizon T is set to 60000.
The testbed comprises of 20 Bernoulli distributed arms with
expected rewards of the arms as r1:19 = 0.07 and r∗20 = 0.1
and these type of cases are frequently encountered in web-
advertising domain (see (Garivier and Cappé 2011)). The
regret is averaged over 100 independent runs and is shown
in Figure 1(a). EUCBV, MOSS, OCUCB, UCB1, UCB-V,
KLUCB+, TS, BU and DMED are run in this experimental
setup. Not only do we observe that EUCBV performs better

2The implementation for KLUCB, Bayes-UCB and DMED
were taken from Cappe, Garivier, and Kaufmann (2012)
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than all the non-variance based algorithms such as MOSS,
OCUCB, UCB-Improved and UCB1, but it also outperforms
UCBV because of the choice of the exploration parameters.
Because of the small gaps and short horizon T , we do not
compare with UCB-Improved and Median Elimination.

Experiment-2 (Gaussian 3 Group Mean Setting): This
experiment is conducted to observe the performance of EU-
CBV over a large horizon in Gaussian distribution testbed.
This setting comprises of a large horizon of T = 3 × 105

timesteps and a large set of arms. This testbed comprises
of 100 arms involving Gaussian reward distributions with
expected rewards of the arms in 3 groups, r1:66 = 0.07,
r67:99 = 0.01 and r∗100 = 0.09 with variance set as σ2

1:66 =
0.01, σ2

67:99 = 0.25 and σ2
100 = 0.25. The regret is averaged

over 100 independent runs and is shown in Figure 1(b). From
the results in Figure 1(b), we observe that since the gaps are
small and the variances of the optimal arm and the arms far-
thest from the optimal arm are the highest, EUCBV, which
allocates pulls proportional to the variances of the arms,
outperforms all the non-variance based algorithms MOSS,
OCUCB, UCB1, UCB-Improved and Median-Elimination
(ε = 0.1, δ = 0.1). The performance of Median-Elimination
is extremely weak in comparison with the other algorithms
and its plot is not shown in Figure 1(b). We omit its plot
in order to more clearly show the difference between EU-
CBV, MOSS and OCUCB. Also note that the order of mag-
nitude in the y-axis (cumulative regret) of Figure 1(b) is 104.
KLUCB-Gauss+ (denoted by KLUCB-G+), TS-G and BU-
G are initialized with Gaussian priors. Both KLUCB-G+ and
UCBV which is a variance-aware algorithm perform much
worse than TS-G and EUCBV. The performance of DMED
is similar to KLUCB-G+ in this setup and its plot is omitted.
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Figure 2: Further Experiments with EUCBV

Experiment-3 (Failure of TS): This experiment is con-
ducted to demonstrate that in certain environments when
the horizon is large, gaps are small and the variance of the
optimal arm is high, the Bayesian algorithms (like TS) do
not perform well but EUCBV performs exceptionally well.
This experiment is conducted on 100 Gaussian distributed
arms such that expected rewards of the arms r1:10 = 0.045,
r11:99 = 0.04, r∗100 = 0.05 and the variance is set as
σ2
1:10 = 0.01, σ2

100 = 0.25 and T = 4×105. The variance of
the arms i = 11 : 99 are chosen uniform randomly between
[0.2, 0.24]. TS and BU with Gaussian priors fail because
here the chosen variance values are such that only variance-
aware algorithms with appropriate exploration factors will

perform well or otherwise it will get bogged down in costly
exploration. The algorithms that are not variance-aware will
spend a significant amount of pulls trying to find the op-
timal arm. The result is shown in Figure 2(a). Predictably
EUCBV, which allocates pulls proportional to the variance
of the arms, outperforms its closest competitors TS-G, BU-
G, UCBV, MOSS and OCUCB. The plots for KLUCB-G+,
DMED, UCB1, UCB-Improved and Median Elimination are
omitted from the figure as their performance is extremely
weak in comparison with other algorithms. We omit their
plots to clearly show how EUCBV outperforms its nearest
competitors. Note that EUCBV by virtue of its aggressive
exploration parameters outperforms UCBV in all the exper-
iments even though UCBV is a variance-based algorithm.
The performance of TS-G is also weak and this is in line
with the observation in Lattimore (2015) that the worst case
regret of TS when Gaussian prior is used is Ω

(√
KT log T

)
.

Experiment-4 (Gaussian 3 Group Variance setting):
This experiment is conducted to show that when the gaps
are uniform and variance of the arms is the only discrim-
inative factor then the EUCBV performs extremely well
over a very large horizon and over a large number of arms.
This testbed comprises of 100 arms with Gaussian reward
distributions, where the expected rewards of the arms are
r1:99 = 0.09 and r∗100 = 0.1. The variances of the arms
are divided into 3 groups. The group 1 consist of arms
i = 1 : 49 where the variances are chosen uniform randomly
between [0.0, 0.05], group 2 consist of arms i = 50 : 99
where the variances are chosen uniform randomly between
[0.19, 0.24] and for the optimal arm i = 100 (group 3)
the variance is set as σ2

∗ = 0.25. We report the cumula-
tive regret averaged over 100 independent runs. The hori-
zon is set at T = 4 × 105 timesteps. We report the per-
formance of MOSS,BU-G, UCBV, TS-G and OCUCB who
are the closest competitors of EUCBV over this uniform gap
setup. From the results in Figure 2(b), it is evident that the
growth of regret for EUCBV is much lower than that of TS-
G, MOSS, BU-G, OCUCB and UCBV. Because of the poor
performance of KLUCB-G+ in the last two experiments we
do not implement it in this setup. Also, note that for opti-
mal performance BU-G, TS-G and KLUCB-G+ require the
knowledge of the type of distribution to set their priors .
Also, in all the experiments with Gaussian distributions EU-
CBV significantly outperforms all the Bayesian algorithms
initialized with Gaussian priors.

6 Conclusion and Future Works

In this paper, we studied the EUCBV algorithm which takes
into account the empirical variance of the arms and employs
aggressive exploration parameters in conjunction with
non-uniform arm selection (as opposed to UCB-Improved)
to eliminate sub-optimal arms. Our theoretical analysis con-
clusively established that EUCBV exhibits an order-optimal
gap-independent regret bound of O(

√
KT ). Empirically,

we show that EUCBV performs superbly across diverse
experimental settings and outperforms most of the bandit
algorithms in a stochastic MAB setup. Our experiments
show that EUCBV is extremely stable for large horizons
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and performs consistently well across different types of
distributions. One avenue for future work is to remove the
constraint of T ≥ K2.4 required for EUCBV to reach the
order optimal regret bound. Another future direction is to
come up with an anytime version of EUCBV which does
not require horizon T as input parameter.
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Garivier, A., and Cappé, O. 2011. The kl-ucb algorithm
for bounded stochastic bandits and beyond. arXiv preprint
arXiv:1102.2490.
Honda, J., and Takemura, A. 2010. An asymptotically opti-
mal bandit algorithm for bounded support models. In COLT,
67–79. Citeseer.
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