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Abstract

In the propositional setting, the marginal problem is to
find a (maximum-entropy) distribution that has some given
marginals. We study this problem in a relational setting and
make the following contributions. First, we compare two dif-
ferent notions of relational marginals. Second, we show a du-
ality between the resulting relational marginal problems and
the maximum likelihood estimation of the parameters of rela-
tional models, which generalizes a well-known duality from
the propositional setting. Third, by exploiting the relational
marginal formulation, we present a statistically sound method
to learn the parameters of relational models that will be ap-
plied in settings where the number of constants differs be-
tween the training and test data. Furthermore, based on a re-
lational generalization of marginal polytopes, we characterize
cases where the standard estimators based on feature’s num-
ber of true groundings needs to be adjusted and we quanti-
tatively characterize the consequences of these adjustments.
Fourth, we prove bounds on expected errors of the estimated
parameters, which allows us to lower-bound, among other
things, the effective sample size of relational training data.

Introduction

Statistical Relational Learning (SRL, Getoor and Taskar,
eds., 2007) is concerned with learning probabilistic models
from relational data. Many popular SRL frameworks, such
as Markov Logic Networks (MLNs, Richardson and Domin-
gos 2006), use weighted logical formulas to encode statisti-
cal regularities that hold for the considered problem. Typi-
cally, the maximum (pseudo-)likelihood weights of the for-
mulas are estimated from training data, which is usually a
single large example (e.g. a social network). This is prob-
lematic for two reasons. First, the weights that are learned
from this single training example are in general not opti-
mal for examples of different sizes (Jain, Kirchlechner, and
Beetz 2007). This turns out to be a fundamental problem,
which cannot simply be solved by rescaling the weights
(Shalizi and Rinaldo 2013). Second, without making further
assumptions, it is difficult to provide any statistical guaran-
tees about the learned weights.

In this paper, we approach parameter estimation in SRL
from a novel direction, by introducing the notion of a rela-
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tional marginal problem. In the propositional case (Wain-
wright and Jordan 2008), marginal problems entail find-
ing a maximum-entropy distribution which has the given
marginal probabilities. A well-known property of such prob-
lems is that they are dual to the maximum-likelihood esti-
mation of the parameters of an undirected graphical model
(where “dual” is in the sense of convex optimization). In
relational marginal problems, we are similarly looking for
a maximum-entropy distribution which satisfies some given
statistics – relational marginals. However, we also need to
define what these relational marginals are. Thus, first, we
describe two different types of relational marginals, which
differ in the kinds of statistics that are provided.1 The first
type is based on relational marginal distributions (Kuželka,
Davis, and Schockaert 2017) and the second is based on
Halpern-style random substitution semantics (Bacchus et
al. 1992). Second, for both types of statistics, we establish
a relational counterpart of the duality between maximum-
likelihood estimation and max-entropy marginal problems.
Interestingly, for the latter model, the corresponding dual is
MLNs.

Third, the relational marginal perspective allows us to
learn parameters for domains that have different sizes (i.e.,
number of constants) than the training data. The basic idea
to achieve this is simple. We assume that the training data
is a sample of the data that we want to model. For example,
imagine trying to model all of Facebook based on a sam-
pled subset of Facebook users along with all relations among
them. Assuming the sample is a large enough and was ob-
tained in a suitable way (which is not always the case in
practice – we discuss this issue later), the parameters of the
marginals estimated from the sample should be close to the
respective parameters for the whole network. Then, instead
of using a model learned by optimizing the likelihood on the
training data, we use a model obtained as a solution of the
corresponding relational marginal problem with a domain of
the required size. We may end up with estimated parameters
for which the relational marginal problem has no solution.
Therefore, we propose a method for adjusting the estimated
parameters that enables a solution and characterize its ef-
fect on the estimates. Then we also introduce the relational

1All statistics in this paper are based on universally quantified
formulas; we do not consider formulas with existential quantifiers.
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marginal polytopes, which allows us to provide conditions
under which the unbiased unadjusted estimate will be valid
(“realizable”) for domains of any size.

In addition, the relational marginal view of the param-
eter learning problem, can be thought of as consisting of
two decoupled problems: estimation of the parameters of
marginals and optimization to obtain the max-entropy distri-
butions. Thus, to better understand parameter learning from
relational data, it is important to characterize how accurate
the estimates are. Assuming that all subsamples of the data
being modeled are sampled with the same probability, we
derive bounds on expected error, that is, the expected differ-
ence between the parameters obtained from the subsample
and parameters that could be theoretically computed if the
whole dataset were accessible (e.g. the whole Facebook).
From this, we can also obtain lower-bounds on the effective
sample size for relational data.

The paper is structured around addressing the following
four questions about relational marginal problems:

1. What should the relational marginals be? (Section Two
Types of Relational Marginals)

2. What are the max-entropy distributions with the given re-
lational marginals, and how can we find them? (Section
Max-Entropy Models)

3. When are relational marginal problems realizable, and
how can we adjust them when they are not? How can we
adjust learning to account for differences in domain sizes?
(Section Realizability)

4. How accurate are the parameter estimates of relational
marginals, and what are the links with realizability? (Sec-
tions Relational Marginal Polytopes and Estimation)

Proofs of all propositions stated in the main text and de-
tails of the duality derivations are contained in the online
appendix.2

Preliminaries
This paper considers a function-free first-order logic lan-
guage L, which is built from a set of constants Const, vari-
ables Var and predicates Rel =

⋃
i Reli, where Reli con-

tains the predicates of arity i. We assume an untyped lan-
guage and use the domain size to refer to the |Const|. For
a1, ..., ak ∈ Const∪Var and R ∈ Relk, we call R(a1, ..., ak)
an atom. If a1, .., ak ∈ Const, this atom is called ground. A
literal is an atom or its negation. We use vars(α) to denote
the variables that appear in a formula α. The formula α0 is
called a grounding of α if α0 can be obtained by replacing
each variable in α with a constant from Const. A formula
is called closed if all variables are bound by a quantifier. A
possible world ω is defined as a set of ground atoms. The
satisfaction relation |= is defined in the usual way.

A substitution is a mapping from variables to terms. An
injective substitution is a substitution which does not map
any two variables to the same term. As is commonly done in
statistical relational learning, we use the unique names as-
sumption, meaning that c1 �= c2 whenever c1 and c2 are dif-
ferent constants. A first-order universally quantified formula

2https://arxiv.org/abs/1709.05825

α is said to be proper if αϑ is trivially true whenever ϑ is
not injective. For instance, the formula ∀X,Y : fr(X,Y ) is
not proper whereas the formula ∀X,Y : fr(X,Y ) ∨X = Y
is proper. We sometimes omit the universal quantifiers and
simply write, e.g. fr(X,Y ) ∨X = Y .

A (global) example is a pair (A, C), with C a set of con-
stants and A a set of ground atoms which only use con-
stants from C. Let Υ = (A, C) be an example and S ⊆ C.
The fragment Υ〈S〉 = (B,S) is defined as the restriction
of Υ to the constants in S , i.e. B is the set of all atoms
from A which only contain constants from S . Two examples
Υ1 = (A1, C1) and Υ2 = (A2, C2) are isomorphic, denoted
as Υ1≈Υ2, if there exists a bijection σ : C1 → C2 such that
σ(A1) = A2, where σ is extended to ground atoms in the
usual way. When C is a set of constants and Φ0 a set of closed
formulas, Π(C,Φ0) denotes the set of all Υ = (A, C) such
that Υ |= Φ0 (we can think of Φ0 as a set of constraints).

A Markov logic network (MLN, Richardson and Domin-
gos 2006) is a set of weighted formulas (α,w), w ∈ R and
α a function-free and quantifier-free first-order formula. The
semantics are defined w.r.t. the groundings of the first-order
formulas, relative to some finite set of constants C, called the
domain. An MLN is seen as a template that defines a Markov
random field. Specifically, an MLN M induces the follow-
ing probability distribution on the set of global examples3

Υ:

pM(Υ) =
1

Z
exp

⎛⎝ ∑
(α,w)∈M

w · n(α,Υ)

⎞⎠ (1)

where n(α,Υ) is the number of groundings of α that are
satisfied in Υ, and Z is a normalization constant to ensure
that pM is a probability distribution.

Weights of MLNs are typically estimated using maximum
(pseudo)likelihood from a given global example. When the
MLN with weights learned in this way is used as a proba-
bilistic model with a domain of different size, there are no
guarantees regarding the induced distribution. This is most
obvious when the MLN contains formulas having different
numbers of variables. Then, keeping the weights fixed, the
formulas with the highest number of variables often com-
pletely dominate the others if we increase the domain size.
While some simple cases could be solved by normalizing the
counts n(α,Υ), in general this is not the case. Shalizi and
Rinaldo (2013) list the example of modelling homophily in
social networks; we refer to their paper for details.

Two Types of Relational Marginals

Typically, parameters for a statistical relational model are es-
timated from a single example of a relational structure that
consists of a large set of ground atoms A. Intuitively, the
goal is to learn a probability distribution of such relational
structures. The challenge is how to estimate the distribution
from a single example. One solution is based on the assump-
tion that the relational structure has repeated regularities.
Then, statistics about these regularities can be computed for

3What we call a global example in this paper is usually called a
possible world in the MLN literature.
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small substructures of the train example and used to con-
struct a distribution over large relational structures. Thus,
the next issue is how to construct the fragments and com-
pute statistics on them. Next, we discuss two possible ways
to do so, which we will refer to as Model A and Model B.

Model A

The first approach to constructing fragments is
from (Kuželka, Davis, and Schockaert 2017). It re-
peatedly samples subsets S ⊆ C of the constants from the
given example Υ = (A, C) and then builds one training
example Υ〈S〉 for each S . However, the training examples
must consider isomorphic classes of constants to account for
the fact that each fragment will contain different constants.
This is accomplished by using the notion of local examples.
Definition 1 (Local example). Let k ∈ N. A local exam-
ple of width k is a pair ω = (A, {1, ..., k}), where A is
a set of ground atoms that contain only constants from the
set {1, 2, . . . , k}. For an example Υ = (A, C) and S ⊆ C,
we write Υ[S] for the set of all local examples of width |S|
which are isomorphic to Υ〈S〉.
To distinguish local examples from global examples, we will
denote them using lower case Greek letters such as ω instead
of upper case letters such as Υ.
Example 1. Let Υ = ({fr(alice, bob), fr(bob, alice),
fr(bob, eve), fr(eve, bob), sm(alice)}, {alice, bob, eve}), i.e.
the only smoker is alice and the friendship structure is:

alice bob eve

Then Υ〈{alice, bob}〉 = ({sm(alice), fr(alice, bob),
fr(bob, alice)}, {alice, bob}), Υ[{alice, bob}]= {({fr(1, 2),
fr(2, 1), sm(1)}, {1, 2}), {({fr(2, 1), fr(1, 2), sm(2)},
{1, 2})}.
This leads to a natural definition of a probability distribution
over local examples of width k.
Definition 2 (Relational marginal distribution of a global ex-
ample). Let Υ = (A, C) be an example and k ∈ N. The
relational marginal distribution of Υ of width k is a distri-
bution PΥ,k over local examples, where PΥ,k(ω) is defined
as the probability that ω is sampled by the following pro-
cess: (i) Uniformly sample a subset S of k constants from C.
(ii) Uniformly sample a local example ω from the set Υ[S].
For a closed formula α without constants, we also define, its
probability: PΥ,k(α) =

∑
ω:ω|=α PΥ,k(ω).

We will call a pair (α, p), where α is a constant-free closed
formula and p ∈ [0; 1], a relational marginal constraint.
We may also interpret the probability PΥ,k(α) of a closed
constant-free formula α as the probability that α is true in a
restriction Υ〈S〉 of Υ to a randomly sampled subset S of k
constants from Υ. Thus, if we are only interested in the prob-
abilities of closed constant-free formulas, we do not have to
refer to local examples. Local examples are important be-
cause relational marginal distributions defined using them
are themselves probability distributions on possible worlds,
which is both nice conceptually and convenient (as it means
that we can model relational marginals of Model A using

any standard propositional probabilistic model). Arguably,
this property also makes Model A more interpretable and
hence easier to explain to non-specialists.

Global examples may also be assumed to be sampled from
some distribution and we define the corresponding marginal
distributions induced by such distributions accordingly.
When P (Υ) is a distribution over finite global examples
from a possibly countably infinite set Ω, then the marginal
distribution of width k is a distribution Pk over local ex-
amples where Pk(ω) is defined as Pk(ω) =

∑
Υ∈Ω P (Υ) ·

PΥ,k(ω). For a closed formula α without constants, we
also analogically define: Pk(α) =

∑
ω:ω|=α Pk(ω). In other

words, a relational marginal distribution is a mixture of (pos-
sibly countably many) relational marginal distributions of
global examples.
Proposition 2. Let P (Υ) be a distribution on domain size
n and k ≤ n be an integer. Let Ωα = {Υ〈S〉 : S ⊆ C, |S| =
k,Υ〈S〉 |= α} where Υ = (A, C) is sampled according
to the distribution P (Υ). Then, for a closed constant-free

formula α, p̂α = |Ωα| ·
(

n
k

)−1

is an unbiased estimate

of Pk(α) for Model A.

Model B

The second approach is to consider random substitutions,
which is in the spirit of existing works (Bacchus et al. 1992;
Schulte et al. 2014). Here, the statistics that we collect about
Υ are defined as follows.
Definition 3 (Probability of formulas under Model B). Let
Υ = (A, C) be a global example and α be a universally
quantified formula. Let Pϑ be a uniform distribution on in-
jective substitutions from the set Θα = {ϑ|ϑ : vars(α) →
C and ϑ is injective}. Then the probability Q(α) of the for-
mula α under model B is defined as

QΥ(α) =
∑

ϑ∈Θα

1(Υ |= αϑ)Pϑ(ϑ) =
1

|Θ|
∑

ϑ∈Θα

1(Υ |= αϑ).

Just like for Model A, we extend the definition of the prob-
ability of formulas straightforwardly to the case where Υ is
not fixed but sampled from some distribution over a count-
able set Ω: Q(α) =

∑
Υ∈Ω QΥ(α) · P (Υ).

Example 3. Let Υ be as in Example 1. Let

α = ∀X,Y : ¬fr(X,Y ) ∨ sm(Y ),

β = ∀X,Y : ¬fr(X,Y ) ∨ sm(X) ∨ sm(Y ).

Assume that the relation fr(., .), “friends”, is symmetric.
Then, the formula α is classically true if all people who
are friends with someone, smoke. The formula β is clas-
sically true if for every pair of people A and B who are
friends, at least one of them smokes. Computing the respec-
tive probabilities, we get PΥ,2(α) = 1

3 , PΥ,2(β) = 2
3 ,

QΥ(α) = 1
2 , QΥ(β) = 2

3 , which illustrates that in gen-
eral the “marginal” probabilities given by the two models
will differ. The first model might be slightly easier to inter-
pret as the marginal probabilities P (γ) correspond to the
fraction of the width-k fragments of Υ in which γ is true as
a classical logic formula.
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We note that the straightforward analogue of Proposi-
tion 2 also holds for Model B.

Max-Entropy Models

In this section we show how to compute models of given
relational marginals under Model A and Model B.
Definition 4 (Model of relational marginals). Let us have
a set of pairs Φ = {(α1, θ1), . . . , (αh, θh)} of relational
marginals, where αi is a closed formula and θi ∈ [0; 1].
Let Φ0 be a set of formulas, called hard rules (i.e. formulas
that are supposed to always hold). We say that a probability
distribution P (Υ) over worlds satisfying the hard rules from
Φ0 is a width-k model of Φ iff Pk(αi) = θi (Qk(αi) = θi,
respectively) for all (αi, θi) ∈ Φ.

We will use standard duality arguments from convex op-
timization (Boyd and Vandenberghe 2004), essentially fol-
lowing (Singh and Vishnoi 2014). For both models, the re-
sult will in both cases an exponential-family model and the
one for Model B will turn out to be equivalent to MLNs.

Model A

Let C be a set of constants, A be the set of all atoms over C
based on some given first-order language and let Ck denote
the set of all k-element subsets of C. Next, let Φ be a set
of relational marginals and Φ0 be a set of hard constraints,
i.e. formulas α such that if Υ �|= α then P (Υ) = 0. We as-
sume that there exists at least one distribution P ′ which is a
model of Φ and which satisfies the following positivity con-
dition: P ′(Υ) > 0 for all Υ satisfying the hard constraints
(i.e. those for which Υ |= Φ0).

sup
{PΥ:Υ∈Π(C,Φ0)}

∑
Υ∈Πn(C,Φ0)

PΥ log
1

PΥ
s.t. (2)

∀(αi, θi) ∈ Φ :

1

|Ck|
∑
S∈Ck

∑
Υ∈Π(C,Φ0)

1(Υ〈S〉 |= αi) · PΥ = θi (3)

∀Υ ∈ Πn(C,Φ0) : PΥ ≥ 0,
∑

Υ∈Π(C,Φ0)

PΥ = 1 (4)

Next we define #k(α,Υ) = |{S ∈ Ck : Υ〈S〉 |= α}| as the
number of sets S ∈ Ck such that the formula α is classically
true in the restriction of Υ to constants in S . In the appendix,
we show that the distribution, if it exists, that is a solution to
the optimization problem has the following form:

PΥ =
1

Z
exp

( ∑
αi∈Φ

λi
#k(αi,Υ)

|Ck|

)
. (5)

The Lagrangian dual problem of the maximum entropy
problem is to maximize (where λi ∈ R):∑

αi∈Φ

λiθi − log
∑

Υ∈Π(C,Φ0)

e
∑

αi∈Φ λi
#k(αi,Υ)

|Ck| . (6)

Due to the positivity assumption, Slater’s condition (Boyd
and Vandenberghe 2004) is satisfied and strong duality
holds. Consequently, instead of solving the original prob-
lem, which has an intractable number of constraints and vari-
ables (one variable for each world Υ ∈ Π(C,Φ0)), we can
solve the dual problem, which only has |Φ| variables. On
the other hand, the optimization criterion of the dual prob-
lem may still be computationally hard to solve as it requires
weighted counting over worlds in Π(C,Φ0). However, in
many restricted, but non-trivial, cases, we can exploit lifted
weighted model counting techniques in the same way as
they were used for maximum-likelihood estimation in Van
Haaren et al. (2016).

Let us perform a change of variables wi := λi/|Cki
|. This

gives us

P (Υ) =
1

Z
exp

( ∑
αi∈Φ

wi ·#k(αi,Υ)

)
(7)

for the distribution and∑
αi∈Φ

wiθi|Cki
| − log

∑
Υ∈Π(C,Φ0)

e
∑

αi∈Φ wi·#k(αi,Υ) (8)

for the optimization criterion of the dual problem. Assum-
ing that the marginals were estimated from a global exam-
ple Υ̂ ∈ Π(C,Φ0) (note that here the domain C is the same
as the domain of the global examples over which the dis-
tribution is defined) and that they still satisfy the positivity
assumption, we can also rewrite (8) as

∑
αi∈Φ

wi · #k(αi, Υ̂) − log
∑

Υ∈Π(C,Φ0)

e
∑

αi∈Φ wi·#k(αi,Υ)
.

It is straightforward to check that this is the same as directly
optimizing the log-likelihood of Υ̂. Thus, this is a relational
analogue of the well-known duality of maximum likelihood
and maximum entropy (Wainwright and Jordan 2008). Note
that it is important for the duality of maximum likelihood
and maximum entropy that both the Υ̂, from which we esti-
mated the parameters, and the global examples over which
the distribution is computed have the same domain size. The
Section Realizability will address cases where the domain
sizes of the training and testing data differ.

Model B

Like for Model A, we can construct a convex optimization
problem to obtain a maximum-entropy distribution with the
given relational marginals under Model B. This problem’s
optimization criterion is the same as (2). To obtain the con-
straints enforcing the marginals, we can replace the summa-
tion over subsets of constants in C in Equation (3) by a sum-
mation over substitutions from Θαi , where Θαi is defined as
in Definition 3. This yields the following set of constraints
for all (αi, θi) ∈ Φ:∑

ϑ∈Θαi

1

|Θαi |
∑

Υ∈Π(C,Φ0)

1(Υ |= αiϑ) · PΥ = θi. (9)
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Using basically the same reasoning as for Model A, we
arrive at the following form of the probability distribution

P (Υ) =
1

Z
exp

( ∑
αi∈Φ

wi · n(αi,Υ)

)
(10)

where n(αi,Υ) is the number of groundings αiϑ of the for-
mula αi, where all ϑ’s are injective, which are true in Υ.
This distribution is identical to the one for MLNs which only
contain proper formulas (because of the injectivity require-
ment in the definition of Model B). The only difference with
the distribution of Model A is the use of n(αi,Υ) instead
of #k(αi,Υ). The dual optimization criterion for Model B
then becomes to maximize∑

αi∈Φ

wiθi|Θαi
|− log

∑
Υ∈Π(C,Φ0)

e
∑

αi∈Φ wi·n(αi,Υ) (11)

which can be rewritten, when θi’s are estimated from some
Υ̂ = (Â, Ĉ) with |Ĉ| = |Ĉ|, as

∑
αi∈Φ wi · n(αi, Υ̂) −

log
∑

Υ∈Π(C,Φ0)
e
∑

αi∈Φ wi·n(αi,Υ). This is the same as log-

likelihood of Υ̂ w.r.t. the MLN given by (11), assuming that
all the formulas in the MLN are proper. Thus, when the size
of the domain of the training example Υ̂ is the same as the
cardinality of the domain of the modeled distribution, the
max-entropy relational marginal problem in Model B is the
same as maximum-likelihood estimation in MLNs.

Realizability

Not all relational marginals have a model for a given do-
main size (or even any model at all). This is a problem
if we want to estimate relational marginals on some given
global example Υ̂ and then use them to obtain a distribu-
tion on global examples that have a different domain size
(which we address in Section Estimation). The duality be-
tween maximum-likelihood estimation and max-entropy re-
lational marginal problems discussed in the previous section
only holds when the training data and the distribution that
we want to model have the same domain size.

In this section, we will show how to obtain relational
marginals for any domain size. Accomplishing this requires
replacing the consistency of relational marginal estimators
with a weaker notion. However, we can still bound the differ-
ence between the unbiased and the adjusted estimates. More
importantly, the difference will tend to zero as the domain
size of the examples from which the respective marginals
were estimated increases.

First, it is easy to see that if a model exists for a given set
of marginals and domain size, then there is also such a model
for smaller domain sizes, as the next proposition asserts.4

Proposition 4. For Model A, if there is a width-k model of
Φ on domain of size n then there is also a width-k model of
Φ on domain of size m for any m satisfying n ≥ m ≥ k.
For Model B, if there is a model of Φ on domain of size n

4Proposition 4 is one of the results which would not hold for
Model B if we did not require injectivity of the randomly sampled
substitutions in the definition of Model B.

then there is also a model of Φ on domain of size m for any
m satisfying n ≥ m ≥ maxα∈Φ |vars(α)|.
Next, we give an example of a relational marginal distribu-
tions that does not have a model for arbitrary domain cardi-
nalities.
Example 5. Let L consist of predicate symbols
e/2, r/1, g/1, b/1 and Υ = (A, C) be a global exam-
ple where

A = {e(v1, v2), e(v2, v1), e(v2, v3), e(v3, v2), e(v1, v3),
e(v3, v1), r(v1), g(v2), b(v3)}, C = {v1, v2, v3}.

Let k = 2 be the width of local examples. And let

F (X1, X2)
def
= X1 �= X2 ∧ ¬e(X1, X1) ∧ e(X1, X2) ∧

e(X2, X1) ∧ ¬e(X2, X2). Then we can estimate, for in-
stance, the following marginals from Υ under Model A:

P [∃X1, X2 : F (X1, X2) ∧ r(X1) ∧ ¬g(X1) ∧ ¬b(X1)∧
∧¬r(X2) ∧ g(X2) ∧ ¬b(X2)] =

1

3
P [∃X1, X2 : F (X1, X2) ∧ r(X1) ∧ ¬g(X1) ∧ ¬b(X1)∧

∧¬r(X2) ∧ ¬g(X2) ∧ b(X2)] =
1

3
P [∃X1, X2 : F (X1, X2) ∧ ¬r(X1) ∧ g(X1) ∧ ¬b(X1)∧

∧¬r(X2) ∧ ¬g(X2) ∧ b(X2)] =
1

3

(which can also be rewritten as probabilities of universally
quantified formulas by negating the existentially quantified
conjunctions). The global example Υ can be imagined as a
complete directed graph (without self-loops) on 3 vertices
v1, v2, v3 where each of the vertices is colored by one of the
“colors” r, g, b.

We claim that no distribution on global examples satis-
fies the above marginal probabilities for domain size greater
than 3. This can be shown as follows. Using the intuitive
view of Υ as a colored directed graph, the distribution on
global examples of domain size e.g. 4 would be a distri-
bution on graphs with 4 vertices. Such graphs would have
to contain either two vertices not connected by an edge or
two vertices connected by an edge but labeled with the same
color or a vertex with no color. However, two such vertices
would correspond to a local example which would otherwise
have zero probability under the marginals estimated from Υ,
which are shown above. While the above reasoning is for
Model A, a similar argument can be used to show the same
issues for Model B.

One of the consequences of the above example is that
the unbiased estimates of relational marginals from Propo-
sition 2 cannot always be used for defining distributions of
arbitrary domain sizes. The section Estimation shows under
which such unbiased estimates do exist, using the concept of
relational marginal polytopes.

In order to construct distributions for arbitrary domain
sizes, which have relational marginals that are close to the
relational marginals given by some global example Υ, we
will rely on the following construction which we call expan-
sion of global example.
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Definition 5 (Expansion of a global example). Let Υ =
(A, C) be a global example where C = {c1, c2, . . . , cn}, and
let l be a positive integer. Then the l-level expansion of Υ
is a global example Υ′ = (A′, C′) given by: A′ = {aθ :
a ∈ A, θ ∈ Θ}, C′ = {c1, c2, . . . , cn, cn+1, . . . , cl·n}. Here,
constants ci, cj are said to be congruent if i ≡ j mod n.
Here, cn+1, . . . , cl·n are some arbitrary new constants and
Θ is a set of all substitutions θ which satisfy the requirement
that cθ is congruent with c for each c ∈ C.
Next we illustrate the notion of expansion of examples.
Example 6. Let Υ = (A, C) be given by

A = {e(c1, c2), e(c2, c3)}, C = {c1, c2, c3}.
Interpreting the predicate e as edge, the corresponding
graph looks like:

c1 c2 c3

Then the 2-level expansion of Υ is Υ′ = (A′, C′) where

A = {e(c1, c2), e(c2, c3), e(c4, c5), e(c5, c6), e(c1, c5),
e(c2, c6), e(c4, c2), e(c5, c3)}, C = {c1, c2, c3, c4, c5, c6}.

Interpreting the predicate e again as edge, the expansion
corresponds to the following graph:

c1 c2 c3

c4 c5 c6

The width-2 marginal probabilities on Υ and Υ′ are:

PΥ,2(ω1) =
1

3
PΥ′,2(ω1) =

7

15
ω1 = ({}, {1, 2})

PΥ,2(ω2) =
1

3
PΥ′,2(ω2) =

4

15
ω2 = ({e(1, 2)}, {1, 2})

PΥ,2(ω3) =
1

3
PΥ′,2(ω3) =

4

15
ω3 = ({e(2, 1)}, {1, 2})

PΥ,2(ω) = 0 PΥ′,2(ω) = 0 ω �∈ {ω1, ω2, ω3}
The differences between the marginal probabilities given by
Υ and Υ′ are at most 2

15 in this case, which is quite high.
However, it follows from what we show in turn that this is
mostly because of the small size of Υ. For larger global ex-
amples, the difference between the marginals obtained from
them and from their expansions will tend to be smaller.

Importantly, it is possible to bound the difference of the
parameters obtained on expansions of global examples and
the unbiased estimates obtained on the original examples.
Proposition 7. Let Υ = (A, C) be a global example and Υ′
its l-level expansion and let n = |A| and k be the width of
local examples. Then for any formula α:

|PΥ,k(α) − PΥ′,k(α)| ≤ 1 −
(
n− k + 1

n

)k−1

for Model A, and

|QΥ(α) − QΥ′(α)| ≤ 1 −
(
n− kα + 1

n

)kα−1

for Model B, where kα = |vars(α)|.

Note that the difference between the true and modeled prob-
abilities of a fixed formula α decays as O

(
1
n

)
.

The techniques described in this section have the follow-
ing limitation. If we have a set of hard rules Φ0 which are
satisfied by a given Υ, these rules may not be satisfied in an
expansion of Υ. This is not just a limitation of our method
though. There are cases where it is not possible to extend a
given Υ while satisfying the constraints (this is because we
allow the use of equality in the formulas and because we use
the unique names assumption). However, if the example Υ
is large enough and it satisfies the hard rules, then the num-
ber of violations of these rules will be small, which follows
again from Proposition 7.

In fact, it seems to be a desirable property that formu-
las α satisfying PΥ,k(α) = 1 do not have to be treated as
completely hard rules but as rules that “mostly” hold if they
are learned from Υ, since it may be that they are not re-
ally rules that should always hold. Yet, if we actually took
them as hard rules we would be forced to assign probabil-
ity 0 to any example that violates them. It is possible to use
the idea of expansions to obtain a distribution in which any
formula α has nonzero probability and all properties of ex-
pansions are still preserved (such as those from Proposition
7). This can be achieved by randomly sampling additional
atoms containing only congruent constants and adding them
to the respective expansion. If we use a sufficiently high
level of the expansion (at least k for Model A and at least
maxα∈Φ |vars(α)| for Model B) then the probability of any
formula will be nonzero and not equal to one w.r.t. the distri-
bution induced by the expansions with the sampled atoms.

Relational Marginal Polytopes

In this section, we define another important concept called
relational marginal polytope, which will be used in the next
section where we deal with estimation errors.
Definition 6 (Relational marginal polytope for Model A).
Let k,m ∈ N and Φ = {α1, . . . , αl} be a set of formulas
and Φ0 be a set of hard rules. Let C = {1, . . . ,m} and
Ck be the set of size-k subsets of C. Then, for Model A, the
relational marginal polytope of Φ of width k and cardinality
m w.r.t. the hard rules from Φ0 is the convex hull of the set{(

#k(α1,Υ)

|Ck| , . . . ,
#k(αl,Υ)

|Ck|
)∣∣∣∣Υ ∈ Π(C,Φ0)

}
.

Let Θαi
be the set of all injective substitutions from vari-

ables of αi to constants from C. Then, for Model B, the re-
lational marginal polytope of Φ of cardinality m w.r.t. the
hard rules from Φ0 is the convex hull of the set{(

n(α1,Υ)

|Θα1
| , . . . ,

n(αl,Υ)

|Θαl
|

)∣∣∣∣Υ ∈ Π(C,Φ0)

}
.

Any realizable set of relational marginals for Model A and
Model B naturally corresponds to a point in the respec-
tive polytope. In the remainder of this paper, we only con-
sider the cases when the relational marginal polytope is
full-dimensional, that is, it does not live in a lower dimen-
sional subspace which could happen if some of the relational
marginals that define it were linearly dependent.

6389



We will also need the concept of η-interior of a relational
marginal. We say that a point y is in the η-interior of a rela-
tional marginal polytope P if P contains a ball of radius η
with center in y. Using Proposition 4 and Proposition 7, we
can show the following both for Model A and Model B.

Proposition 8. Let θ be a vector representing the values
of a set of relational marginals given by formulas from a
set Φ = {α1, . . . , αl}. Let k be the width of the rela-
tional marginals of Model A or k = maxαi

|vars(αi)| for
Model B. Let the set of hard rules Φ0 be empty. If θ is in
the

(
η +

√
l
(
1− (

m−k+1
m

)k−1
))

-interior of the relational
marginal polytope of Φ of domain-size m then it is also in
the η-interior of the relational marginal polytope of Φ for
any domain size m′.

Estimation

In this section, we present error bounds for the estimation of
relational marginals. We start by defining the learning set-
ting. Clearly, we need some assumptions on the training and
test data and their relationship (otherwise one could always
come up with a setting in which the error can be arbitrarily
large). In order to stay close to realistic settings we assume
that there is some large global example ℵ = (Aℵ, Cℵ) that
is not available and that represents the ground truth. That is
what we essentially want to estimate for a given formula α
is Pℵ,k(α), but we do not have access to whole ℵ. Imag-
ine for instance that ℵ is the human gene regulatory net-
work or Facebook. We assume that there is a process that
samples size-m subsets of Cℵ uniformly and that we have
access to one such sample CΥ and also to the respective
induced Υ = ℵ〈CΥ〉. So, for a given formula α, we need
to estimate Pℵ,k(α) using the available example Υ and the
estimate needs to be realizable (otherwise the optimization
problem would have no solution and the duality would also
not hold). This is a reasonably realistic setting5 as in practice
we also do not have a distribution over different Facebooks
but there is one Facebook and we want to model it based on
a sample that is available to us.

We now provide theoretical upper bounds for the expected
error of the estimates of Pℵ,k(α) assuming the just described
learning setting. However, we first need to describe the es-
timators. Based on the results from the previous sections,
the estimator works as follows. Given a global example
Υ = (AΥ, CΥ) and an integer n, which is the size of the
domain of the modelled distribution (e.g. n can be size of
ℵ’s domain if it is known), we construct the l-level expan-
sion Υ(l) of Υ, where l = �n/|CΥ|�, and we use it to esti-
mate the parameters as P̂α = PΥ(l),k(α) for Model A and
as Q̂α = QΥ(l)(α) for Model B. The following proposition
introduces an upper bound for the expected error of the esti-
mated parameters.

Proposition 9. Let m and n be positive integers, α a
closed formula and let k be the width of local examples. Let

5What might differ in realistic settings is the sampling process.
We briefly discuss this in section Conclusions.

ℵ = (Aℵ, Cℵ) be a global example, CΥ be sampled uni-
formly among all size-m subsets of Cℵ and Υ = ℵ〈CΥ〉. Let
Âℵ = Pℵ,k(α). Let B̂Υ be an estimate computed from the
l-level expansion of CΥ. Then

E

[∣∣∣Âℵ − B̂Υ

∣∣∣] ≤ 1−
(
m− k + 1

m

)k−1

+

√
1 + 2 log 2

4�m/k� .

In the case of model B, the same upper bound holds if we
choose k = |vars(α)| and Âℵ = Qℵ(α).

The proof of this proposition, which is contained in the on-
line appendix, is based on a deviation bound for a random-
ized estimator of B̂Υ.

It is possible to improve the estimation in some cases. If
the vector corresponding to the marginals Φ estimated from
Υ is guaranteed to be in the

(
η +

√
l
(
1− (

m−k+1
m

)k−1
))

-
interior of the relational marginal polytope of domain of size
m = |CΥ| for some η > 0, where k is the width of local ex-
amples for Model A (or maxα∈Φ |vars(α)| for Model B),
then, by Proposition 8, we can estimate the parameters di-
rectly from Υ without constructing its expansion. We then
have the following improved bound:

E

[∣∣∣Âℵ − B̂Υ

∣∣∣] ≤
√
(1 + 2 log 2)/(4�m/k�).

It is interesting to note that the lower-bound on effective
sample size obtained from these bounds is �m/k�, which
is also the maximum number of non-overlapping size-k
subsets of CΥ. A consequence for learning the parameters
of models such as MLNs (which corresponds to relational
marginal problems in Model B) is that this bound is inversely
proportional to the number of variables in the used formulas,
which also suggests an explanation for why learning with
longer formulas is difficult.

Related Work

The relational marginals from Model A were recently in-
troduced (Kuželka, Davis, and Schockaert 2017). However,
they were only studied in a possibilistic setting, which dif-
fers substantially from the probabilistic maximum-entropy
setting that we considered. The idea of using random substi-
tutions (Model B) goes back to (Bacchus et al. 1992) who,
however, only considered unary predicates. Schulte et al.
(2014) used the random substitutions semantics to define a
relational Bayesian network model for population statistics.
However, their model is, not based on any underlying ground
model, and it is unclear whether the distributions are always
realizable by a ground model.

In the more restricted setting of exponential random graph
models (ERGMs, Chatterjee and Diakonis 2013), a formally
similar duality, based on densities of graph homomorphisms,
has previously been established. To the best of our knowl-
edge, however, such a duality has never been established in
an SRL setting. In fact, even for ERGMs this duality has not
yet been exploited for estimating parameters for models of
different domain sizes, which is one of the key contributions
of our work.
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Certain statistical properties of learning have been already
studied for SRL models. Xiang and Neville (2011) studied
consistency but postulated rather strong assumptions6, as a
result of which their results are not comparable with ours.
Their approach also differs in that it only considers distribu-
tions of labels conditioned on the underlying graph structure.
It is interesting that a statistical estimation problem equiva-
lent to the estimation of parameters in Model A has also
been studied in the literature. In Nandi and Sen (1963), the
variance of an estimator, equivalent to the unbiased estima-
tor for Model A, was given. However, we are not aware of
any work showing a deviation bound in the same setting,
which was needed to establish the bound on expected error
in Proposition 9. Interestingly, the effective sample size m/k
stemming from the work (Nandi and Sen 1963) for variance
of the estimator is almost the same as the effective sample
size �m/k� stemming from our deviation and expected-error
bounds. This actually suggests that our bounds are rather
tight. There were many works on U-statistics (Hoeffding
1948) which are related as well but they rely on assump-
tions that are generally not realistic for SRL and, in particu-
lar, are not applicable to our setting; the work of Nandi and
Sen (1963) is an exception.

Conclusions

In this paper, we have introduced and studied relational
marginal problems. Interestingly, this perspective enables
learning a model that is applicable to data sets whose domain
sizes differ from that of the training data. We established
a relational counterpart of the classical duality between
maximum-likelihood and max-entropy marginal problems.
Then, we showed how to estimate and adjust parameters of
the marginals in order to guarantee their realizability. We
complemented these results by providing bounds on the ex-
pected errors of the estimates in a reasonable setting.

We believe that due to the simplicity and transparency of
the learning setting that we introduced, this setting could
play a similar role for SRL as the standard i.i.d. statistical
learning setting plays for learning in propositional domains
(Vapnik 1995). That is, as an idealized setting that is suitable
for theoretical study, but that is not too far from settings that
one encounters in reality. Still, it would be possible to ex-
tend the learning setting to make it more realistic. In partic-
ular, the sampling process that creates the training examples
could be replaced by another sampling process that would
take into account the structure of the relational data. That
would probably make estimation of parameters and deriva-
tion of error bounds significantly more complex, and hence
arguably less illuminating, which is why we leave it for fu-
ture work.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was supported by a
Leverhulme Trust grant (RPG-2014-164) and ERC Starting
Grant 637277. JD is partially supported by the KU Leuven

6The assumptions used in their work were weak dependency
and bounded degree of graph nodes.

Research Fund (C14/17/070,C22/15/015,C32/17/036), and
FWO-Vlaanderen (G.0356.12, SBO-150033). YW is par-
tially supported by Guangdong Shannon Intelligent Tech.
co., Ltd.

References

Bacchus, F.; Grove, A. J.; Koller, D.; and Halpern, J. Y.
1992. From statistics to beliefs. In Proceedings of the 10th
National Conference on Artificial Intelligence, 602–608.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge university press.
Chatterjee, S., and Diaconis, P. 2013. Estimating and under-
standing exponential random graph models. The Annals of
Statistics 41(5):2428–2461.
Getoor, L., and Taskar, B. 2007. Introduction to statistical
relational learning. MIT press.
Hoeffding, W. 1948. A class of statistics with asymptotically
normal distribution. The annals of mathematical statistics
293–325.
Jain, D.; Kirchlechner, B.; and Beetz, M. 2007. Extending
Markov logic to model probability distributions in relational
domains. In KI 2007: Advances in Artificial Intelligence,
30th Annual German Conference on AI, KI 2007, 129–143.
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