
Optimal Approximation of Random Variables for
Estimating the Probability of Meeting a Plan Deadline

Liat Cohen,1 Tal Grinshpoun,2 Gera Weiss1
1Department of Computer Science

Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Department of Industrial Engineering and Management

Ariel University, Ariel 40700, Israel

Abstract

In planning algorithms and in other domains, there is often a
need to run long computations that involve summations, max-
imizations and other operations on random variables, and to
store intermediate results. In this paper, as a main motivating
example, we elaborate on the case of estimating probabilities
of meeting deadlines in hierarchical plans. A source of com-
putational complexity, often neglected in the analysis of such
algorithms, is that the support of the variables needed as inter-
mediate results may grow exponentially along the computa-
tion. Therefore, to avoid exponential memory and time com-
plexities, we need to trim these variables. This is similar, in a
sense, to rounding intermediate results in numerical compu-
tations. Of course, to maintain the quality of algorithms, the
trimming procedure should be efficient and it must maintain
accuracy as much as possible. In this paper, we propose an
optimal trimming algorithm with polynomial time and mem-
ory complexities for the purpose of estimating probabilities
of deadlines in plans. More specifically, we show that our al-
gorithm, given the needed size of the representation of the
variable, provides the best possible approximation, where ap-
proximation accuracy is considered with a measure that fits
the goal of estimating deadline meeting probabilities.

1 Introduction

Various stochastic problems in AI, and more specifically, in
the decision making and planning literature, involve dead-
lines (Herroelen and Leus 2005; Beck and Wilson 2007;
Fu, Varakantham, and Lau 2010; Buyya, Garg, and Cal-
heiros 2011; Cohen, Shimony, and Weiss 2015). In these
problems, the goal is to estimate the probability that a ran-
dom variable gets a value that is below a given threshold (a
deadline). If the random variable is X and the deadline is T ,
this amounts to evaluating FX(T) where FX is the cumula-
tive distribution function (CDF) of X . While this is straight-
forward when the distribution of X is given explicitly, it may
be computationally hard when X is specified implicitly.

To demonstrate the type of computational complexities
that we focus on in this paper, we briefly describe an exam-
ple from the hierarchical planning domain. Assume that we
are given a plan for the operation of a robot described as a
tree whose leaves represent tasks with uncertain durations

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and whose nodes specify combinations of their sub-trees,
that represent, recursively, composite tasks, either sequen-
tially or in parallel. Consider the problem of estimating the
probability that the plan makespan does not exceed a given
deadline. Algorithms for solving such problems often apply
operations like addition, multiplication and maximization,
over random variables, see, e.g., (Shperberg, Shimony, and
Felner 2017). In many cases the analysis found in the liter-
ature of the complexity of such algorithms focuses on the
complexity stemming from the dependency graph and ig-
nores the complexity that stems from the growth of the sup-
port, see, e.g., (Hagstrom 1988). However, when we look
closer, we see that this complexity is not always negligible.
For example, the size of the support of X+Y may be a prod-
uct of the sizes of the supports of X and of Y , i.e., the size
of a standard representation of the variables, by a table that
assigns a probability to each value in the support, may grow
exponentially with additions. This may have a dramatic ef-
fect on both memory and time complexity of algorithms.

While there may be other solutions to the problem, e.g.,
by choosing different representations of the variables, our
approach in this paper is to compute approximations of the
random variables: Given a random variable X , we propose a
way to compute a random variable X ′ with support(X ′) <
support(X), such that if we replace X with X ′ in the re-
mainder of the computation, we get a result that is close to
the one that we would have gotten if we used X . In this pa-
per we use the notation support(X) to denote the set of all
the realizations of X that have a nonzero probability of be-
ing observed. The size of the support is proportional to the
size of the table that people usually use as a data structure to
represent discrete random variables.

The above idea is similar to the very common practice
of rounding intermediate numerical results in long computa-
tions. This is a must when dealing with irrational numbers,
e.g.,

√
2 ≈ 1.414, and is also common for saving time and

memory, e.g., rounding like $24.456 ≈ $24.46 in financial
computations.

While in the context of real numbers the notion of ap-
proximation, i.e., the distance (or rounding error) between
two numbers, is clear, it is not so when dealing with ran-
dom variables. There are various different distances known
in the literature such as the Kolmogorov distance (Lilliefors
1967) and the Wasserstein distance (Vallender 1974). The

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6327

choice of a specific metric to use depends on the application
at hand. In this work, motivated by the problem of estimat-
ing the probability of meeting deadlines, we focus on the
Kolmogorov distance dK(X,X ′) = supt |FX(t)− FX′(t)|
where FX and FX′ are the CDFs of X and X ′, respectively.

The connection between the Kolmogorov distance and the
deadline problem is clear – since FX(T) gives the probabil-
ity of meeting the deadline T , the distance between FX and
FX′ measures how similar are X and X ′ in terms of es-
timating the probabilities of meeting deadlines. This, how-
ever, is not enough for the applications that we are inter-
ested in since we need to be conservative in our estima-
tions, i.e., overestimations of the probabilities of meeting
deadlines are allowed, not underestimations. To this end,
we adopt a one-sided version of the Kolmogorov distance.
Specifically, we say that X ′ is an ε-approximation of X , de-
noted by X �ε X ′, if dK(X,X ′) ≤ ε and if, in addition,
FX(t) ≤ FX′(t) for all t.

A similar notion of one-sided Kolmogorov approxima-
tion was also proposed in the work of Cohen, Shimony and
Weiss (2015), where a polynomial-time (additive error) ap-
proximation scheme for computing the probability of meet-
ing a deadline for task trees was suggested. Since the dead-
line problem of the complete task tree is NP-hard, they sug-
gested an approximation algorithm. A key component in the
suggested algorithm was a procedure for “trimming” the
support of random variables. The Trim operator proposed
in (Cohen, Shimony, and Weiss 2015) gets as input a random
variable, X , and an error bound, ε, and returns as output a
new random variable, X ′, such that X ≺ε X . This is simi-
lar to what we do in this paper. However, the Trim operator
is not optimal in the sense that there may exist a different
random variable X ′′ with the same support size as X ′ such
that X ′′ ≺ε′ X and ε′ < ε. In this paper we show that it
is possible to find an optimal approximation in polynomial
time. Note that there is still a trade-off of accuracy and time
since Trim can be computed in linear time.

The present study is also a continuation of the work of
Pavlikov and Uryasev (2016), where a procedure to produce
a random variable X ′ that optimally approximates a ran-
dom variable X is presented. Their approximation scheme,
achieved using convex and linear programming, is designed
for a different notion of distance (called CVaR). The new
contribution of the present work in this context is that our
method is direct, not using linear or convex programming,
thus allowing tighter analysis of time and memory complex-
ity. Also, our method is designed to approximate by the one-
sided Kolmogorov error discussed above.

The rest of the paper is organized as follows. Section 2
describes the problem of task trees with deadlines that mo-
tivates this work. The main technical contribution is in Sec-
tion 3, which includes the problem statement of optimally
approximating random variables, followed by the descrip-
tion and properties of an algorithm that solves the problem at
hand. Section 4 presents an empirical evaluation that demon-
strates the quality of the proposed algorithm on the task trees
domain, as well as additional experiments regarding the so-
lution quality and run-time performance. A discussion and
related work (Section 5) concludes the paper.

2 A Motivating Example:

Task Trees with Deadlines

Hierarchical planning is a well-established field in AI. Re-
search on hierarchical planning goes back decades (Dean,
Firby, and Miller 1988; Erol, Hendler, and Nau 1994;
1996), but is still relevant nowadays (Alford et al. 2016;
Xiao et al. 2017). A hierarchical plan is a method for rep-
resenting problems of automated planning in which the de-
pendency among tasks can be given in the form of networks.

In this work we focus on hierarchical plans represented
by task trees, in which the leaves are primitive actions (or
tasks), and the internal nodes are either sequence or parallel.
The plans we deal with are of stochastic nature, where the
duration of a primitive action is given by a random variable.
A sequence node denotes a series of tasks that should be per-
formed consecutively, whereas a parallel node denotes a set
of tasks that begin at the same time. A valid plan is one that
is fulfilled before some given deadline, i.e., its makespan is
less than or equal to the deadline. The objective in this con-
text is to compute the probability that a given plan is valid, or
more formally computing P (X < T), where X is a random
variable representing the makespan of the plan and T is the
deadline. We note that deadlines correspond to the resource
of time, where in fact this work may be applied (possibly
with some adjustments) to other resources like fuel, cost,
and memory consumption.

As said above, resource consumption (task duration) is
uncertain, and described as probability distributions in the
leaf nodes. We assume that the distributions are independent
but not necessarily identically distributed and that the ran-
dom variables are discrete and have a finite support.

The problem of finding the probability that a task tree
satisfies a deadline is known to be NP-hard. In fact, even
the problem of summing a set of random variables is NP-
hard (Möhring 2001). This is an example of an explicitly
given random variable that we need to estimate deadline
meeting probabilities for.

Various hierarchical plans that can be represented as task
trees with deadlines can be found in the JSHOP2 plan-
ner (Nau et al. 2003). One on the examples there is the do-
main of logistic problems consists of packages that are to be
transported by trucks or airplanes. Figure 1 presents an ex-
ample, which includes one parallel node (packages delivered
in parallel), with all descendant task nodes being sequential
plans. Given a specific task tree (generated by JSHOP2 or
some other planner) and a deadline, our objective is to com-
pute in reasonable time the probability that the plan repre-
sented by the task tree meets the deadline. We used these
plans for the experiments described in Section 4 below.

3 An Optimal Approximation of a

Random Variable

This section starts with a formal statement of the main math-
ematical problem, and continues with the OptApprox algo-
rithm that solves the problem in polynomial time.

6328

(transport-two p1 p2)

(transport p1) (transport p2)

(dispatch t1 l1)

(reserve t1)

(move t1 home l1)

(load t1 p1)

(move t1 l1 l3)

(return t1 l1)

(free t1)

(move t1 l3 home)

(dispatch t2 l2)

(reserve t2)

(move t2 home l2)

(load t2 p2)

(move t2 l2 l3)

(return t2 l2)

(free t2)

(move t2 l3 home)

Figure 1: A plan generated by the JSHOP2 algorithm. Arrow
shapes represent sequence nodes, parallelograms represent
parallel nodes, and rectangles represent primitive nodes.

Problem Statement

We begin with two definitions and then use them to formally
state the main algorithmic problem solved in this paper. We
use the well known term “discrete random variable” to relate
to the outcomes (and the probabilities thereof) of a random
phenomenon that has a finite set of possible real values.
Definition 1. For two discrete random variables X1 and
X2, we say that X2 is a one-sided Kolmogorov approx-
imation of X1 with the parameters ε and m, denoted by
X1 �ε,m X2, if 0 ≤ FX2(t) − FX1(t) ≤ ε, for all t, and if
| support(X2)| ≤ m.
Definition 2. For a random variable X and m ∈ N, let
ε∗ = ε∗(X,m) = inf{ε : ∃X ′.X �ε,m X ′} be the optimal
approximation error for X with a random variable whose
support is of size m.

The algorithmic problem we focus on is: Given a random
variable X with a finite support and a natural number m,
find a random variable X ′ such that X �ε∗,m X ′.

The OptApprox Algorithm

In this sub-section we describe an algorithm that solves the
problem stated above in polynomial time and memory com-
plexities. The main trick in our method is the observation
that we can focus the search for an optimal approximation
of a variable X on a small set of candidate variables that we
call consecutive approximations of X , defined as follows.
Definition 3. A partition P = {B1, . . . , Bn} of a set S ⊆ R

is called consecutive if Bi = [minBi,maxBi]∩S for all i.
Definition 4. We say that a random variable X ′ is a con-
secutive approximation of a random variable X if there is
a consecutive partition P = {B1, . . . , Bn} of support(X)
such that the probability mass function (PMF) of X ′ is

fX′(t) =

{
Pr(X∈Bi) if t = min(Bi) for some i;
0 otherwise.

In terms of CDFs, for a given t, we identify the Bi,
1 ≤ i < n, if exists, such that t ∈ [min(Bi),min(Bi+1))
and define FX′(t) = FX(max(Bi)). If t < min(B1) or
t ≥ min(Bn), we define FX′(t) = 0 and FX′(t) = 1 re-
spectively.
Example 1. To demonstrate the above notions, we list two possi-
ble consecutive approximations of the random variable X defined
by its PMF, as follows.

fX(t) =

⎧⎪⎪⎨
⎪⎪⎩

1/3 if t = 1 or t = 2;

1/6 if t = 3 or t = 4;

0 otherwise.

We have support(X) = {1, 2, 3, 4}. One consecutive partition of
it is P = {{1, 2}, {3, 4}}. The corresponding consecutive approx-
imation is the random variable XP whose PMF is:

fXP
(t) =

⎧⎪⎪⎨
⎪⎪⎩

2/3 if t = 1;

1/3 if t = 3;

0 otherwise.

One may also define a different consecutive partition P ′ =
{{1, 2, 3}, {4}} that gives XP ′ whose PMF is:

fX
P ′ (t) =

⎧⎪⎪⎨
⎪⎪⎩

5/6 if t = 1;

1/6 if t = 4;

0 otherwise.

Alternatively, one can use the CDF notation for FXP (t) and
FX′

P
(t) as follows:

FXP
(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 1;

2/3 if 1 ≤ t < 3;

1 if t ≥ 3.

FX
P ′ (t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t < 1;

5/6 if 1 ≤ t < 4;

1 if t ≥ 4.

The next theorem establishes that there is an optimal ap-
proximation that is also consecutive. It is key to the cor-
rectness proof of the OptApprox algorithm that efficiently
scans all possible consecutive approximations to find an op-
timal one, as we will elaborate later.

Theorem 1. For any discrete random variable X and any
m ∈ N, there exists a consecutive approximation XP of X
such that X �ε∗,m XP .

Proof. Let X ′ be such that X �ε∗,m X ′. Specifically, for
all t,

FX(t) ≤ FX′(t) ≤ FX(t) + ε∗ (1)

The proof is constructive and consists of two steps: (1) we
first construct a variable X ′′ from X ′ that approximates X
as X ′ does, i.e., X �ε∗,m X ′′, but also has the property that
its support is a subset of the support of X; (2) then, from X ′′,
we construct another random variable, X ′′′, that in addition
to being an approximation of X with the same parameters is
also equal to XP for some consecutive partition P .

Assume that t1, . . . , tn are all the elements in the support
of X in ascending order. Define the random variable X ′′ by

fX′′(t) =

⎧⎨
⎩
Pr(X ′ ≤ t1) if t=t1;

Pr(ti−1 < X ′ ≤ ti) if t=ti for some i �=1;

0 otherwise.

6329

In words, given X and X ′, we construct X ′′ by defining
fX′′(ti) = Pr(ti−1 < X ′ ≤ ti) for all i = 1, . . . , n
(using t0 = −∞) and fX′′(t) = 0 for all other ts. Note
that Pr(ti−1 < X ′ ≤ ti) may be zero in which case
ti /∈ support(X ′′).

We will show now that: (1) support(X ′′) ⊆
support(X); (2) X �ε∗,m X ′′. Since we only assign
a non-zero probability to fX′′(t) if t = t1 or if t = ti
for some i, i.e., only if t is in the support of X , we
have that support(X ′′) ⊆ support(X). Furthermore,
if ti ∈ support(X ′′) then Pr(ti−1 < X ′ ≤ ti) �= 0
which means that there is some ti−1 < t′ ≤ ti such that
t′ ∈ support(X ′). To also handle the case where i = 0,
we denote t−1 = −∞. This (unique) mapping gives us
that | support(X ′′)| ≤ | support(X ′)| ≤ m. To complete
the proof of the properties of X ′′, we will show now that
FX(t) ≤ FX′′(t) ≤ FX′(t) for all t by examining the
different ts as follows:

(1.1) Case t < t1: FX′′(t) = FX(t) = 0. Since FX′(t) ≥
0 for all t, we get that FX(t) ≤ FX′′(t) ≤ FX′(t).

(1.2) Case t = ti: FX′(t) = FX′′(t) and FX(t) ≤ FX′(t)
by Eq. (1).

(1.3) Case ti−1 < t < ti: FX′′(t) = FX′′(ti−1) and
FX(t) = FX(ti−1). Since we already have that
FX(ti−1) ≤ FX′′(ti−1) ≤ FX′(ti−1) from Case 1.2,
we get that FX(t) ≤ FX′′(t) ≤ FX′(ti−1). By mono-
tonicity of CDF, FX′(ti−1) ≤ FX′(t) therefore FX(t) ≤
FX′′(t) ≤ FX′(t).

(1.4) Case t > tn: FX(t) = FX′′(t) = 1 and, by Eq. (1),
since CDFs are always bounded by one, also FX′(t) = 1.

From the four different cases of t, as we already established
that | support(X ′′)| ≤ m, we get that X �ε∗,m X ′′.

Therefore,

FX(t) ≤ FX′′(t) ≤ FX′(t) ≤ FX(t) + ε∗ (2)
Let s1, . . . , sk be the elements in the support of X ′′ in

ascending order k ≤ m. Define the random variable X ′′′

fX′′′(t) =

⎧⎨
⎩
Pr(si ≤ X < si+1) if t=si for some i<k;

Pr(X ≥ sk) if t=sk;

0 otherwise.

We will show that: (1) X �ε∗,m X ′′′; (2) There exists a
partition P such that X ′′′ = XP . Again, we will show that
FX(t) ≤ FX′′′(t) ≤ FX′′(t) for all t by examining the
different values of t as follows:

(2.1) Case t < s1: FX′′′(t) = FX′′(t) = 0 and FX(t) ≤
FX′′(t) fro Eq. (2).

(2.2) Case t = si: First, FX(t) ≤ FX′′′(t) since
FX′′′(si) = FX(si) + Pr(si < X < si+1).
Second we show that FX′′′(t) ≤ FX′′(t). Since
X �ε∗,m X ′′, FX(si) + Pr(si < X < si+1) ≤
Pr(X ′′ < si+1). As s1, . . . , sk is the support of
X ′′, Pr(X ′′ < si+1) = FX′′(si). By definition
FX′′′(si) = FX(si) + Pr(si < X < si+1). Together we
get that FX′′′(si) ≤ FX′′(si). For the case t = sk, the
argument holds with the notation k + 1 = ∞.

(2.3) Case si−1 < t < si: FX′′(t) = FX′′(si−1) and
FX′′′(t) = FX′′′(si−1) therefore by Case 2.2, FX′′′(t) ≤
FX′′(t). Also, FX(t) ≤ Pr(X < si) = FX′′′(t).

(2.4) Case t > sk: FX′′(t) = FX′′′(t) = 1. Since CDFs
are always smaller or equal to one, also FX(t) ≤ 1.

From the different cases of t, because support(X ′′) =
support(X ′′′), we established that X �ε∗,m X ′′′. The next
step is to prove that X ′′′ = XP , by presenting a par-
tition P . As shown before, support(X) = {t1, . . . , tn},
support(X ′′′) = {s1, . . . , sk}, and support(X ′′) ⊆
support(X) since support(X ′′) is equal to support(X ′′′)
then support(X ′′′) ⊆ support(X). In addition, ∀0 ≤ i ≤
k, Pr(X ′′′ = si) = Pr(si ≤ X ≤ si+1) therefore we
get that X ′′′ = XP is a consecutive approximation of X
with the partition P = {[si, si+1) ∩ support(X) : i =
1, . . . , n− 1}.

To demonstrate how the above proof works, the follow-
ing example shows one possible list of the random variables
constructed in the different stages of the proof.
Example 2. Consider the following two random variable X and
X ′ such that X �ε∗,m X ′ where m = 3:

fX(t) =

⎧⎪⎪⎨
⎪⎪⎩

1/3 if t = 1 or t = 2;

1/6 if t = 3 or t = 4;

0 otherwise.

fX′ (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/6 if t = 0.9;

1/2 if t = 1;

1/3 if t = 2;

0 otherwise.

In this case ε∗ = 1/3 and indeed X �ε∗,m X ′. The steps in the
proof of Theorem 1 transform X ′ to a partitioned random variable
X ′′′ with the same approximation qualities:

fX′′ (t) =

⎧⎪⎪⎨
⎪⎪⎩

2/3 if t = 1;

1/3 if t = 2;

0 otherwise.

fX′′′ (t) =

⎧⎪⎪⎨
⎪⎪⎩

2/3 if t = 1;

1/3 if t = 3;

0 otherwise.

Note that this example shows that it may be that X ′′ is
not a consecutive approximation of X . We only guarantee that
support(X ′′) ⊆ support(X) and that X �ε∗,m X ′′. Only
the variable X ′′′, in addition to these properties, is guaranteed to
be an consecutive approximation. In this case, with the partition
P = {{1, 2}{3, 4}}.

Theorem 1 gives us that there is a consecutive approxima-
tion that is also optimal. This observation allows to restricts
the focus of the OptApprox algorithm to only search for the
best consecutive approximation.

Chakravarty, Orlin, and Rothblum (1982) proposed a
polynomial-time method that, given certain objective func-
tions (additive), finds an optimal consecutive partition. Their
method involves the construction of a graph such that the
(consecutive) set partitioning problem is reduced to the
problem of finding the shortest path in that graph.

The OptApprox algorithm (Algorithm 1) starts by con-
structing a directed weighted graph G similar to the method
of Chakravarty, Orlin, and Rothblum (1982). The nodes V
consist of the support of X together with an extra node ∞
for technical reasons, whereas the edges E connect every
pair of nodes in one direction (lines 1-2). The weight w
of each edge e = (i, j) ∈ E is determined by the prob-
ability of X to get a value between i and j, non inclusive

6330

(lines 3-4), i.e., w(e) = Pr(i < X < j). The values
taken are non inclusive, since we are interested only in the
error value. The source node of the shortest path problem
at hand corresponds to the minimal value in support(X),
and the target node is the extra node ∞. The set of all so-
lution paths in G, i.e., those starting at s and ending in ∞
with at most m edges, is called paths(G). The goal is to
find the path in paths(G) with the lightest bottleneck (lines
5-6). This can be achieved by using the Bellman − Ford
algorithm with two tweaks. The first is to iterate the graph
G in order to find only paths with length of at most m
edges. The second is to find the lightest bottleneck as op-
posed to the traditional objective of finding the shortest path.
This is performed by modifying the manner of “relaxation”
to bottleneck(x) = min[max(bottleneck(v), w(e))], done
also in (Shufan, Ilani, and Grinshpoun 2011). Consequently,
we find the lightest maximal edge in a path of length ≤ m,
which represents the minimal error, ε∗, defined in Defini-
tion 2. XP is then derived from the resulting path (lines 7-8).

Algorithm 1: OptApprox(X,m)

1 S = support(X) ∪ {∞}
2 G = (V,E) = (S, {(i, j) ∈ S2 : j > i})
3 foreach e = (i, j) ∈ E do
4 w(e) = Pr(i < X < j)

5 /* The following can be obtained, e.g., using the
Bellman-Ford algorithm */

6 l∗ = argminl∈paths(G),|l|≤m max{w(e) : e ∈ l}
7 foreach e = (i, j) ∈ l∗ do
8 fX′(i) = Pr(i ≤ X < j)

9 return X ′

Now we proceed to prove the correctness (optimality) of
the OptApprox algorithm.
Theorem 2. X �ε∗,m OptApprox(X,m).

Proof. According to Theorem 1 there exists a consecutive
partition P for which X �ε∗,m XP . For every consecu-
tive partition P there is a path l, l ∈ paths(G), |l| ≤ m,
such that its corresponding partitioned random variable XP

satisfies X �ε,m XP where ε = max{w(e) : e ∈ l}. By
using, for instance, the Bellman-Ford algorithm (lines 5-
6), we obtain the optimal path l∗ containing the minimal
edge among all maximal edges of all the paths in paths(G).
The optimal consecutive partition P ∗ associated with this
“lightest” path l∗, results in X ′ = XP∗ (lines 7-8). Thus,
X ′ = OptApprox(X,m) and X �ε∗,m X ′.

Next we analyze the run-time and memory complexity of
the OptApprox algorithm. Note that G is acyclic, therefore
a shortest path can be found in O(E + V) time using topo-
logical sorting (Christofides 1975).
Theorem 3. The OptApprox(X,m) algorithm runs in time
O(n3), using O(n2) memory where n = | support(X)|.
Proof. Constructing the graph G takes O(n3). The number
of edges is O(E) ≈ O(n2) and for every edge the weight

is at most the sum of all probabilities between the source
node s and the target node ∞, Pr(s < X < ∞), O(n3).
The construction is also the only stage that requires mem-
ory allocation, specifically O(E + V) = O(n2). Finding
the shortest path takes O(m(E + V)) ≈ O(mn2). Since G
acyclic finding shortest path takes O(E+V). We only need
to find paths of length ≤ m, which takes O(m(E + V)).
Deriving the new random variable X ′ from the computed
path l∗ takes O(mn). For every node in l∗ (at most m
nodes), calculating the probability P (s < X < ∞) takes
at most n. To conclude, the worst case run-time complexity
is O(n3+mn2+mn) = O(n3) and memory complexity is
O(E + V) = O(n2).

4 Empirical Evaluation

In the previous section, we proved that OptApprox gives
an optimal approximation, i.e., a random variable with min-
imal one-sided Kolmogorov error. Although locally optimal,
it is of interest to analyze the long-term effect of using the
OptApprox algorithm within the process of solving com-
plex problems. Thus, in our main experiment, we use the
OptApprox algorithm as an operator within the wider ap-
proximation algorithm proposed in (Cohen, Shimony, and
Weiss 2015) for analyzing deadline probabilities in hierar-
chical plans (see Section 2). It is important to note that while
OptApprox is optimal when applied on a single random
variable, the overall algorithm that uses it is not necessarily
optimal as an approximation of the completion time of a task
tree. Therefore, we aim at empirically evaluating the perfor-
mance of the OptApprox algorithm and compare it to other
alternative approaches. In an additional experiment we fo-
cus on the advantage of using the OptApprox algorithm on
single random variables, and we conclude our experiments
with an examination of the problem sizes in which it be-
comes beneficial in terms of run-time to use the proposed
approximation. All solution methods were implemented on
Python and the experiments were executed on a hardware
comprised of an Intel i5-6500 CPU @ 3.20GHz processor
and 8GB memory.

We continue to present the alternative approaches that are
evaluated together with the OptApprox algorithm, followed
by the experiments and their results.

Evaluated Alternative Approaches

Our results compared to the exact computation of the CDF,
to a simple stochastic sampling scheme, and to a different
one-sided Kolmogorov approximation. The exact computa-
tion of the CDF is used as reference in order to compute the
one-sided Kolmogorov error, i.e. to evaluate how good is our
estimation across all possible deadlines. The stochastic sam-
pling scheme is a repeated simulation in which we sample
the distribution of every primitive task and aggregate the du-
ration according to the tree structure. This approach enables
to derive a distribution over all of the duration results. The
last approach, is an implementation of the algorithm pro-
posed by Cohen, Shimony and Weiss (2015) of a non opti-
mal operator called Trim, which returns a random variable
that approximates the input by no more than a prescribed

6331

error, ε (Cohen, Shimony, and Weiss 2015). There are two
variants of the Trim operator, an upper and a lower error
bounds. Here we present the results of the lower bound vari-
ant that provides a one-sided Kolmogorov approximation.
Both the Trim and OptApprox are used as operators for
achieving one-sided Kolmogorov approximation within the
approximation algorithm. The following example illustrates
the difference between the Trim and OptApprox operators.
Example 3. Consider the variable X and its approximation,
XTrim, using Trim with ε=1/3:

fX(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.1 if t ∈ {1, 2, 3, 4};
0.2 if t = 5;

0.4 if t = 6;

0 otherwise.

fXTrim
(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.4 if t = 1;

0.2 if t = 5;

0.4 if t = 6;

0 otherwise.

In this case we get that dK(XTrim − X) = 0.3. To improve this,
using OptApprox with m = 3, we construct XOptApprox such
that dK(XOptApprox −X) = 0.2:

fXOptApprox
(t) =

⎧⎪⎪⎨
⎪⎪⎩

0.3 if t = 1 or t = 4;

0.4 if t = 6;

0 otherwise.

Although both operators return a one-sided Kolmogorov
approximation for a given random variable, they set differ-
ent parameters in the process. The Trim operator sets the
error bound ε and provides guarantees regarding the support
size, whereas OptApprox sets the support size and provides
the minimal error. In order to compare the two operators we
show a connection between the error bound ε and the sup-
port size m. Recall the notation ε∗(X,m), given in Defini-
tion 2, for the quality of the best possible approximation of
X with a random variable with support of size m.

Lemma 4. ε∗(X,m) ≤ 1/m.

Proof. According to Lemma 2 in (Cohen, Shimony, and
Weiss 2015) X ′ = Trim(X, 1/m). Lemma 3 in that pa-
per states that for a given error ε the support size m is
bounded by 1/ε, thus ε ≤ 1/m. Turning to the terminology
of the present work, this means that X �1/m,m X ′. Since
ε∗(X,m) is the minimal distance between any random vari-
able with support size m and the random variable X , we get
ε∗(X,m) ≤ 1/m.

Cohen, Shimony and Weiss (2015) use a slightly different
notation for the error between X and X ′, X �ε X

′, relating
only to the approximation error, without the support size.
The following theorem relates OptApprox to this notation:

Theorem 5. If X ′ = OptApprox(X, 1/ε) then X �ε X
′.

Proof. Following the optimality of OptApprox (Theo-
rem 2), X �ε∗(X,1/ε),1/ε X ′. Now, given Lemma 4,
X �ε,1/ε X

′, and consequently X �ε X
′.

The above properties enable a fair and sound compari-
son between the OptApprox and Trim operators. Follow-
ing Lemma 4 we set the support size given as the input of
OptApprox to m = 1/ε, whereas ε is the input of Trim.
From Theorem 5 we establish that by setting the support

size to be 1/ε we bound the error of OptApprox to at most
ε, resulting in the same error guarantees (bounds) by both
operators. It remains to determine the actual error resulting
from each operator.

Experiments and Results

In the first experiment we focus on the problem of task trees
with deadlines, and consider three types of task trees. The
first type includes logistic problems of transporting pack-
ages by trucks and airplanes (from IPC2 http://ipc.icaps-
conference.org/). Hierarchical plans of those logistic prob-
lems were generated by the JSHOP2 planner (Nau et al.
2003) (see example problem, Figure 1). The second type
consists of task trees used as execution plans for the ROBIL
team entry in the DARPA robotics challenge (DRC simula-
tion phase), and the third type is of linear plans (sequential
task trees). The primitive tasks in all the trees are modeled as
discrete random variables with support of size M obtained
by discretization of uniform distributions over various inter-
vals. The number of tasks in a tree is denoted by N .

We fed the approximation algorithm for solving the dead-
line problem with two different methods of the one-sided
Kolmogorov approximation – the OptApprox and the Trim
operators. The parameter m of OptApprox corresponds to
the inverse of ε given to the Trim operator. Note that in or-
der to obtain some error ε, one must take into consideration
the size of the task tree, N , therefore, m/N = 1/(ε ·N) (see
Lemma 4 and Theorem 5). We ran the exact algorithm as ref-
erence, the approximation algorithm using OptApprox as
its operator with m = 10 · N , the approximation algorithm
using the Trim operator with ε = 0.1/N , and two simple
simulations, with a different samples number s = 104 and
s = 106.

Task Tree M
OptApprox Trim Sampling
m/N=10 ε · N=0.1 s=104 s=106

Logistics
2 0 0.0019 0.007 0.0009

(N = 34) 4 0.0046 0.0068 0.0057 0.0005

Logistics
2 0.0005 0.002 0.015 0.001

(N=45) 4 0.003 0.004 0.008 0.0006

DRC-Drive
2 0.004 0.009 0.0072 0.0009

(N=47) 4 0.008 0.019 0.0075 0.0011

Sequential
4 0.024 0.04 0.008 0.0016

(N=10) 10 0.028 0.06 0.0117 0.001

Table 1: Comparison of estimation errors with respect to the
reference exact computation on various task trees.

Table 1 shows the results of the main experiment. The
quality of the solutions provided by using the OptApprox
operator are better (lower errors) than those provided by the
Trim operator, following the optimality guarantees, but is
interesting to see that the quality gaps happen in practice in
each of the examined task trees. However, in some of the
task trees the sampling method produced better results than
the approximation algorithm with OptApprox. Neverthe-
less, the approximation algorithm comes with an inherent
advantage of providing an exact quality guarantees, as op-
posed to the probabilistic guarantees provided by sampling.

6332

m OptApprox Trim Relative error
2 0.491 0.493 0.4%
4 0.242 0.247 2.1%
8 0.118 0.123 4.4%
10 0.093 0.099 6%
20 0.043 0.049 15%
50 0.013 0.019 45.4%

Table 2: OptApprox vs. Trim on randomly generated ran-
dom variables with original support size M = 100.

m OptApprox Trim Relative error
50 0.0193 0.0199 3.4%
100 0.0093 0.0099 7.1%
200 0.0043 0.0049 15.7%

Table 3: OptApprox vs. Trim on randomly generated ran-
dom variables with original support size M = 1000.

In order to better understand the quality gaps in practice
between OptApprox and Trim, we investigate their relative
errors when applied on single random variables with differ-
ent sizes of the support (M), and different support sizes of
the resulting random variable approximation (m). In each
instance of this experiment, a random variable is randomly
generated by choosing the probabilities of each element in
the support from a uniform distribution and then normaliz-
ing these probabilities so that they sum to one.

Tables 2 and 3 present the error produced by OptApprox
and Trim on random variables with supports sizes of M =
100 and M = 1000, respectively. The depicted results in
these tables are averages over several instances of random
variables for each entry (50 instances in Table 2 and 10 in-
stances in Table 3). The two central columns in each table
show the average error of each method, whereas the right
column presents the average percentage of the relative error
of the Trim operator with respect to the error of the optimal
approximation provided by OptApprox; the relative error
of each instance is calculated by (Trim /OptApprox)− 1.
According to the depicted results it is evident that increasing
the support size of the approximation m reduces the error,
as expected, in both methods. However, the interesting phe-
nomenon is that the relative error percentage of Trim grows
with the increase of m.

The above experiments display the quality of approxima-
tion provided by the OptApprox algorithm, but it comes
with a price tag in the form of run-time performance. The
time complexity of both the Trim operator and the sam-
pling method is linear in the number of variables, resulting
in much faster run-time performances than OptApprox, for
which the time complexity is only polynomial (Theorem 3),
not linear. The run-time of the exact computation, however,
may grow exponentially. Therefore, we examine in the next
experiment the problem sizes in which it becomes beneficial
in terms of run-time to use the proposed approximation.

Figure 2 presents a comparison of the run-time perfor-
mances of an exact computation and approximated compu-
tations with OptApprox and Trim as operators. The com-
putation is a summation of a sequence of random vari-

ables with support size of M=10, where the number N of
variables varies from 6 to 19. In this experiment, we exe-
cuted the OptApprox operator with m=10 after performing
each convolution between two random variables, in order to
maintain a support size of 10 in all intermediate computa-
tions. Equivalently, we executed the Trim operator with ε =
0.1. The results clearly show the exponential run-time of the
exact computation, caused by the convolution between two
consecutive random variables. In fact, in the experiment with
N=20, the exact computation ran out of memory. These re-
sults illuminate the advantage of the proposed OptApprox
algorithm that balances between solution quality and run-
time performance – while there exist other, faster, methods
(e.g., Trim), OptApprox provides high-quality solutions in
reasonable (polynomial) time, which is especially important
when an exact computation is not feasible, due to time or
memory.

6 10 15 19
0

100

200

300

Number of variables

R
un

-t
im

e
(s

ec
on

ds
)

OptApprox

Trim

Exact (no trimming)

Figure 2: Run-time of a long computation with OptApprox,
with Trim, and without any trimming (exact computation).

5 Discussion and Related Work

Compact representations of distributions is mentioned in
the literature in various contexts. The most common is for
representing continuous random variables with discrete ap-
proximations, as in the, so called, three point approxima-
tions (Keefer and Bodily 1983; Keefer 1994). Other pro-
posed approximation approaches include the approach pre-
sented by Miller III and Rice (1983) and by Hammond and
Bickel (2013), where the support of a distribution is par-
titioned and the mean or the median of every partition is
chosen to be in the support of the discrete approximation.
Another approach is to compute a discrete variable that has
the same moments as the original distribution (Miller III
and Rice 1983; Smith 1993). An approach that is applica-
ble when the input distribution is not specified completely
involves resolving ambiguities in the definition of the dis-
crete approximation of size m using maximization of the
entropy (Rosenblueth, Karmeshu, and Hong 1987).

The contribution of the present paper to this litera-
ture is an approximation scheme similar to those proposed

6333

in (Miller III and Rice 1983) and in (Hammond and Bickel
2013). The similarity is in the fact that our proposal is also
based on a (consecutive) partition of the support of the input
variable (discrete in our case). The difference is that we are
proposing to take the minimum of each partition as a repre-
sentative to be included in the support of the approximation.
As with the moments preserving approximations (Miller III
and Rice 1983; Smith 1993), where the motivation is that
certain objective functions depend mostly on the first mo-
ments, our motivation is to discretize such that probabilities
of meeting deadlines are preserved. We showed in this pa-
per that a partition that yields an optimal approximation in
this sense can be found in polynomial time. As elaborated
in the paper, our algorithm improves on the approach of Co-
hen, Shimony and Weiss (2015) in that it finds an optimal
approximation, but it runs in polynomial time where their
algorithm runs in linear time.

We view this paper as a first step in the examination of
algorithms for optimal approximations of random variables.
Beyond the one-sided Kolmogorov measure studied here for
the purpose of estimating deadline meeting probabilities, we
believe that similar approaches may apply also to the Kol-
mogorogorv distance, to the Wasserstein distance, and to
other measures of approximations for other purposes.

Acknowledgments. This research was supported by the
Israeli Ministry of Science and Technology, by the Lynn
and William Frankel Center for Computer Science at Ben-
Gurion University, and by the Israel Science Foundation
(ISF), grants no. 856/16 and 857/12. Liat Cohen is also af-
filiated with Ariel University under grant no. 3-12802 of the
Ministry of Science and Technology.

References

Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical planning: Relating task and
goal decomposition with task sharing. In IJCAI, 3022–3029.
Beck, J. C., and Wilson, N. 2007. Proactive Algorithms for
Job Shop Scheduling with Probabilistic Durations. Journal
of Artificial Intelligence Research 28:183–232.
Buyya, R.; Garg, S. K.; and Calheiros, R. N. 2011. SLA-
oriented resource provisioning for cloud computing: Chal-
lenges, architecture, and solutions. In International Confer-
ence on Cloud and Service Computing (CSC), 1–10.
Chakravarty, A.; Orlin, J.; and Rothblum, U. 1982. A parti-
tioning problem with additive objective with an application
to optimal inventory groupings for joint replenishment. Op-
erations Research 30(5):1018–1022.
Christofides, N. 1975. Graph theory: An algorithmic ap-
proach. Academic Press.
Cohen, L.; Shimony, S. E.; and Weiss, G. 2015. Estimating
the probability of meeting a deadline in hierarchical plans.
In IJCAI, 1551–1557.
Dean, T.; Firby, R. J.; and Miller, D. 1988. Hierarchi-
cal planning involving deadlines, travel time, and resources.
Computational Intelligence 4(3):381–398.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and Arti-
ficial Intelligence 18(1):69–93.
Fu, N.; Varakantham, P.; and Lau, H. C. 2010. Towards
Finding Robust Execution Strategies for RCPSP/max with
Durational Uncertainty. In ICAPS, 73–80.
Hagstrom, J. N. 1988. Computational complexity of PERT
problems. Networks 18(2):139–147.
Hammond, R. K., and Bickel, J. E. 2013. Reexamining dis-
crete approximations to continuous distributions. Decision
Analysis 10(1):6–25.
Herroelen, W., and Leus, R. 2005. Project scheduling un-
der uncertainty: Survey and research potentials. European
Journal of Operational Research 165(2):289–306.
Keefer, D. L., and Bodily, S. E. 1983. Three-point approxi-
mations for continuous random variables. Management Sci-
ence 29(5):595–609.
Keefer, D. L. 1994. Certainty equivalents for three-point
discrete-distribution approximations. Management Science
40(6):760–773.
Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov test
for normality with mean and variance unknown. Journal of
the American Statistical Association 62(318):399–402.
Miller III, A. C., and Rice, T. R. 1983. Discrete approx-
imations of probability distributions. Management Science
29(3):352–362.
Möhring, R. 2001. Scheduling under uncertainty: Bounding
the makespan distribution. Computational Discrete Mathe-
matics 79–97.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Research
20:379–404.
Pavlikov, K., and Uryasev, S. 2016. CVaR distance between
univariate probability distributions and approximation prob-
lems. Technical Report 2015-6, University of Florida.
Rosenblueth, E.; Karmeshu; and Hong, H. P. 1987. Maxi-
mum entropy and discretization of probability distributions.
Probabilistic Engineering Mechanics 2(2):58–63.
Shperberg, S. S.; Shimony, S. E.; and Felner, A. 2017.
Monte-Carlo tree search using batch value of perfect infor-
mation. In UAI.
Shufan, E.; Ilani, H.; and Grinshpoun, T. 2011. A two-
campus transport problem. In MISTA, 173–184.
Smith, J. E. 1993. Moment methods for decision analysis.
Management Science 39(3):340–358.
Vallender, S. 1974. Calculation of the Wasserstein dis-
tance between probability distributions on the line. Theory
of Probability & Its Applications 18(4):784–786.
Xiao, Z.; Herzig, A.; Perrussel, L.; Wan, H.; and Su, X.
2017. Hierarchical task network planning with task inser-
tion and state constraints. In IJCAI, 4463–4469.

6334

